Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Generalised predictability in the synthesis of biocarbons as clean energy materials: Targeted high performance CO₂ and CH₄ storage

Ibtisam Alali, and Robert Mokaya*

School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U. K.

E-mail: r.mokaya@nottingham.ac.uk (R. Mokaya)

	<u>CO₂ uptake (mmol/g)</u>		Reference
	1 bar	0.15 bar	
Sawdust-derived activated carbon	4.8	1.2	1
KOH-activated templated carbons	3.4	~1.0	2
Petroleum pitch-derived activated carbon	4.55	~1.0	3
Activated carbon spheres	4.55	~1.1	4
Phenolic resin activated carbon spheres	4.5	~1.2	5
Poly(benzoxazine-co-resol)-derived carbon	3.3	1.0	6
Fungi-derived activated carbon	3.5	~1.0	7
Chitosan-derived activated carbon	3.86	~1.1	8
Polypyrrole derived activated carbon	3.9	~1.0	9
Soya bean derived N-doped activated carbon	4.24	1.2	10
N-doped ZTCs	4.4	~1.0	11
Activated templated N-doped carbon	4.5	1.4	12
Polyaniline derived activated carbon	4.3	1.38	13
N-doped activated carbon monoliths	5.14	1.25	14
Activated N-doped carbon	3.2	1.5	15
Activated hierarchical N-doped carbon	4.8	1.4	16
Activated N-doped carbon from algae	4.5	~1.1	17
Compactivated carbons from sawdust	5.8	2.0	18
Fern-derived activated carbon	5.67	~1.7	19
Compactivated carbons from polypyrrole	5.5	2.1	20

Table S1. CO_2 uptake of various porous carbons at 25 °C and 0.15 bar or 1 bar (Table adapted from reference 34 in main manuscript).

- 1. M. Sevilla and A. B. Fuertes, *Energy Environ. Sci.*, 2011, 4, 1765.
- 2. M. Sevilla and A. B. Fuertes, J. Colloid Interface Sci., 2012, 366, 147.
- J. Silvestre-Albero, A. Wahby, A. Sepulveda-Escribano, M. Martinez-Escandell, K. Kaneko and F. Rodriguez-Reinoso, *Chem. Commun.*, 2011, 47, 6840.
- 4. N. P. Wickramaratne and M. Jaroniec, ACS Appl. Mater. Interfaces, 2013, 5, 1849.
- 5. N. P. Wickramaratne and M. Jaroniec, J. Mater. Chem. A, 2013, 1,112.
- 6. G. P. Hao, W. C. Li, D. Qian, G. H. Wang, W. P. Zhang, T. Zhang, A. Q. Wang, F. Schuth, H. J. Bongard and A. H. Lu, *J. Am. Chem. Soc.*, 2011, **133**, 11378.
- 7. J. Wang, et al, J. Mater. Chem., 2012, 22, 13911.
- 8. X. Fan, L. Zhang, G. Zhang, Z. Shu, J. Shi, Carbon, 2013, 61, 423.
- 9. M. Sevilla, P. Valle-Vigon and A. B. Fuertes, Adv. Funct. Mater., 2011, 21, 2781.
- 10. W. Xing, et al, Energy Environ. Sci., 2012, 5, 7323.
- 11. Y. D. Xia, R. Mokaya, G. S. Walker and Y. Q. Zhu, Adv. Energy Mater., 2011, 1, 678.
- 12. Y. Zhao, L. Zhao, K. X. Yao, Y. Yang, Q. Zhang and Y. Han, J. Mater. Chem., 2012, 22, 19726.
- 13. Z. Zhang, et al, Phys. Chem. Chem. Phys., 2013, 15, 2523
- 14. M. Nandi, et al, Chem. Commun., 2012, 48, 10283.
- 15. M. Saleh, J. N. Tiwari, K. C. Kemp, M. Yousuf and K. S. Kim, Environ. Sci. Technol., 2013, 47, 5467.
- 16. D. Lee, C. Zhang, C. Wei, B. L. Ashfeld and H. Gao, J. Mater. Chem. A, 2013, 1, 14862.
- 17. M. Sevilla, C. Falco, M. M. Titirici and A. B. Fuertes, RSC Advances, 2012, 2, 12792.
- 18. N. Balahmar, A. C. Mitchell, and R. Mokaya, Adv. Energy Mater., 2015, 5, 1500867.
- 19. J. Serafin, K. Kiełbasa and, B. Michalkiewicz, Chem. Eng. J., 2022, 429, 131751.
- 20. B. Adeniran and R. Mokaya, Nano Energy, 2015, 16, 173.

Table S2. Packing (or tapping) density and low-pressure volumetric CO_2 uptake, expressed as g 1^{-1} (or cm³ (STP) cm⁻³), for clove-derived activated carbons compared to benchmark carbons and metal organic frameworks (MOFs). The values in parenthesis are volumetric uptake expressed as cm³ (STP) cm⁻³.

Sample	Density ^a	Volumetric	Reference			
	(g cm ⁻³)	0.15 bar	1 bar	5 bar	9 bar	
ACC2600	0.92	45 (23)	182 (93)	390 (199)	463 (236)	This work
ACC2700	0.79	38 (19)	170 (87)	400 (204)	482 (245)	This work
ACC2800	0.72	29 (15)	133 (68)	349 (178)	450 (229)	This work
HCC2600	0.98	56 (29)	185 (94)	353 (180)	408 (208)	This work
HCC2700	0.83	51 (26)	197 (100)	409 (208)	476 (242)	This work
HCC2800	0.63	25 (13)	116 (59)	312 (159)	405 (206)	This work
SD2600	0.94	54 (27)	178 (91)	315 (160)	348 (177)	1
SD2600P	0.95	80 (41)	242 (123)	370 (188)	399 (203)	1
SD2650	0.89	47 (24)	161 (82)	294 (150)	338 (172)	1
SD2650P	0.81	54 (27)	189 (96)	371 (189)	427 (217)	1
Carbon A1	1.00	38 (19)	157 (80)	278 (142)	316 (161)	2
Carbon A3-36	0.87	27 (14)	128 (65)	302 (154)	378 (192)	2
MOF210	0.25 ^b	4 (2)	10 (5)	38 (19)	65 (33)	3
Mg-MOF-74	0.41°	103 (52)	144 (73)			4,5

^a Packing density or tapping density. Packing density of ACC2*T* and HCC2*T* carbons may be determined from pellets compacted in a 1.3 cm die for ca. 5 min at 7 MPa. Similar values are obtained from the general equation; $d_{carbon} = (1/\rho_s + V_T)^{-1}$, where ρ_s is skeletal density and V_T is total pore volume from nitrogen sorption analysis. The skeletal density was determined from helium pycnometry. from reference 25. ^b Crystal density of MOF210. ^c 'Tapping density' of Mg-MOF-74 from reference 5.

- 1. N. Balahmar, A. C. Mitchell, and R. Mokaya, Adv. Energy Mater., 2015, 5, 1500867.
- 2. J. P. Marco-Lozar, M. Kunowsky, F. Suarez-Garcia, J. D. Carruthers and A. Linares-Solano, *Energy Environ. Sci.*, 2012, **5**, 9833.
- 3. H. Furukawa, N. Ko, Y. B. Go, N. Aratani, S. B. Choi, E. Choi, A. O. Yazaydin, R. Q. Snurr, M. O'Keeffe, J. Kim and O. M. Yaghi, *Science*, 2010, **329**, 424.
- 4. S. R. Caskey, A. G. Wong-Foy and A. J. Matzger, J. Am. Chem. Soc., 2008, 130, 10870.
- 5. Y. Peng, V. Krungleviciute, I. Eryazici, J. T. Hupp, O. K. Farha and T. Yildirim, J. Am. Chem. Soc. 2013, 135, 11887.

Table S3. Volumetric working capacity, expressed as g l^{-1} (or cm³ (STP) cm⁻³) for pressure swing adsorption (PSA) and vacuum swing adsorption (VSA) of CO₂ on clove-derived activated carbons compared to benchmark porous materials at ca. 25 °C for a pure CO₂ gas stream and a 20% partial CO₂ pressure flue gas stream. The values in parentheses are the working capacity in cm³ (STP) cm⁻³

Sample	Density	<u>Pure CO_2^a (g/l or cm³ cm⁻³)</u>		<u>Flue gas CO_2^b (generative set in the set of the s</u>	Reference	
	(g cm ⁻³)	PSA	VSA	PSA	VSA	
ACC2600	0.92	231 (118)	211 (108)	142 (72)	73 (37)	This work
ACC2700	0.79	257 (131)	202 (103)	139 (71)	66 (34)	This work
ACC2800	0.72	248 (126)	162 (82)	111 (57)	51 (26)	This work
HCC2600	0.98	185 (94)	198 (101)	134 (68)	86 (44)	This work
HCC2700	0.83	238 (121)	223 (114)	153 (78)	84 (43)	This work
HCC2800	0.63	225 (115)	144 (73)	100 (51)	47 (24)	This work
SD2600	0.94	153 (78)	190 (97)	124 (63)	87 (44)	1
SD2600P	0.95	142 (72)	251 (128)	171 (87)	121 (62)	1
SD2650	0.89	149 (76)	180 (92)	121 (62)	74 (38)	1
SD2650P	0.81	143 (73)	213 (108)	143 (73)	86 (44)	1
HKUST-1	0.43	147 (75)	121 (62)	85 (43)	30 (15)	2
Mg-MOF-74	0.41	63 (32)	70 (36)	38 (19)	74 (38)	2
NaX	0.63	44 (22)	78 (40)	50 (26)	69 (35)	3

^a1 bar to 6 bar for PSA; 0.05 bar to 1.5 bar for VSA. ^b0.2 bar to 1.2 bar for PSA; 0.01 bar to 0.3 bar for VSA.

References

1. N. Balahmar, A. C. Mitchell, and R. Mokaya, Adv. Energy Mater., 2015, 5, 1500867.

2. J. M. Simmons, H. Wu, W. Zhou and T. Yildirim, Energy Environ. Sci., 2011, 4, 2177.

3. Y. Belmabkhout, G. Pirngruber, E. Jolimaitre and A. Methivier, Adsorption, 2007, 13, 341.

Sample	Density $(q \text{ cm}^{-3})$	65	bar	80^{-1}	bar $(cm^3 cm^{-3})$	100	bar	Reference
CHCC2800	0.82	0.26	293	0.28	315	0.30	339	This work
CHCC4700	0.75	0.27	282	0.29	306	0.32	334	This work
CHCC4800	0.58	0.32	258	0.35	279	0.38	309	This work
CNL4800	0.67	0.26	241	0.29	269	0.31	291	1
PPYCNL124	0.52	0.30	217	0.33	238	0.36	260	1
PPYCNL214	0.36	0.36	183	0.41	204	0.46	229	1
ACDS4800	0.69	0.25	243	0.27	262	0.29	282	1,2
PPYSD114	0.47	0.32	211	0.35	231	0.39	254	1
AX-21 carbon	0.487	0.30	203	0.33	222	0.35	238	3
HKUST-1	0.881	0.21	263	0.22	272	0.23	281	3
Ni-MOF-74	1.195	0.15	259	0.16	267	0.17	277	3
Al-soc-MOF-1	0.34	0.41	197	0.47	222			4
MOF-210	0.25	0.41	143	0.48	168			5
NU-1500-A1	0.498	0.29	200	0.31	216	0.34	237	6
NU-1501-Fe	0.299	0.40	168	0.46	193	0.52	218	6
NU-1501-A1	0.283	0.41	163	0.48	190	0.54	214	6
monoHKUST-1	1.06	0.17	261	0.18	278	0.18	275	7
monoUiO-66_D	1.05	0.14	210	0.17	245	0.20	296	8

Table S4. Methane uptake for compacted activated carbons compared to selected benchmark MOFs and carbons reported in the literature. Volumetric uptake of powder MOFs is calculated

based on crystallographic density rather than packing density.

- 1. A. Altwala and R. Mokaya, J. Mater. Chem. A, 2022, 10, 13744.
- 2. A. Altwala and R. Mokaya, Energy Environ. Sci., 2020, 13, 2967.
- 3. J. A. Mason, M. Veenstra and J. R. Long, Chem. Sci., 2014, 5, 32.
- D. Alezi, Y. Belmabkhout, M. Suyetin, P. M. Bhatt, Ł. J. Weseliński, V. Solovyeva, K. Adil, I. Spanopoulos, P. N. Trikalitis, A.-H. Emwas, M. Eddaoudi, *J. Am. Chem. Soc.*, 2015, 137, 13308.
- H. Furukawa, N. Ko, Y. B. Go, N. Aratani, S. B. Choi, E. Choi, A. O. Yazaydin, R. Q. Snurr, M. O'Keeffe, J. Kim, O. M. Yaghi, *Science* 2010, **329**, 424–428.
- Z. Chen, P. Li, R. Anderson, X. Wang, X. Zhang, L. Robison, L. R. Redfern, S. Moribe, T. Islamoglu, D. A. Gómez-Gualdrón, T. Yildirim, J. F. Stoddart and O. K. Farha, *Science*, 2020, 368, 297.
- 7. T. Tian, Z. Zeng, D. Vulpe, M. E. Casco, G. Divitini, P. A. Midgley, J. Silvestre-Albero, J. C. Tan, P. Z. Moghadam and D. Fairen-Jimenez, *Nat. Mater.*, 2018, **17**, 174.
- 8. B. M. Connolly, M. Aragones-Anglada, J. Gandara-Loe, N. A. Danaf, D. C. Lamb, J. P. Mehta, D. Vulpe, S. Wuttke, J. Silvestre-Albero, P. Z. Moghadam, A. E. H. Wheatley and

D. Fairen-Jimenez, Nat. Commun., 2019, 10, 2345.

Sample	65 bar		80 bar		100 bar		Reference
	$(g g^{-1})($	$cm^3 cm^{-3}$)	$(g g^{-1})$ ($(\mathrm{cm}^3\mathrm{cm}^{-3})$	$(g g^{-1})$	$(\mathrm{cm}^3\mathrm{cm}^{-3})$	
CHCC2800	0.18	200	0.20	222	0.22	246	This work
CHCC4700	0.20	210	0.22	234	0.25	262	This work
CHCC4800	0.25	197	0.28	218	0.31	248	This work
CNL4800	0.19	182	0.22	202	0.24	224	1
PPYCNL124	0.23	167	0.26	188	0.29	209	1
PPYCNL214	0.29	146	0.34	167	0.39	192	1
ACDS4800	0.18	171	0.20	189	0.22	209	1,2
PPYSD114	0.25	162	0.28	182	0.32	205	1
AX-21 carbon	0.23	155	0.26	174	0.28	190	3
HKUST-1	0.15	179	0.16	198	0.17	207	3
Ni-MOF-74	0.08	148	0.09	152	0.10	162	3
Al-soc-MOF-1	0.36	176	0.42	201			4
MOF-210	0.38	134	0.45	157			5
NU-1500-A1	0.24	165	0.26	181	0.29	202	6
NU-1501-Fe	0.36	151	0.42	176	0.48	201	6
NU-1501-A1	0.37	147	0.44	174	0.50	198	6
monoHKUST-1	0.12	184	0.13	201	0.13	198	7
monoUiO-66_D	0.11	167	0.14	202	0.17	253	8

Table S5: Methane uptake working capacity for compacted activated carbons compared to selected benchmark MOFs and carbons reported in the literature.

- 1. A. Altwala and R. Mokaya, J. Mater. Chem. A, 2022, 10, 13744.
- 2. A. Altwala and R. Mokaya, Energy Environ. Sci., 2020, 13, 2967.
- 3. J. A. Mason, M. Veenstra and J. R. Long, Chem. Sci., 2014, 5, 32.
- A. D. Alezi, Y. Belmabkhout, M. Suyetin, P. M. Bhatt, Ł. J. Weseliński, V. Solovyeva, K. Adil, I. Spanopoulos, P. N. Trikalitis, A.-H. Emwas, M. Eddaoudi, *J. Am. Chem. Soc.*, 2015, 137, 13308.
- 5. H. Furukawa, N. Ko, Y. B. Go, N. Aratani, S. B. Choi, E. Choi, A. O. Yazaydin, R. Q. Snurr, M. O'Keeffe, J. Kim, O. M. Yaghi, *Science* 2010, **329**, 424–428.
- Z. Chen, P. Li, R. Anderson, X. Wang, X. Zhang, L. Robison, L. R. Redfern, S. Moribe, T. Islamoglu, D. A. Gómez-Gualdrón, T. Yildirim, J. F. Stoddart and O. K. Farha, *Science*, 2020, 368, 297.
- 7. T. Tian, Z. Zeng, D. Vulpe, M. E. Casco, G. Divitini, P. A. Midgley, J. Silvestre-Albero, J. C. Tan, P. Z. Moghadam and D. Fairen-Jimenez, *Nat. Mater.*, 2018, **17**, 174.
- 8. B. M. Connolly, M. Aragones-Anglada, J. Gandara-Loe, N. A. Danaf, D. C. Lamb, J. P. Mehta, D. Vulpe, S. Wuttke, J. Silvestre-Albero, P. Z. Moghadam, A. E. H. Wheatley and

D. Fairen-Jimenez, Nat. Commun., 2019, 10, 2345.

Scheme S1: Schematic showing the steps in the carbonisation of raw cloves via the flash air carbonisation route to yield air carbonised clove (ACC) carbon, which was used as starting material for activation to yield ACCxT series of activated carbons (where *x* in KOH/ACC ratio and *T* is activation temperature.

Flash Air carbonisation

Scheme S2: Schematic showing the steps in the carbonisation of raw cloves via the hydrothermal carbonisation route to yield clove hydrochar (HCC), which was used as starting material for activation to yield HCCxT series of activated carbons (where *x* in KOH/HCC ratio and *T* is activation temperature.

Hydrothermal carbonisation Faw Cloves Faw Cloves Clove hydrochar (HCC)

Hydrothermal bomb reactor

Figure S1. Powder XRD patterns of raw clove, air-carbonised clove (ACC) and clove hydrochar (HCC).

Figure S2. Powder XRD patterns of activated carbons derived from air-carbonised clove (ACC).

Figure S3. Powder XRD patterns of activated carbons derived from clove hydrochar (HCC).

Figure S4. SEM images of raw clove, air-carbonised clove (ACC) and clove-derived hydrochar (HCC).

Figure S5. Representative SEM images of activated carbons derived from air-carbonised clove.

Figure S6. Representative SEM images of activated carbons derived from clove hydrochar.

Figure S7. A comparison of representative hydrochar-derived carbons before and after compaction; (A) Nitrogen sorption isotherms and (B) pore size distribution (PSD) curves.

Figure S8. Comparison of CO_2 and N_2 uptake at room temperature for sample HCC2700. The CO_2/N_2 adsorption ratio is 22 at 1 bar.

Figure S9. Total volumetric methane uptake of compacted activated carbons at 25 °C compared to benchmark MOF materials. The uptake of powder MOFs was calculated using crystallographic density and a reduction of 25% was applied to simulate more realistic packing density.