Electronic Supporting Information

Highly efficient photocatalytic degradation over rose-like 1D/2D La(OH)₃/(BiO)₂OHCl heterostructures boosted by rich oxygen vacancies and enhanced interfacial charge transfer

Ying Tan^{a,‡}, Qin Zhou^{a,‡}, Weiya Huang^{a,*}, Kangqiang Lu^a, Kai Yang^a, Xunjun Chen^a, Dan Li^{b,*},

Dionysios D. Dionysiou^c

^a Faculty of Materials, Metallurgical and Chemistry, Jiangxi University of Science and Technology,

Ganzhou 341000, P. R. China;

^b College of Science, Health, Engineering and Education, Murdoch University, Murdoch 6150, Australia.

^c Environmental Engineering and Science Program, Department of Chemical and Environmental

Engineering, University of Cincinnati, Cincinnati, OH 45221-0012, USA

* Corresponding authors:

‡These authors contributed equally to this work.

E-mail address: hweiya@126.com (W.Y. Huang); L.Li@murdoch.edu.au (D. Li)

Contents

Text S1. Materia	ls	• • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	4
Text S2. Charact	erization.	• • • • • • • • • • • • •		•••••	•••••	4
Fig. S1. (a) XRI) pattern o	of BOL-2	, (b) magni	fied XRD pat	terns of ca	talysts at 20
between 25° and	28°	••••••	•••••	•••••••	•••••	7
Fig. S2. (a, b) S	EM image	es of two	BOL-2 mi	croflowers (th	e arrows p	oint out the
growth of La(OH	I) ₃ nanoroo	ds on (BiO	D) ₂ OHCl nat	nosheets), (c-f) elemental	mapping of
BOL-2, (g) EDS	analysis re	esult of B	OL-2	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • •	8
Fig. S3. N ₂ adsorption	ption-deso	rption iso	therms of (B	siO) ₂ OHCl and	l BOL-x (x	= 1, 2, 3 and
4) (a) and La(O)	H) ₃ (b); P	ore size	distribution	of (BiO) ₂ OH	Cl and BO	DL-x (c) and
$La(OH)_{3}(d)$	•••••		•••••	•••••	•••••	9
Fig. S4. (a) XPS	survey sp	ectrum ar	nd (b) high-r	resolution XPS	spectrum	of Cl 2p for
BOL-2; (c) XPS	survey spe	ectrum an	nd (d) high-r	esolution XPS	spectrum	of Cl 2p for
(BiO) ₂ OHCl;	(e)	XPS	survey	spectrum	for	La(OH) ₃ .
••••••	•••••	•••••	• • • • • • • • • • • • • • • • • •	•••••	•••••	10
Fig. S5. (a) EPR	spectra, (b	o) UV-Vis	s DRS, (c) E	EIS plots, (d) 7	C removal	efficiencies
of	BO	L-2		and		m-BOL-
2	• • • • • • • • • • • • • •	• • • • • • • • • • • • •	• • • • • • • • • • • • • • • •	1 1	l	
Fig. S6. TC (a) an	nd o-NP (b) removal	l by adsorpti	on in the dark.		11
Fig. S7. TC rem	oval by ad	lsorption	in the dark	and photocata	lytic degrad	dation under
visible light with	(a) $C_0 = 1$	00 mg/L;	(b) $C_0 = 5 n$	ng/L	•••••	12
Fig. S8. HPLC-N	MS spectra	of interr	nediates in	the photocatal	ytic degrad	lation of TC
using BOL-2	1			1		
		•••••	•••••		•••••••••	13
Fig. S9. Surface	photovolta	ge (SPV)	spectra of E	BOL-2 and (Bi	O)₂OHC1	13 18
Fig. S9. Surface j	photovolta	ge (SPV) t trapping	spectra of E agents on th	BOL-2 and (Binne photocataly	O) ₂ OHCl tic degrada	13 18 tion of TC
Fig. S9. Surface p Fig. S10. Effect of by using pristine	photovolta of different (BiO)2OH	ge (SPV) t trapping Cl (a) ove	spectra of E agents on th er different p	BOL-2 and (Binne photocataly periods of reac	O) ₂ OHCl tic degrada tion time an	13 18 tion of TC nd (b) after

Table S1. Band gap values of $(BiO)_2OHCl$, $La(OH)_3$ and BOL-x (x = 1, 2, 3 and 4).19

Text S1. Materials

Bi(NO₃)₃·5H₂O (99%), La(NO₃)₃·6H₂O (99.9%) and NH₃·H₂O (25 - 28%) were purchased from Aladdin Industrial Corporation (Shanghai, China). Ethanol and KCl were purchased from Sinopharm Chemical Reagent Corporation (Shanghai, China). All chemicals and reagents were used without further purification.

Text S2. Characterization

The X-ray diffraction (XRD) spectra were recorded using the Bruker D8-Advance X-ray powder diffraction instrument with Cu Ka radiation ($\lambda = 0.15418$ nm). The morphology and surface composition structure were characterized by a scanning electron microscope (SEM, FEI Quanta 250) and a transmission electron microscope (TEM, FEI Tecnai G² 20). The chemical compositions were analyzed by an X-ray photoelectron spectroscope (XPS, Thermo Scientific K-Alpha). The specific surface areas were measured by a nitrogen adsorption analyzer (Micromeritics ASAP 2020). The Fourier transform infrared (FT-IR) spectra were recorded on a Nicolet 5700 FT-IR spectrometer. The UV–Vis diffuse reflectance spectra (DRS) were recorded with a UV– Vis spectrophotometer (Shimadzu UV-2600) in the range of 200 – 800 nm. The electron spin resonance (ESR) spectra were recorded on an electron spin resonance spectrometer (Bruker A300) with 5,5-dimethyl-1-pyrroline N-oxide (DMPO: 50 mM, 0.2 mL). The surface photovoltage spectroscopy (SPV, Zhongjiao jinyuan, CEL-SPEC) was used to measure the photovoltaic response. The intermediate products of TC were analyzed by a high-performance liquid chromatograph-tandem mass spectrometer (HPLC-MS, ThermoFisher Q-Exactive). The electrochemical measurements of samples were performed on an electrochemical workstation with a standard three-electrode system (Shanghai Chenhua, CHI 660D) and a 400-nm LED lamp (Silver Bead Technology, Zhenjiang, China) as the light source.

The concentrations of TC and o-NP in solutions were monitored by measuring their maximum absorbance on a UV–vis spectrophotometer (UV-8000, Shanghai Metsch Instrument Co., Ltd.), based on the maximum absorption wavelength of 357 nm or 270 nm, respectively. The removal efficiency can be obtained by using the Eq. (S1)^[1]:

Removal efficiency =
$$(1 - C/C_0) \times 100\%$$
 (S1)

The photocatalytic degradation kinetics of TC and o-NP were further analyzed by using the pseudo-first-order reaction kinetic equation, shown as Eq. (S2)^[2]:

$$ln\left(\frac{C}{C_0}\right) = -kt \qquad (S2)$$

where C_0 and C is the initial and residual concentration (mg/L) of TC and o-NP in solution, respectively.

Total organic carbon contents (TOC) were tested by total organic carbon analyzer (vario-TOC). The TOC removal % can be obtained using the Eq. (S3):

$$TOC removal efficiency = (1 - TOC/TOC_0) \times 100\%$$
(S3)

where TOC₀ and TOC is initial and residual TOC in solution, respectively.

The time-resolved fluorescence emission decay spectra data were obtained using the steady state and transient state fluorescence spectrometer (Edinburgh UK, FLS980). The results were calculated by using the Eq. (S4) ^[3]:

$$\tau = \frac{A_1 \tau_1^2 + A_2 \tau_2^2 + A_3 \tau_3^2}{A_1 \tau_1 + A_2 \tau_2 + A_3 \tau_3}$$
(S4)

where τ is the average lifetime, $\tau_1 \sim \tau_3$ is the respective decay lifetime, and $A_1 \sim A_3$ is the corresponding weight factor.

Fig. S1. (a) XRD pattern of BOL-2, (b) Magnified XRD patterns of catalysts at 2θ between 25° and 28° .

Fig. S2. (a, b) SEM images of two BOL-2 microflowers (the arrows point out the

growth of La(OH)₃ nanorods on (BiO)₂OHCl nanosheets), (c-f) elemental mapping of BOL-2, (g) EDS analysis result of BOL-2.

Fig. S3. N₂ adsorption-desorption isotherms of $(BiO)_2OHCl$ and BOL-x (x = 1, 2, 3 and 4) (a) and La(OH)₃ (b), Pore size distribution of $(BiO)_2OHCl$ and BOL-x (c) and La(OH)₃ (d).

Fig. S4. (a) XPS survey spectrum and (b) high-resolution XPS spectrum of Cl 2p for BOL-2; (c) XPS survey spectrum and (d) high-resolution XPS spectrum of Cl 2p for (BiO)₂OHCl; (e)XPS survey spectrum for La(OH)₃.

Fig. S5. (a) EPR spectra, (b) UV-Vis DRS, (c) EIS plots, (d) TC removal efficiencies of BOL-2 and m-BOL-2.

Fig. S6. TC (a) and o-NP (b) removal by adsorption in the dark.

Fig. S7. TC removal, by adsorption in the dark and photocatalytic degradation under visible light, from the solution with (a) $C_0 = 100 \text{ mg/L}$; (b) $C_0 = 5 \text{ mg/L}$.

Fig. S8. HPLC-MS spectra of intermediates in the photocatalytic degradation of TC

using BOL-2.

Fig. S9. Surface photovoltage (SPV) spectra of BOL-2 and (BiO)₂OHCl.

Fig. S10. Effect of different trapping agents on the photocatalytic degradation of TC by using pristine (BiO)₂OHCl (a) over different periods of reaction time and (b) after 100 min reaction.

Sample	(BiO) ₂ OHCl	La(OH) ₃	BOL-1	BOL-2	BOL-3	BOL-4
band gap	2 04	2.05	2.18	2 51	2 02	2 1 2
value (eV)	3.04	2.95	2.10	2.31	2.92	5.12

Table S1. Band gap values of $(BiO)_2OHCl$, La $(OH)_3$ and BOL-x (x = 1, 2, 3 and 4).

Table S2. Information of antibiotic removal by BOL-2 and various bismuth-based

Photocatalyst (dosage)	Light source	antibiotics	Concentration (mg/L)	Removal %	Reference
BOL-2 (50 mg/80 mL)	LED lamp $(\lambda = 420 \text{ nm})$	TC ^a	30 10 5	91.3% 96.7% 98.3%	This work
m-BOL-2 (50 mg/80 mL)	LED lamp $(\lambda = 420 \text{ nm})$	TC ^a	30	80.6%	This work
La(OH) ₃ /BiOCl (25 mg/50 mL)	LED light $(\lambda \ge 420 \text{ nm}, 5 \text{ W})$	TC ^a	20	85.0%	[4]
La(OH) ₃ /BaTiO ₃ (100 mg/100 mL)	350 W Xe lamp	TC ^a	10	~100.0%	[5]
Bi ₂ O ₂ (OH) _x Cl _{2-x} (50 mg/100 mL)	LED lamp $(\lambda \ge 420 \text{ nm}, 50 \text{ W})$	CIPb	20	~90.0%	[6]
(BiO) ₂ OHCl@Bi ₂₄ O ₃₁ Cl ₁₀ (10 mg/100 mL)	500 W metal halogen lamp $(\lambda \ge 420 \text{ nm})$	LEV°	10	90.0%	[7]

catalysts from other studies.

^aTetracycline hydrochloride, ^bCiprofloxacin, ^clevofloxacin

Sampla -	ТС	2	o-N	Р
Sample	$k (\min^{-1})$	R ²	$k (\min^{-1})$	R ²
Blank	0.0001	0.9332	0.0001	0.9417
(BiO) ₂ OHCl	0.0048	0.9569	0.0037	0.9538
La(OH) ₃	0.0063	0.9953	0.0094	0.9963
BOL-1	0.0087	0.9899	0.0061	0.9366
BOL-2	0.0169	0.9670	0.0235	0.9560
BOL-3	0.0100	0.9978	0.0168	0.9612
BOL-4	0.0075	0.9872	0.0107	0.9962

Table S3. Pseudo-first-order rate constants and correlation coefficients (R^2) for photocatalytic degradation of TC and o-NP over the as-prepared samples.

Table S4. Charge carrier lifetime parameters of (BiO)₂OHCl and BOL-2.

Sample	τ_1	τ_2	τ_3	A_1	A ₂	A ₃	τ/ns
(BiO) ₂ OHCl	1.9174	1.9173	1.9172	68.261	67.962	67.033	1.9173
BOL-2	2.2512	2.2511	2.2510	74.088	74.636	72.287	2.2511
La(OH) ₃	0.9437	0.9436	0.9436	76.213	76.322	70.397	0.9436

References

[1] J. A. Jonidi, B K.akavandi, N. Jaafarzadeh, K. R. Rezaei, Ahmadi M, Akbar Babaei A. Fentonlike catalytic oxidation of tetracycline by $AC@Fe_3O_4$ as a heterogeneous persulfate activator: Adsorption and degradation studies, *J. Ind. Eng. Chem.*, 2017, **45**, 323-333.

[2] C. Xu, Q.Zhou, W.Y. Huang, K. Yang, Y. C. Zhang, T.X. Liang, Constructing Z-scheme β -Bi₂O₃/ZrO₂ heterojunctions with 3D mesoporous SiO₂ nanospheres for efficient antibiotic remediation via synergistic adsorption and photocatalysis, *Rare Metals.*, 2022, **41**, 2094-2107.

[3] D. Xiang, X. Hao, Z. Jin. Cu/CdS/MnOx Nanostructure-Based Photocatalyst for Photocatalytic Hydrogen Evolution, *ACS Appl. Nano Mater.*, 2021, 4, 13848-13860.

[4] Z. Zhou, H. Xu, D. Li, Z. Zou, D. Xia. Microwave-assisted synthesis of La(OH)₃/BiOCl n-n heterojunctions with high oxygen vacancies and its enhanced photocatalytic properties, *Chem. Phys. Lett.*, 2019, **736**, 136805.

[5] B.Wang, K. Wei, F. Chen, Y. Wang, G. He, W. Li, J. Liu, Q. He. Effects of active species on degrading A-ring of tetracycline in the Z-scheme heterostructured core-shell La(OH)₃@BaTiO₃ composition, *J. Alloys Compd.*, 2019, **804**, 100-110.

[6] X. Wu, K. Li, Y. Li, G. Zhang, Motivating visible light photocatalytic activity of ultrathin $Bi_2O_2(OH)_xCl_{2-x}$ solid solution with exposed {001} facets by the co-effect of oxygen vacancy and OH replacement, *Nanoscale.*, 2018, **10**, 15294-15302.

[7] C. Sun, R. Li, Y. Zhao, R. Yang, H. Xu, Ammonia-dependent synthesis of (BiO)₂OHCl@Bi₂₄O₃₁Cl₁₀ heterostructures with enhanced visible-light induced photocatalytic activities on levofloxacin removal, *J. Alloys Compd.*, 2022, **901**, 163647.