Electronic Supplementary Information

Porous g-C₃N₄ Modified with Phenanthroline Diamide for Efficient and Ultrafast Adsorption of Palladium from Simulated High Level Liquid Waste

Yizhi Chen,^a Peng Zhang,^a Yu Yang,^{a,b} Qi Cao,^{a,b} Qiqi Guo,^a Yusen Liu,^a Hanbao Chong^c and

Mingzhang Lin*a

^a School of Nuclear Science and Technology, University of Science and Technology of China,

Hefei,

Anhui 230026, China

^b Reactor Operation and Application Research Sub-Institute, Nuclear Power Institute of China,

Chengdu, Sichuan 610041, China

^c Instruments Center for Physical Science, University of Science and Technology of China, Hefei,

Anhui 230026, China

* To whom correspondence should be addressed. E-mail: gelin@ustc.edu.cn (M. Z. Lin).

Characterization

Fig. S1. N₂ adsorption-desorption isotherms (a) and the corresponding pore size distributions (b) of

CN-x.

	Average pore width (nm)
CN-0	16.00
CN-0.5	16.37
CN-1	16.83
CN-2	15.77
CN-3	15.38
CN-DAPhen	17.89

Table S1 The average pore width (nm) of the series of CN-x and CN-DAPhen.

	Mass conc. [%]					Atomic conc. [%]			
	N	С	Н	0	Ν	С	Н	0	C/N
CN-0	56.37	34.73	2.04	6.85	42.88	30.82	21.75	4.56	0.72
CN-0.5	59.15	35.04	1.90	3.91	45.47	31.43	20.47	2.63	0.69
CN-1	60.69	32.95	1.95	4.42	46.30	30.57	20.50	2.63	0.66
CN-2	60.08	33.85	1.90	4.17	46.27	30.41	20.51	2.81	0.65
CN-3	61.47	32.96	1.83	3.73	47.72	29.86	19.89	2.54	0.62

Table S2 Elemental analysis of CN-x.

Fig. S2. UV–vis absorption spectra of CN-3 and CN-DAPhen.

Fig. S3. Powder XRD patterns of CN-3 and CN-DAPhen.

Fig. S4. SEM images of CN-0 (a) and CN-3(b).

The modification density of DAPhen groups

As shown in Fig. S5, there are 61/3 C atoms of C–C and 8/3 atoms of C–N in a DAPhen group. The modification density of DAPhen groups could be calculated according to the following equations: $n_{C(C-C in CN-3)}/n_{C(total in CN-3)} = [n_{C(C-C in CN-DAPhen)} - n_{C(C-C in DAPhen)}]/[n_{C(C-C in CN-DAP)} - n_{C(C-C in DAPhen)}]$

 $= [n_{C(C-C \text{ in } CN-DAPhen}) - n_{C(C-C \text{ in } DAPhen}] / [n_{C(C-C \text{ in } CN-DAP)} - n_{C(C-C \text{ in } DAPhen}) + n_{C(C-N \text{ in } CN-DAPhen}) + n_{C(C-N \text{ in } DAPhen}]]$

In CN-DAPhen, 100 mol C atoms correspond to x mol DAPhen groups. The mass of CN-

DAPhen that had 100 mol C atoms was 2004 g. After entering the value of the corresponding part, the value of x is calculated to be 3.3164 mol, and the modified density is 3.3164 mol/2004 g, which is 1.655 mmol g⁻¹.

CN-DAPhen

Fig. S5. Chemical structures of CN-DAPhen.

Adsorption performance of CN-DAPhen and other adsorbents

Table S3 The maximum adsorption capacities (q_m) and the equilibrium adsorption times for Pd(II)

A.1. 1. /	$q_{ m m}$	Equilibrium time	A 1 - 21 - 1121	D.C	
Adsorbents	$(mg g^{-1})$	(min)	Adsorption conditions	ΝC 1.	
UiO-66-NH ₂	167.0	>180	T = 298 K, pH = 1.0	[1]	
UiO-66-Pyta	294.1	5	T = 298 K, pH = 4.5	[2]	
AP-XAD 16	8.0	30-45	T = 298 K, in 3M HNO ₃	[3]	
ASUiO-66	45.4	/	T = 298 K, in 3M HNO ₃	[4]	
ethylenediamine-					
modified magnetic	138.0	300	T = 298 K, pH = 5.7	[5]	
chitosan nanoparticles					
chitosan/graphene					
oxide composite	216.9	720	<i>T</i> = 298 K, pH = 3.0–4.0	[6]	
CN-DAPhen	390.63	< 5	T = 298 K, pH = 1.0	This work	

adsorption on different functionalized materials.

Fig. S6. The optimized structures of CN-DAPhen-M (M stands for different metal ions). Gray, light gray, red, blue, light blue, teal, light cyan, dark purple, purple, light purple, khaki, yellow, lavender and green spheres represent C, H, O, N, Pd, Ru, Cs, Fe, Ni, Sr, Cd, Cr, and Nd, respectively.

	Bond length (Å)				Natural charges		
	M-N19	M-N20	M-O23	M-O24	Q _M	Q _N	Qo
CN-DAPhen-Pd	1.887	1.886	1.982	1.990	2.032	-0.787	-0.548
CN-DAPhen-Ru	1.975	1.973	2.206	2.207	1.898	-0.702	-0.563
CN-DAPhen-Cs	2.078	2.083	2.143	2.141	0.922	-0.437	-0.497
CN-DAPhen-Fe	3.267	3.311	3.168	3.233	1.081	-0.413	-0.580
CN-DAPhen-Ni	2.484	2.484	2.029	2.022	1.062	-0.754	-0.538
CN-DAPhen-Sr	2.776	2.778	2.649	2.639	1.684	-0.546	-0.521
CN-DAPhen-Cd	2.391	2.395	2.396	2.351	1.512	-0.623	-0.509
CN-DAPhen-Cr	2.142	2.197	2.285	2.193	1.109	-0.750	-0.525
CN-DAPhen-Nd	2.257	2.291	2.118	2.055	1.436	-0.419	-0.563

 Table S4 Calculated bond distances (Å) and natural charges of complexes of CN-DAPhen with

 different metal ions (CN-DAPhen-M) (M stands for different metal ions).

	ΔE (kJ/mol)	ΔH (kJ/mol)	ΔG (kJ/mol)
$CN-DAPhen + Pd^{2+} \rightarrow [CN-DAPhen-Pd]^{2+}$	-599.07	-601.55	-546.65
CN -DAPhen + $Ru^{3+} \rightarrow [CN$ -DAPhen- $Ru]^{3+}$	-520.64	-523.12	-475.07
$CN-DAPhen + Cs^+ \rightarrow [CN-DAPhen-Cs]^+$	-79.55	-82.03	-26.68
CN -DAPhen + $Fe^{3+} \rightarrow [CN$ -DAPhen- Fe^{3+}	-98.85	-101.61	-78.36
$\text{CN-DAPhen} + \text{Ni}^{2+} \rightarrow [\text{CN-DAPhen-Ni}]^{2+}$	-360.08	-362.56	-310.82
CN - $DAPhen + Sr^{2+} \rightarrow [CN$ - $DAPhen$ - $Sr]^{2+}$	-70.49	-72.97	-35.32
$\text{CN-DAPhen} + \text{Cd}^{2+} \rightarrow [\text{CN-DAPhen-Cd}]^{2+}$	-161.66	-164.13	-122.25
CN -DAPhen + $Cr^{3+} \rightarrow [CN$ -DAPhen- $Cr]^{3+}$	-191.30	-190.80	-196.53
CN -DAPhen + $Nd^{3+} \rightarrow [CN$ -DAPhen- Nd] ³⁺	-157.20	-160.11	-125.05

Table S5 Changes in binding energy (ΔE), enthalpy (ΔH), Gibbs free energy (ΔG) (kJ/mol) for the complexation reaction of different metal ions and CN-DAPhen.

References

[1] S. Lin, D. Reddy, J. Bediako, M. Song, W. Wei, J. Kim, Y. Yun, Effective adsorption of Pd(II), Pt(IV) and Au(III) by Zr(IV)-based metal–organic frameworks from strongly acidic solutions, *J. Mater. Chem. A.*, 2017, 5, 13557-13564.

[2] S. Daliran, M. Ghazagh-Miri, A. Oveisi, M. Khajeh, S. Navalón, M. Álvaro, M. Ghaffari-Moghaddam, H. Samareh Delarami, H. García, A pyridyltriazol functionalized zirconium metal–organic framework for selective and highly efficient adsorption of palladium, *ACS Appl. Mater. Interfaces.*, 2020, 12, 25221-25232.

[3] R. Ruhela, K. Singh, B. Tomar, J. Sharma, M. Kumar, R. Hubli, A. Suri, Amberlite XAD-16 functionalized with 2-acetyl pyridine group for the solid phase extraction and recovery of palladium from high level waste solution, *Sep. Purif. Technol.*, 2012, **9**, 36-43.

[4] M. Zha, J. Liu, Y. Wong, Z. Xu, Extraction of palladium from nuclear waste-like acidic solutions by a metal–organic framework with sulfur and alkene functions, *J. Mater. Chem. A.*, 2015, **3**, 3928-3934.

[5] Z. Zhang, Q. Shen, N. Cissoko, J. Wo, X. Xu, Catalytic dechlorination of 2, 4-dichlorophenol by Pd/Fe bimetallic nanoparticles in the presence of humic acid, *J. Haz. Mat.*, 2010, **182**, 252-258.

[6] L. Liu, C. Li, C. Bao, Q. Jia, P. Xiao, X. Liu, Q. Zhang, Preparation and characterization of chitosan/graphene oxide composites for the adsorption of Au (III) and Pd (II), *Talanta.*, 2012, **93**, 350-357.