Appendix A. Supplementary material

Development of a quantitative structure-activity relationship model for predicting

quantum yield of hydroxyl radical generation from organic compounds

Yue Liu^{1,**}, Xiaobing Chen^{1,**}, Jianchen Zhao¹, Wenjie Jin¹, Kun Zhang¹, Jiao Qu¹, Ya-nan

Zhang^{1,*}, Guangchao Chen², Willie J.G.M. Peijnenburg^{2,3}

- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China.
- 2. Institute of Environmental Sciences, Leiden University, Leiden, the Netherlands
- National Institute of Public Health and the Environment (RIVM), Center for Safety of Substances and Products, Bilthoven, the Netherlands

** These authors contributed equally to this work.

^{*} Corresponding authors. Phone: +86-431-89165617; Fax: +86 431-89165610. E-mail: zhangyn912@nenu.edu.cn (Y. Zhang)

Text S1

Chemical Substances. Methanol and acetonitrile (chromatographic pure) were purchased from TEDIA (Fairfield, OH, USA). Ultrapure water (PW, 18.2 M Ω) was acquired from a purification system and used in all experiments.

Text S2

Calculation of light path length. The light path length (z) was calculated by equation (1).¹ The path length of light corresponded to the length of the respective chord of the circle to the cylindrical quartz tube.

$$z = \frac{\pi r^2}{2r}$$
(1)

Where r is the internal diameter of the cylindrical quartz tube. z is the average length of the chords.

Fig. S1. The 500 W medium-pressure Hg lamp irradiation spectrum.

Fig. S2. UV-vis absorbance spectra of 20 organic compounds.

Fig. S3. The relationships between the concentration (*C*) of phenol produced by the reaction of •OH with benzene and the irradiation time (min) of organic compounds (the error bars represent the 95% confidence interval, n = 3).

Class	Chemical name	$R_{\bullet OH} (\times 10^{-10} \text{ M/s})$	[●OH] _{ss} (×10 ⁻¹⁷ M)
	Naphthalene	18.41 ± 0.27	7.79 ± 0.46
Class I	Acetophenone	13.94 ± 0.19	5.89 ± 0.29
	2-Chlorohydroquinone	5.18 ± 0.35	2.18 ± 0.19
	Gallic acid	3.11 ± 0.14	1.31 ± 0.07
Class II	Coumarin	6.29 ± 0.18	2.66 ± 0.15
	1,4-Benzoquinone	1.67 ± 0.28	0.71 ± 0.19
	Benzophenone	1.69 ± 0.04	0.72 ± 0.09
	3-Methoxyacetophenone	3.55 ± 0.27	1.50 ± 0.17
	4-Chloro-4'-hydroxybenzophenone	4.92 ± 0.31	2.08 ± 0.25
	2-Hydroxy-4-methylbenzaldehyde	4.61 ± 0.09	1.94 ± 0.33
	Trans-cinnamic acid	1.56 ± 0.14	0.66 ± 0.18
	2-Acetonaphthone	3.34 ± 0.19	1.42 ± 0.27
Class III	Duroquinone	1.20 ± 0.38	0.50 ± 0.25
	Dibenzoyl	1.48 ± 0.25	0.62 ± 0.13
	Biacetyl	0.61 ± 0.14	0.26 ± 0.09
	1, 4-Naphthoquinone	3.37 ± 0.29	1.42 ± 0.08
	7-Hydroxycoumarin	1.67 ± 0.37	0.71 ± 0.08
	2,4-Dihydroxybenzophenone	4.16 ± 0.30	1.76 ± 0.14
	Fenofibric acid	1.16 ± 0.08	0.49 ± 0.03
	Riboflavin	4.24 ± 0.29	1.79 ± 0.14

Table S1. Experimentally determined values of $R_{\cdot OH}$ and $[\bullet OH]_{ss}$ of organic compounds.

Chemical name	X4Av	Psi_i_t	Mor32s
1, 4-Naphthoquinone	0.041	0.006	-0.591
Biacetyl	0	0.042	-0.947
Dibenzoyl	0.045	0.002	-1.928
Acetophenone	0.056	0.028	-0.987
Coumarin	0.04	0.012	-1.2
Trans-cinnamic acid	0.052	0.008	0.888
7-Hydroxycoumarin	0.037	0.005	-1.462
Naphthalene	0.051	0.037	0.023
Duroquinone	0.052	0.008	0.878
2-Acetonaphthone	0.049	0.008	-0.397
3-Methoxyacetophenone	0.05	0.012	-0.836
Benzophenone	0.048	0.005	-1.43
1,4-Benzoquinone	0.044	0.021	0.061
2-Chlorohydroquinone	0.052	0.013	-1.373
2-Hydroxy-4-methylbenzaldehyde	0.047	0.013	-0.787
4-Chloro-4'-hydroxybenzophenone	0.047	0.001	-1.86
Gallic acid	0.034	0.001	-3.423
Fenofibric acid	0.045	0	-0.685
2,4-Dihydroxybenzophenone	0.042	0.001	-2.229
Riboflavin	0.041	0	-1.895

Table S2. Values of the molecular structure descriptors used in the constructed QSAR model.

Reference

 Y-N. Zhang, J. Wang, J. Chen, C. Zhou, Q. Xie, Phototransformation of 2,3dibromopropyl-2,4,6-tribromophenyl ether (DPTE) in natural waters: Important roles of dissolved organic matter and chloride ion, *Environ. Sci. Technol.*, 2018, 52 (18), 1049010499.