Supporting Information

Synthesis of 2D MoO_{3-x}/N-doped-Carbon Nanocomposite via Carbonization situ of Layered $(NH_4)M0_3O_9$ in **Nanomaterials** for (NH₄)₂Mo₄O₁₃-Organic Hybrid **Exceptionally** Efficient Adsorption and Separation of **Organic Dye**

Supriya Hanmant Gaikwad,^{a, b} and Shatabdi Porel Mukherjee*^{a, b}

^a Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pashan, Pune 411008, India,

^b Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India

Email: sp.mukherjee@ncl.res.in

Table of Contents

Figure S1. TEM-EDS elemental analysis of MoO_{3-x}/N-C nanocomposite.

Figure S2. XPS survey spectra of (a) AMO-hybrid and (b) $MoO_{3-x}/N-C$ nanocomposite.

Figure S3. UV-vis-NIR diffuse reflectance spectra of AMO-hybrid and MoO_{3-x}/N-C nanocomposite.

Figure S4. Typical 'Tauc' plots for calculating optical band gaps of MoO_{3-x}/N-C nanocomposite.

Figure S5. Raman spectra of MoO_{3-x}/N -C nanocomposite obtained at a laser power of 0.02 mW.

Figure S6. TGA analysis of AMO-hybrid and MoO_{3-x}/N-C nanocomposite.

Figure S7. FT-IR spectra of samples; AMO-hybrid, MoO_{3-x}/N-C nanocomposite.

Figure S8. (a) N_2 adsorption/desorption isotherm and (b) pore size distribution calculated using DFT method slit pore model for AMO-hybrid and MoO_{3-x}/N-C nanocomposite.

Table S1. List of parameters deduced from nitrogen adsorption/desorption analysis of AMO-hybrid and MoO_{3-x}/N -C nanocomposite.

Figure S9. Comparison of adsorption capacity of as-synthesized $MoO_{3-x}/N-C$ nanocomposite, AMO-hybrid and commercial MoO₃ on 100 ppm MB solution.* *(C₀= 100 mg/L, M= 0.005 g, V= 0.005 L, T=160 min)

Figure S10. Adsorption kinetic plot of MB adsorbed on $MoO_{3-x}/N-C$ nanocomposite fitted with intraparticle diffusion model.^{*}

*(C_0 = 100 mg/L, M= 0.005 g, V= 0.005 L, T=160 min)

Table S2. Adsorption kinetic parameters of MB adsorption onto $MoO_{3-x}/N-C$ nanocomposite by nonlinear pseudo-first order, nonlinear pseudo-second order and intraparticle diffusion model.

Table S3. Comparison of this work with previously reported literatures.

Figure S11. Zeta potential of MoO_{3-x}/N -C nanocomposite at various pH (1, ~7 and 9).

Figure S12. FT-IR spectra $MoO_{3-x}/N-C$ nanocomposite, MB, MB adsorbed on $MoO_{3-x}/N-C$ nanocomposite.

Figure S13. Schematic diagram of probable adsorption mechanism for $MoO_{3-x}/N-C$ nanocomposite.

Figure S14: UV-vis spectra of a binary mixture composed with 50 ppm each of (a) MB and CV, (b) MB and MG, (c) MB and RhB solution before and after addition of MoO_{3-x}/N -C nanocomposite to equilibrate for 10-60 minutes in the dark; inset shows the color of the MB solution (i) before adsorption, (ii) after adsorbed by MoO_{3-x}/N -C nanocomposite, respectively for (a), (b) and (c).

Figure S15. XRD pattern of the $MoO_{3-x}/N-C$ nanocomposite before and after corroded for 3 h using 2(M) HCl and 2(M) NaOH solution at pH 1 and pH 9 respectively.

References

Figure S1. TEM-EDS elemental analysis of MoO_{3-x}/N-C nanocomposite.

Figure S2. XPS survey spectra of (a) AMO-hybrid and (b) $MoO_{3-x}/N-C$ nanocomposite.

Figure S3. UV-vis-NIR diffuse reflectance spectra of AMO-hybrid and $MoO_{3-x}/N-C$ nanocomposite.

Figure S4. Typical 'Tauc' plots for calculating optical band gaps of MoO_{3-x}/N-C nanocomposite.

Figure S5. Raman spectra of MoO_{3-x}/N -C nanocomposite obtained at a laser power of 0.02 mW.

Figure S6. TGA analysis of AMO-hybrid and MoO_{3-x}/N-C nanocomposite.

Figure S7. FT-IR spectra of samples; AMO-hybrid, MoO_{3-x}/N-C nanocomposite.*

* (v = stretching vibration, v_s = symmetric stretching vibration, v_{as} = asymmetric stretching vibration, δ = bending vibration.)

Figure S8. (a) N_2 adsorption/desorption isotherm and (b) pore size distribution calculated using DFT method slit pore model for AMO-hybrid and MoO_{3-x}/N-C nanocomposite.

Table S1. List of parameters deduced from nitrogen adsorption/desorption analysis of AMO-hybrid and MoO_{3-x}/N -C nanocomposite.

Sample	Surface Area (m²/g)	Half pore width (Å)	Pore Volume (cc/g)		
AMO-hybrid	80.895	13.84	0.078		
MoO _{3-x} /N-C	69.897	17.16	0.090		
nanocomposite					

Figure S9. Comparison of adsorption capacity of as-synthesized $MoO_{3-x}/N-C$ nanocomposite, AMO-hybrid and commercial MoO₃ on 100 ppm MB solution.* *(C₀= 100 mg/L, M= 0.005 g, V= 0.005 L, T=160 min)

Figure S10. Adsorption kinetic plot of MB adsorbed on $MoO_{3-x}/N-C$ nanocomposite fitted with intraparticle diffusion model.^{*}

*(C_0 = 100 mg/L, M= 0.005 g, V= 0.005 L, T=160 min)

Table S2. Adsorption kinetic parameters of MB adsorption onto $MoO_{3-x}/N-C$ nanocomposite by nonlinear pseudo-first order, nonlinear pseudo-second order and intraparticle diffusion model.*

Models		Parameters	Values
Pseudo first order m	odel	k ₁	0.035
		$q_{e, exp}(mg.g^{-1})$	113.58
		$q_{e,cal1}$ (mg.g ⁻¹)	112.18
		R ²	0.96
		χ^2	0.50
Pseudo second order	model	k ₂	0.00031
		$q_{e, exp}(mg.g^{-1})$	113.58
		$q_{e, cal2}$ (mg.g ⁻¹)	134.31
		R ²	0.98
		χ^2	0.36
	Stage 1	K _{di} (mg.g ⁻¹ min ⁻	12.17
		0.5)	
		C _i	3.17
		R ²	0.97
Intraparticle	Stage 2	K _{di} (mg.g ⁻¹ min ⁻	8.86
diffusion model		0.5)	
		Ci	41.84
		R ²	0.96
	Stage 3	K _{di} (mg.g ⁻¹ min ⁻	0.18
		0.5)	
		Ci	111.34
		R ²	0.93

 $*q_{e, cal}$ represent the calculated equilibrium adsorption capacity based on kinetic models, $q_{e, exp}$ is the experimental equilibrium adsorption capacity, K_{di} is the diffusion rate constant based on intraparticle diffusion (Weber-Morris) model.

Sr. No	Material	Surface area	Adsorbate	dsorbate Maximum adoption	Time	рН	Recyclab	oility	Selective adsorption/	Refer ence
	(m²/g)		capacity Q _{max} (mg/g)			Adsorp tion cycle, %	Desorpti on cycle, %	separation, Separation efficiency (SE)		
1	MoO _{3-x} /N-C nanocomposite	70.97	MB	1360	72 h	Neutral	4, 99 %	4, 63-68 %	Selective adsorption towards cationic dyes (e.g., MB, RhB, SO CV, MG) Selective separation of MO from (i) Binary mixture (MB+MO) : SE = 99.77% (ii) Quaterna ry mixture (MB+CV+MG+ MO) : SE = 75.68% (iii) Pentanar y mixture (MB+SO+CV+M G+MO) : SE = 62.42%	This work
2	Mixed phase MoO ₃ nanoparticles	5.17	MB	141.2	-	Neutral	-	-	-	1
3	h-MoO ₃ rod-like microcrystals	-	MB	317.83	12h	6	4, 86%	-	-	2
4	MoO ₃ /MoO ₂ composite nanoparticles	22.89	MB	1250	14 h	Neutral	4, 95%	-	-	3
5	MoO _{3-x} 3D nanoflower	-	MB RhB, MO	295.0	5 min	Neutral	3, 50%	-	Relatively higher adsorption towards RhB than MB and weak adsorption for MO from a	4

Table S	53. C	omparison	of this	work	with	previou	ısly	reported	literatures.
---------	--------------	-----------	---------	------	------	---------	------	----------	--------------

									ternary mixture containing MB, RhB, and MO	
6	MoO ₃ nanospheres	-	MB	100% (20 ppm)	1 min	Neutral	-	-	-	5
7	α-MoO3 nanocrystals	42	MB	152	160 min	11	4 , 99%	-	-	6
8	MoO ₃ nanoparticles	14	MB	98 % (20 ppm)	25 min	Neutral	-	-	-	7
9	α-MoO ₃ flower like microsphere	17.7	RhB Methyl red, Alizarin yellow R	204.08	-	-	5, 98%	5, 70%	Selective adsorption towards RhB, methyl red, alizarin yellow R and no adsorption for MB, MO, fuchsin, cresol red, xylenol orange and alizarin red	8
10	α-MoO ₃ flowers on carbon cloth	-	Rh B MB CV	4974* 6217* 3886* *(mg/m ²)	10 min	-	5, ~100%	-	-	9
11	α-MoO ₃ / polyaniline composite	-	RhB Congo red	36.36 76.22	-	-	4, 82.1%	-	-	10
12	MoO ₃ nanoparticle anchored in graphene	68	MB	625	-	Neutral	-	-	Selective adsorption towards MB and no adsorption for MO	11

Figure S11. Zeta potential of MoO_{3-x}/N -C nanocomposite at various pH (1, ~7 and 9).

Figure S12. FT-IR spectra $MoO_{3-x}/N-C$ nanocomposite, MB, MB adsorbed on $MoO_{3-x}/N-C$ nanocomposite.

Electrostatic interaction

Figure S13. Schematic diagram of probable adsorption mechanism for $MoO_{3-x}/N-C$ nanocomposite.

Figure S14: UV-vis spectra of a binary mixture composed with 50 ppm each of (a) MB and CV, (b) MB and MG, (c) MB and RhB solution before and after addition of MoO_{3-x}/N -C nanocomposite to equilibrate for 10-60 minutes in the dark; inset shows the color of the MB solution (i) before adsorption, (ii) after adsorbed by MoO_{3-x}/N -C nanocomposite, respectively for (a), (b) and (c).

Figure S15. XRD pattern of the $MoO_{3-x}/N-C$ nanocomposite before and after corroded for 3 h using 2(M) HCl and 2(M) NaOH solution at pH 1 and pH 9 respectively.

References

- 1. N. Kumar and R. Kumar, Efficient adsorption of methylene blue on hybrid structural phase of MoO₃ nanostructures, *Mater. Chem. Phys.*, 2022, **275**, 125211.
- M. L. de Sá, F. X. Nobre, L. d. S. Silva, G. d. S. Sousa, M. L. Takeno, E. A. J. Junior, J. M. E. d. M. Matos and M. R. M. C. d. Santos, Preparation of new *h*-MoO₃ rod-like microcrystals for effective removal of cationic dye in aqueous solution, *Int. J. Environ. Res.*, 2021, 15, 105-124.
- 3. E. Taghipour and N. Tahmasebi, One-step hydrothermal synthesis of MoO₃/MoO₂ composite for efficient removal of methylene blue from aqueous solutions, *Mater. Today Commun.*, 2021, **26**, 102012.
- S. Huang, Y. Long, H. Yi, Z. Yang, L. Pang, Z. Jin, Q. Liao, L. Zhang, Y. Zhang, Y. Chen, H. Cui, J. Lu, X. Peng, H. Liang, S. Ruan and Y.-Z. Zeng, Multifunctional molybdenum oxide for solar-driven water evaporation and charged dyes adsorption, Appl. *Surf. Sci.*, 2019, **491**, 328-334.

- D. Zhao, X. Zhang, H. Huan, X. Dong, H. Zhu, Z. Li, Y. Qi, J. Hu and X. Zeng, Facile synthesis of MoO₃ nanospheres and their application in water treatment, *Mater. Lett.*, 2019, 256, 126648.
- S. Rakass, H. Oudghiri Hassani, M. Abboudi, F. Kooli, A. Mohmoud, A. Aljuhani and F. Al Wadaani, Molybdenum Trioxide: Efficient Nanosorbent for Removal of Methylene Blue Dye from Aqueous Solutions, *Molecules*, 2018, 23, 2295.
- M. Santos-Beltra, F. Paraguay-Delgado, R. Garcia, W. Antu'nez-Flores, C.Ornelas-Gutierrez and A. Santos-Beltra, Fast methylene blue removal by MoO₃ nanoparticles, *J. Mater. Sci. Mater. Electron.*, 2017, 28, 2935-2948.
- M. Wang, X.-X. Song, X.-L. Cheng, X. Zhou, X.-f. Zhang, Z. Cai, Y.-M.Xu, S.Gao, H. Zhao and L.-H. Huo, Highly selective and efficient adsorption dyes self-assembled by 3D hierarchical architecture of molybdenum oxide, *RSC Adv.*, 2015, 5, 85248-85255.
- D. Zhang, J. Li, J. Liang, H. Li and Y. Yan, Self-assembly of α-MoO₃ flower as a highly effective organics adsorbent for water purification, *J. Am. Ceram. Soc.*, 2019, **102**, 3307-3317.
- S. Dhanavel, E. A. K. Nivethaa, K. Dhanapal, V. K. Gupta, V. Narayanan and A. Stephen, α-MoO₃/polyaniline composite for effective scavenging of rhodamine B, congo red and textile dye effluent, *RSC Adv.*, 2016, 6, 28871-28886.
- H. Lahan, R. Roy, N. D. Namsa and S. K. Das, MoO₃ nanoparticle anchored graphene as bifunctional agent for water purification, *Mater. Res. Express.*, 2016, 3, 105003.