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Supplementary Text10

1 Governing equation11

We consider the immiscible multiphase flow problem with CO2 and water in the context of CO2

geological storage. The multiphase flow is governed by the basic mass balance equations, and
the general forms of mass accumulations are written as (1):

∂Mη

∂t
= −∇ · Fη + qη, (1)

where η denotes component of CO2 or water, F denotes the flux, and q denotes the source12

term. For each component, the mass accumulation term is summed over phase p = w (wetting)13

or n (non-wetting)14

Mη = φ
∑
p

SpρpX
η
p . (2)

Here φ is the porosity, Sp is the saturation of phase p, and Xη
p is the mass fraction of component15

η in phase p. Component water is the wetting phase in most storage formations with siliciclastic16

rocks (2). Meanwhile, CO2 and water have mutual solubility; therefore, a small amount of CO217

dissolves into the wetting phase, and a small amount of water vaporizes into the non-wetting18

phase.19

For both components, the advective mass flux Fη|adv is obtained by summing over phases20

p,21

Fη|adv =
∑
p

XηFp =
∑
p

Xη
(
− k

kr,pρp
µp

(∇Pp − ρpg)
)

(3)

where each individual phase flux Fp is governed by the multiphase flow extension of Darcy’s22

law derived from the Navier-Stokes equation (3). k denotes the absolute permeability, kr,p is the23

relative permeability of phase p that non-linearly depends on Sp, µp is the viscosity of phase p24

that depends on Pp, and g is the gravitational acceleration.25

Due to the effect of capillarity, the fluid pressure Pp of each phase is

Pn = Pw + Pc (4)

Pw = Pw (5)

where the capillary pressure Pc is a non-linear function of Sp. Additionally, porosity φ, density26

ρp, and the flow composition in Equation 2 and Equation 3 are also non-linear functions that27

depend on Pp.28
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2 Local Grid Refinement29

We inject CO2 into a 3D saline formation with multiple vertical injection wells. The reservoir is30

160,000 m × 160,000 m × 100 m with a dip angle along the x-axis. The large spatial domain is31

chosen to mimic saline formations with infinite-acting boundaries; no flow boundary conditions32

are used for the top and bottom of the formation. On the global level (level 0), we used a grid33

resolution of 1,600 m × 1,600 m × 20 m to simulate the entire reservoir domain.34

Each reservoir has 1 to 4 injection wells. Around each injection well, we apply high-35

resolution local refinements to capture the multi-phase flow processes. Specifically, since CO236

is lighter than the formation fluid, the CO2 plume will migrate upward due to gravity forces.37

As shown in the sensitivity analysis presented in (4), large grid thicknesses, such as the 20 m38

at level 0, will suppress gravity override and leads to underestimation of the plume footprint.39

In addition, the injection of CO2 leads to rapid near-well pressure buildup. Using large lateral40

grids will greatly underestimate the maximum pressure buildup. Large lateral grids will also41

ignore the dry-out zone near the injection wells (5). Therefore, we gradually refine the grid cell42

size from 1,600 m × 1,600 m × 20 m to 20 m × 20 m × 2 m, and named each refinement from43

level 1 being the coarsest to level 4 being the finest. We refined the entire reservoir depth along44

the z-axis in levels 1-4 in order to ensure that the gravity override effect is always modeled45

by high-resolution grids. We chose the finest level grid thickness of 2 m as it provides decent46

estimates of the plume migration process. For example, as shown in (4), the plume radius error47

simulated by 2 m-thick grids is within 3% compared to the converged grid thickness of 0.5 m.48

The injection wells are placed in the middle of level 4. The level 1 refinements never over-49

lap with each other. Table S1 summarizes detailed information for each level, and Figure S150

provides visualizations for levels 0 to 4 grid in a 4-well reservoir.51

As for the x and y-axis, we designed the LGRs so that the CO2 plume always stays within52

levels 1 to 4. Specifically, levels 2 to 4 are placed on the right-hand side of level 1 (Figure S1)53

because the simulated reservoir dips downwards along the x-axis. CO2 is more likely to migrate54

up-dip, especially for high permeable reservoirs. This design ensures the CO2 gas saturation55

plume never enters the level 0 grids. Overall, by using this four-level grid refinement on the x,56

y, and z-axis, we accurately captured the CO2 plume migration, near well pressure response, as57

well as far-field pressure inference in multi-well reservoirs.58
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3 Data set generation59

To demonstrate the potential to make the Nested FNO a general-purpose numerical simulator60

alternative, we sampled a wide range of inputs to cover most realistic scenarios for CO2 injec-61

tion into saline formations. This differs from most ‘surrogate’ modeling approaches with fixed62

reservoir conditions and permeability maps constrained by a prior. The following sections intro-63

duce the sampling ranges for reservoir conditions, injection schemes, and permeability fields.64

Sampling ranges are summarized in Table S2.65

3.1 Reservoir conditions66

We sample the reservoir depth from 800 m to 4,500 m. For the upper bound, injecting deeper67

than 800 m ensures that the CO2 plume stays in the supercritical state. For the lower bound,68

our sampling range is deeper than commonly used ranges for CCS (∼ 3,000 m) to include69

deep offshore formations such as in the Gulf of Mexico. Reservoir temperatures are calculated70

according to the reservoir depth and a geothermal gradient variable, which we sampled from 1571

to 35 C◦ per km. Within each formation, we assume isothermal conditions. Deeper reservoirs72

lead to higher initial pressures and temperatures, which in turn introduce a more diverse range73

of CO2 properties (e.g., density, solubility, and viscosity).74

Our data set also considers a range of reservoir dip angles. Since CO2 is lighter than forma-75

tion fluid, it would naturally migrate up-dip. The influence on plume migration is particularly76

significant for large dip angles and high permeability formations. We sampled dip angles from77

0 to 2◦ to consider this effect and then discarded the reservoirs that are shallower than 800m or78

deeper than 4,500 m. The dip angle is applied to the x-axis, and the initial hydrostatic pressure79

in each cell is assigned according to the cell depth. Figure 1 in the main manuscript document80

demonstrates a reservoir with four injection wells, where the deepest and shallowest injection81

depths are more than 1,000 meters apart vertically due to the dip angle. As a result, the plume82

migration and pressure buildup around these two wells are influenced by significantly different83

reservoir conditions.84

3.2 Injection scenarios85

We randomly place one to four wells in each reservoir. Each well is at least 5,000 m away from86

the reservoir boundaries to avoid pressure influence. Each well has a constant injection rate87
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sampled from 0.5 to 2 MT/year over 30 years. We also sampled perforation lengths from 20 m88

to 100 m for each injection well and randomly placed the perforation interval along the well.89

3.3 Permeability fields90

To generate the 3D heterogeneous permeability fields, we used a modified version of Stanford91

Geostatistical Modeling Software (SGeMS) (6) to create random media according to 3D spatial92

correlations. For each permeability field, we sampled random correlation lengths on the x-axis93

from 800 m to 4,000 m, y-axis from 800 m to 4,000 m, and z-axis from 4 m to 20 m. These94

spatial correlation ranges are chosen to cover typical depositional environments (i.e., shoreface,95

deltaic, marginal marine) found in existing CO2 storage and hydrocarbon reservoirs (7–11). The96

random field is generated at the resolution of level 2 and subsequently up-sampled for levels 0-197

level and down-sampled for levels 3-4 using tri-linear interpolation. Note that the up-sampling98

and down-sampling of the permeability map is not performed to capture the flow character-99

istics. Instead, it simply re-grids the random field to another resolution while maintaining the100

spatial correlations for training. This is different from an ‘up-scaling’ context, where the coarser101

permeability field is expected to capture the flow of the finer permeability field.102

Then, we scaled the distribution of each permeability field according to a pair of the ran-103

domly sampled ln permeability mean and ln permeability standard deviation (Table S2). The104

maximum cell permeability in the data set is 14 Darcy, and the minimum is kept at 0.1 mD.105

Figure 1 (main text) shows an example of the permeability field.106

4 Numerical simulation setting107

We use a full physics numerical simulator, ECLIPSE (e300), to solve the governing PDEs.108

ECLIPSE uses the finite difference method with upstream weighting for spatial discretiza-109

tion and the fully implicit method for temporal discretization (12). The benchmark study by110

Class et al. (13) compared a wide variety of numerical simulators for CO2 storage problems111

(i.e., ECLIPSE, TOUGH2 (14), GEM-CMG (15)). They found that ECLIPSE has leading112

computational performance for compositional multiphase flow among the studied simulators.113

Therefore, we chose ECLIPSE to generate the training dataset in this study. ECLIPSE uses114

the non-conforming grid technique to simulate the domain with local grid refinement. We do115

not explicitly simulate molecular diffusion and hydrodynamic dispersion. However, numeri-116

cal simulation results include some unavoidable numerical diffusion and dispersion resulting117
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from finite difference gradient approximation. Since we applied LGRs around each injection118

well, the number of cells in each reservoir ranges from ∼0.3 million to ∼1 million, depending119

on the number of injection wells. We run each ECLIPSE numerical simulation on 20 parallel120

Intel®Xeon®E5-2640 CPU using Stanford University’s HPC cluster. The average ECLIPSE run121

times are summarized in Table S6 (b).122

Corey’s curve and Leverette-J function scaling is used for relative permeability and capil-123

lary pressure. Relative permeability curves control the mobility of the liquid and the gas phase.124

Lower irreducible water saturation generally leads to more compact CO2 plumes compared to125

higher irreducible water saturation (16, 17). Capillary pressure curves describe the capillary126

entry pressure and the rate of capillary pressure rising as CO2 invades rock pores. It is also an127

important measurement of the wettability of the reservoir (18–20). In our previous work, we128

demonstrated that these curves could also be variables in deep learning models by sampling129

the irreducible water saturation and the scaling factor for capillary pressure curves (21, 22).130

Since the methodology of this paper focuses on predicting temporal-3D outputs with locally re-131

fined grids and multiple injection wells, we chose to prioritize incorporating injection scenarios,132

reservoir conditions, and permeability fields instead of rock properties in our training dataset;133

however, rock properties can be incorporated using the same approach described in (21, 22) in134

future work.135

After running the numerical simulation, we extract 24-time snapshots for gas saturation136

and pressure buildup during 30 years of injection. We sampled the time snapshots with higher137

frequencies at the beginning of the injection and lower frequencies near the end of the injection.138

This technique is commonly used in numerical simulations to guide engineering decisions.139

The data set includes 3011 cases for level 0 and 7374 for levels 1-4 because each reservoir140

can have one to four injection wells. We then split the data into training/validation/testing sets141

at an 8/1/1 ratio, which gives us 2408/301/302 for level 0 and 5916/731/727 for LGR models.142

5 Fourier Neural Operator143

The computational domain of the Nested Fourier Neural Operator (FNO) is a 3D space with144

time, D = Ω × T , where T is the time interval of 30 years and Ω is the 3D spatial domain.145

The Nested FNO consists of nine FNOs for five levels of sub-domains where each subdomain146

corresponds to a level of grid refinement. The inputs and outputs are functions defined on the147

4D domain from the corresponding function spaces A = U = L∞(D).148
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Each FNO model learns an infinite-dimensional-space mapping from a finite collection of149

input-output observations (i.e. data set {aj, uj}Nj=1). We use n-point space-time discretization150

Dj = {ξ1, . . . , ξn} ⊂ D, where ξ = (ω, t), to numerically represent aj|Dj
∈ Rn×da and uj|Dj

∈151

Rn×du so that aj consists of the input coefficient functions and uj consists of output functions152

of gas saturation S and pressure buildup P . FNO is a type of neural operator (Definition 1)153

where we use the Fourier integral kernel operator (Definition 2) as the linear integral operator154

to achieve efficient and accurate training.155

Definition 1 (Neural operator). A L-layered neural operator Gθ is defined as:156

Gθ := Q ◦ (WL +KL) ◦ . . . ◦ σ(W1 +K1) ◦ P , (6)

where P is a pointwise operator that expands the input function to a higher co-dimension space,157

parameterized with P : Rda → Rdl=1 . In each layer for l ∈ 1...L, K is a linear integral oper-158

ator, W is a linear matrix operator, and σ is a non-linear activation. Lastly, Q is a pointwise159

operator that projects the function to the output space, parameterized with Q : Rdl=L → Rdu .160

All parameters in P , Kl, Wl, and Q are learned through training. By stacking multiple161

neural operator layers, Gθ can approximate the mapping of high dimensional functions with162

strong non-linearity.163

Definition 2 (Fourier integral kernel operator). An integral kernel operator K is defined by164 (
K(vl)

)
(ξ) =

∫
D

κ(ξ, ξ)vl(ξ
′)dξ′, ∀ξ′ ∈ D. (7)

To efficiently parameterize kernel K, the FNO method (23) represents vl in the Fourier space165

to directly parameterize κ by its Fourier coefficients:166 (
K(vl)

)
(ξ) = F−1

(
R · F(vl)

)
(ξ), ∀ξ ∈ D. (8)

where R is the Fourier transform of a periodic function κ, F denotes a Fourier transform of a167

function f : D → Rc and F−1 is its inverse. To further improve computational efficiency and168

reduce memory consumption, we truncate the Fourier series at a maximum number of modes169

(kmax), and then parameterize R with the truncated Fourier coefficients. Therefore, we can170

implement R using a linear parameterization as171

(
R · F(vl)

)
k,i

=
c∑

j=1

Rk,i,j(F(vl))k,j, ∀k = 1, ..., kmax, i = 1, ..., c. (9)

7



Using the Fourier integral kernel operator as K1...L gives us the FNO architecture. Since the172

data is locally provided on uniform grids, we utilize Fast Fourier Transform (FFT) to implement173

and approximate the Fourier transform. The speed and low memory requirement of FFT make174

our proposed method computationally fast with a significantly low memory footprint. We denote175

FNO with G (in short of Gθ) throughout this paper.176

We summarized the parameters in the following tables: level 0 (Table S3), level 1 (Table S4),177

and levels 2 to 4 (Table S5). We used 4 Fourier layers for each sub-model with a width of 28.178

The modes (t, x, y, z) are (4, 20, 20, 2) for the level 0 and (6, 10, 10, 10) for levels 1 to 4.179

6 Training procedure180

We use Nvidia A100-SXM GPUs for the training. Each model fits into the GPU with a batch181

size of one. We use the relative l2-loss function for the training because it provides normalized182

loss across cases, leading to excellent gradient propagation compared to a vanilla l2-loss or183

RMSE error. Each model was trained for 30 and 40 epochs and fine-tuned for around 10 epochs184

until the validation set error plateaus. Instead of relative l2-loss, we monitored the model level185

plume gas saturation error (main text, Equation 4) and relative pressure buildup error (main text,186

Equation 3) on the validation set as an indicator of when to stop training. We do not monitor the187

relative l2-loss because it is normalized over the sample’s norm, making the magnitudes carry188

different meanings among different refinement levels.189

Note that the numerical simulator domains at levels 0 to 3 are annular because they do190

not include information at the finer refinement levels. To help with the FNO learning (which191

prefers continuous functions), we construct the continuous training domains by down-sampling192

the information from the finer LGRs to populate the annular domains. Our experiments show193

that the continuous training domains provide more efficient learning than the annular simulator194

domains. The down-sampled information is only used during the training and is not reported in195

the final prediction. Figure S2 shows the simulator domain and training domain at each level.196

7 Speedup analysis197

Once the Nested FNO model is trained, we can directly use it as a numerical simulator alterna-198

tive for CO2 gas saturation and pressure buildup prediction in 3D saline formations. Therefore,199

we compared the ML model prediction time with the numerical simulation time to compute200
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the computational efficiency speed-up. We summarized each model’s training and prediction201

times in the Nested FNO in Table S6 (a). The machine learning models are evaluated on Nvidia202

A100-SXM GPUs the prediction time is calculated by taking the average over 1,000 cases. All203

models take ∼0.005 s to evaluate with negligible variances. The prediction time depends on the204

number of injection wells: ttotal = tglobal + nwell ×
∑4

i=1 ti. We run each ECLIPSE numerical205

simulation on 20 parallel Intel®Xeon®E5-2640 CPU using Stanford HPC cluster. The run time206

also depends on the number of injection wells since more wells lead to more cells.207

Table S6 (b) shows that the Nested FNO provides 4×105 to 7 ×105 times speed-up com-208

pared to traditional numerical simulation. Interestingly, four-well cases with larger cell counts209

have the most significant speed-up. The advantage of using Nested FNO is more prominent210

with higher dimensional cases, e.g., more injection wells or levels of refinements. In addition,211

Nested FNO can predict pressure buildup or gas saturation separately, whereas numerical sim-212

ulation always calculates all variables regardless of whether they are needed. The speed-up is213

calculated considering separate predictions for gas saturation and pressure buildup.214

8 Accuracy summary215

Table S7 shows an accuracy summary for train, validation, and test sets in the simulator domain,216

the training domain with separate prediction, and the training domain with sequential prediction.217

9 Probabilistic assessment218

We use Nested FNO to conduct probabilistic assessments on CO2 plume footprint and maxi-219

mum pressure buildup. We consider CO2 injection through 4 injection wells where each well220

injects at a 1MT/year rate. All wells inject through a perforation located at the bottom 20221

meters of the reservoir. We generated 1,000 permeability realizations where the permeability222

average and standard deviation for each map are 85mD and 100mD, respectively. The corre-223

lation lengths on x, y, and z directions are 2000, 4000, and 20 meters, respectively. The 10224

realizations shown in Figure 4 (main text) were taken from the same injection well.225

CO2 plume footprint is defined as the area of land under the separate phase CO2 plume,226

which has a gas saturation larger than 0.01. We calculate the plume footprint using the Nested227

FNO’s gas saturation prediction and the xy-cross section area of each grid cell. The plume228

footprint reported in Figure 4 (main text) is the reservoir’s total plume footprint; the maximum229
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pressure buildup reported in Figure 4 (main text) is the reservoir’s maximum.230
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Fig. S1.231

Figure S1: Grid visualizations for the entire reservoir (x-y view), local refinements around the
injection well (x-y view), entire reservoir (x-z view) and local refinements around the injection
well (x-z view).
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Fig. S2.232

Figure S2: Simulator domain and training domain for each level
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Table S1.233

Table S1: Spatial dimension, cell size, matrix dimension, and the number of cells for level 0-4
grids.

Spatial dimension (m) Cell size (m) Matrix dim # of cells
level 0 160,000×160,000×100 1,600×1,600×20 100×100×5 50,000
level 1 16,000×16,000×100 400×400×4 40×40×25 40,000
level 2 8,000×8,000×100 200×200×2 40×40×50 80,000
level 3 4,000×4,000×100 100×100×2 40×40×50 80,000
level 4 800×800×100 20×20×2 40×40×50 80,000

13



Table S2.234

Table S2: Variables parameters and sample ranges used for generating the input data set.

Variable type Sampling parameter Distribution Unit
Permeability map x-axis correlation X ∼ U [800, 4000] m

y-axis correlation X ∼ U [800, 4000] m
z-axis correlation X ∼ U [4, 20] m
reservoir permeability mean X ∼ U [4.09, 5.01] lnmD
reservoir permeability std X ∼ U [0.25, 1] lnmD

Reservoir cond. Reservoir center depth X ∼ U [800, 4500] m
Geothermal gradient X ∼ U [15, 35] °C/km
Dip angle X ∼ U [0, 2] °C/km

Injection design # of wells n ∈ {1, 2, 3, 4} -
Injection rate X ∼ U [0.5, 2] MT/y
Perforation thickness X ∼ U [20, 100] m
Perforation location Randomly placed -
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Table S3.235

Table S3: FNO model parameters for the level 0 level. The Padding denotes a padding
operator that accommodates the non-periodic boundaries; Linear denotes the linear transfor-
mation to lift the input to the high dimensional space, and the projection back to original space;
Fourier4d denotes the 4D Fourier operator; Conv1d denotes the bias term; Add operation
adds the outputs together; GELU denotes a Gaussian Error Linear Units layer.

Layer Operation Output Shape
Input - (24, 100, 100, 5, 8)
Padding Padding (8) (40, 116, 116, 21, 8)
Lifting Linear (40, 116, 116, 21, 28)
Fourier 1 Fourier4d/Conv1d/Add/GELU (40, 116, 116, 21, 28)
Fourier 2 Fourier4d/Conv1d/Add/GELU (40, 116, 116, 21, 28)
Fourier 3 Fourier4d/Conv1d/Add/GELU (40, 116, 116, 21, 28)
Fourier 4 Fourier4d/Conv1d/Add (40, 116, 116, 21, 28)
De-padding Depadding (8) (24, 100, 100, 5, 28)
Projection 1 Linear (24, 100, 100, 5, 112)
Projection 2 Linear (24, 100, 100, 5, 1)

15



Table S4.236

Table S4: FNO model parameters for the level 1 level. The Padding denotes a padding
operator that accommodates the non-periodic boundaries; Linear denotes the linear transfor-
mation to lift the input to the high dimensional space, and the projection back to original space;
Fourier4d denotes the 4D Fourier operator; Conv1d denotes the bias term; Add operation
adds the outputs together; GELU denotes a Gaussian Error Linear Units layer.

Layer Operation Output Shape
Input - (24, 40, 40, 25, 9)
Padding Padding (8) (40, 56, 56, 41, 9)
Lifting Linear (40, 56, 56, 41, 28)
Fourier 1 Fourier4d/Conv1d/Add/GELU (40, 56, 56, 41, 28)
Fourier 2 Fourier4d/Conv1d/Add/GELU (40, 56, 56, 41, 28)
Fourier 3 Fourier4d/Conv1d/Add/GELU (40, 56, 56, 41, 28)
Fourier 4 Fourier4d/Conv1d/Add (40, 56, 56, 41, 28)
De-padding Depadding (8) (24, 40, 40, 25, 28)
Projection 1 Linear (24, 40, 40, 25, 112)
Projection 2 Linear (24, 40, 40, 25, 1)
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Table S5.237

Table S5: FNO model parameters for levels 2-4. The Padding denotes a padding operator that
accommodates the non-periodic boundaries; Linear denotes the linear transformation to lift
the input to the high dimensional space, and the projection back to original space; Fourier4d
denotes the 4D Fourier operator; Conv1d denotes the bias term; Add operation adds the outputs
together; GELU denotes a Gaussian Error Linear Units layer.

Layer Operation Output Shape
Input - (24, 40, 40, 50, 9)
Padding Padding (8) (40, 56, 56, 66, 9)
Lifting Linear (40, 56, 56, 66, 28)
Fourier 1 Fourier4d/Conv1d/Add/GELU (40, 56, 56, 66, 28)
Fourier 2 Fourier4d/Conv1d/Add/GELU (40, 56, 56, 66, 28)
Fourier 3 Fourier4d/Conv1d/Add/GELU (40, 56, 56, 66, 28)
Fourier 4 Fourier4d/Conv1d/Add (40, 56, 56, 66, 28)
De-padding Depadding (8) (24, 40, 40, 50, 28)
Projection 1 Linear (24, 40, 40, 50, 112)
Projection 2 Linear (24, 40, 40, 50, 1)
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Table S6.238

Table S6: (a). Prediction time, training time, and the number of parameters for levels 0-4
models. The prediction time is calculated based on an average of 250 runs. (b) Speed up
calculation for ECLIPSE vs. Nested FNO. We show the number of cells and average run time
of the ECLIPSE simulation and the Nested FNO prediction time, both averaging over 250 cases.
The speed-up is calculated for predicting gas saturation and pressure buildup separately.

(a)

Model Prediction (s) Training (hr/epoch) # of parameter
level 0 0.005 0.96 80,288,461
level 1 0.005 1.43 150,534,889
level 2 0.005 2.20 150,534,889
level 3 0.005 2.20 150,534,889
level 4 0.005 2.20 150,534,889

(b)

# of Wells # of Cells ECLIPSE (hr) Nested FNO (s) Speed-up
1 296,300 2.75 0.025 3.96×105

2 542,600 6.43 0.045 5.14×105

3 788,900 11.00 0.065 6.09×105

4 1,035,200 15.93 0.085 6.75×105
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Table S7.239

Table S7: Accuracy summary for train, validation, and test sets in the simulator domain, the
training domain with separate prediction, and the training domain with sequential prediction.

(a) Pressure buildup

Simulator domain Train (%) Validation (%) Test (%)
δP 0.34 0.48 0.47

Training domain, separate Train (%) Validation (%) Test (%)
δP0 0.02 0.02 0.02
δP1 0.09 0.11 0.10
δP2 0.15 0.16 0.16
δP3 0.14 0.14 0.14
δP4 0.42 0.47 0.45

Training domain, sequential Train (%) Validation (%) Test (%)
δP0 0.02 0.02 0.02
δP1 0.08 0.15 0.16
δP2 0.19 0.31 0.30
δP3 0.38 0.50 0.51
δP4 0.59 0.81 0.82

(b) Gas saturation

Simulator domain Train (%) Validation (%) Test (%)
δS 1.16 1.81 1.79

Training domain, separate Train (%) Validation (%) Test (%)
δS1 0.78 1.32 1.27
δS2 0.84 1.02 1.00
δS3 0.48 0.61 0.61
δS4 0.67 0.79 0.74

Training domain, sequential Train (%) Validation (%) Test (%)
δS1 0.73 1.36 1.39
δS2 1.17 1.88 1.91
δS3 1.00 1.74 1.77
δS4 1.16 1.85 1.82
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