Supplementary Information:

Atmospheric fates of SO₂ at the gas-solid interface of iron oxyhydroxide (FeOOH) minerals: effects of crystal structure, oxalate coating and light irradiance

Wei Wang,^a Kejian Li,^a Yangyang Liu,^a Kedong Gong,^a Qiuyue Ge,^a Longqian Wang,^a Tao Wang,^{*a} Liwu Zhang^{*ab}

^a Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, People's Republic of China

^b Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, People's Republic of China

*Corresponding authors Email: <u>wangtao_fd@fudan.edu.cn</u>, <u>zhanglw@fudan.edu.cn</u>

Parameter (unit)	Value
Sulfate formation rate: d[SO ₄ ²⁻]/dt (ion s ⁻¹)	According to reactions
$A_{BET} (m^2 g^{-1})$	Shown in Table 1
A_{geo} (m ²)	1.96×10 ⁻⁵
Reactant concentration: C_{SO_2} (molecule m ⁻³)	1.96×10 ²⁰
Gas constant: R (J mol ⁻¹ K ⁻¹)	8.314
Temperature: T (K)	298
M _{so}	6.4×10 ⁻²
Molar mass: M_{SO_2} (Kg mol ⁻¹)	3.14
π	

 Table S1. Parameters for uptake coefficient calculation

Surface		Assignment	
Species	Vibrational Mode	Frequency ^a	Refs
Description		(cm ⁻¹)	
Sulfate	Symmetric stretching vibration modes of S=O	1270	1
Bidentate Sulfate	v_3 symmetric modes	1190, 1158, 1097	1-3
Bridging (bi)sulfate		1050, 1010	4
Chemisorbed (bi)sulfite	v_1 and v_3 modes of sulfite	971, 923, 886	5

Table S2. Assignment of vibrational frequencies of adsorbed surface sulfur-containingproducts upon exposure of SO2 on Fe (oxyhydr)oxides nanoparticles.

^aThese frequencies of IR bands of sulfur-containing species refer to the frequencies of observed surface product in this work, which are close to the frequencies documented by early literature.

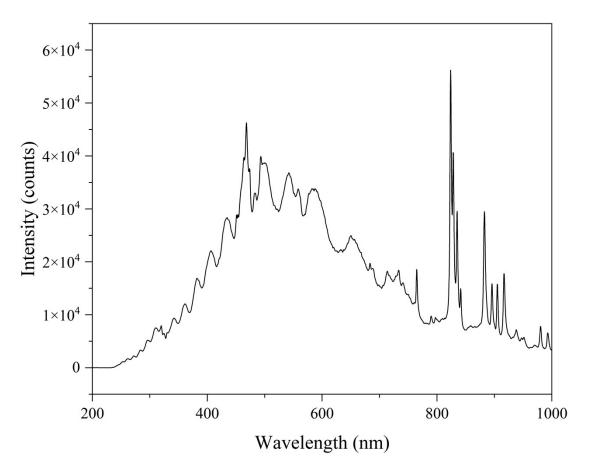


Fig. S1. The spectrum of the xenon lamp (TCX250).

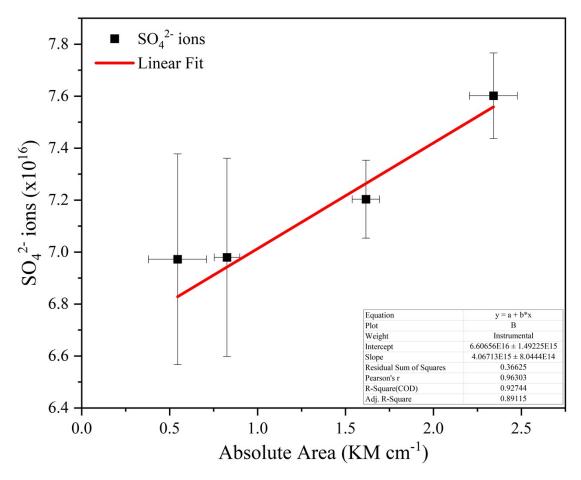


Fig. S2. Calibration plot for Conversion-factor of molecules of SO_4^{2-} used in α -FeOOH infrared experiments versus corresponding integrated area of KM.

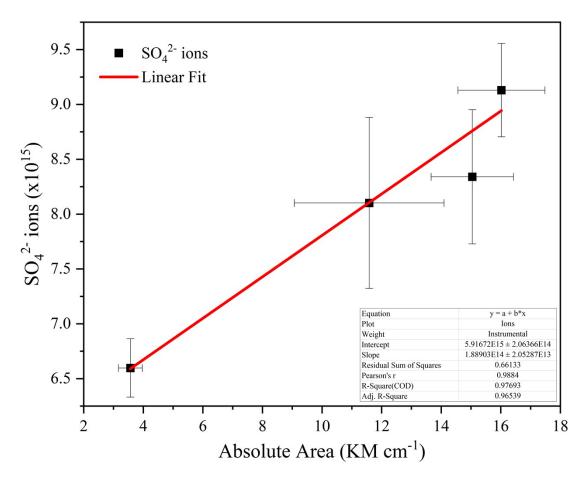


Fig. S3. Calibration plot for Conversion-factor of molecules of SO_4^{2-} used in β -FeOOH infrared experiments versus corresponding integrated area of KM.

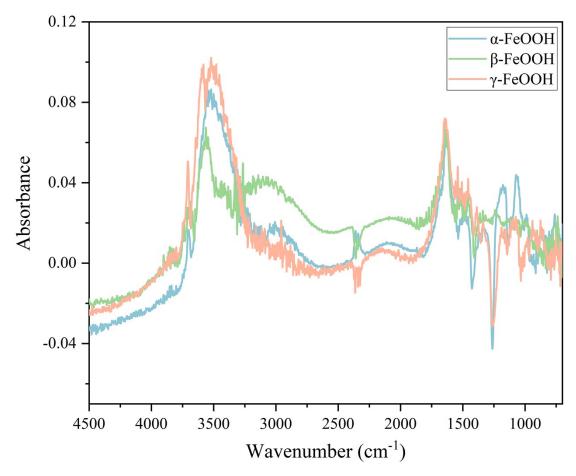
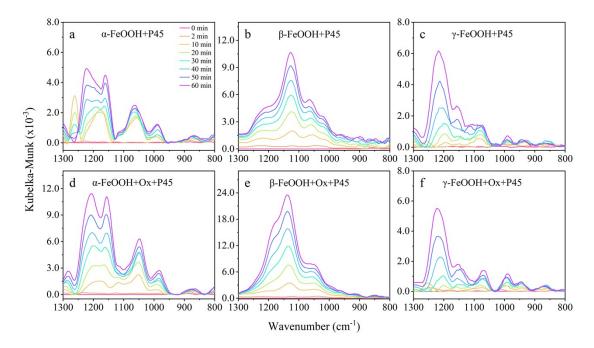



Fig. S4. Raw in situ DRIFTS spectra (4500-700 cm⁻¹) collected for the three pristine samples at 60 min

under dark condition.

Fig. S5. In situ DRIFTS spectra collected for the three (a, b, c) pristine and (d, e, f) oxalate-coating samples under light irradiation (P45): (a, d), α-FeOOH. (b, e), β-FeOOH. (c, f), γ-FeOOH.

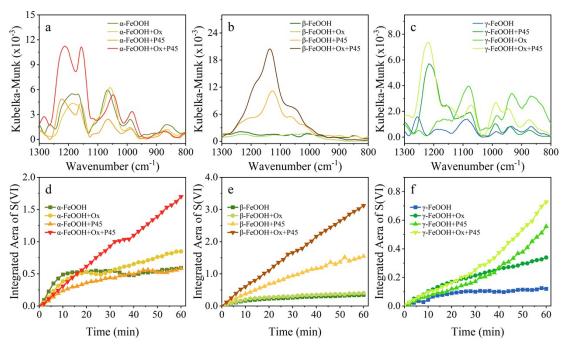


Fig. S6. In situ DRIFTS spectra of α -FeOOH (a), β -FeOOH (b) and γ -FeOOH (c) at 60 min under

different conditions and the corresponding integrated areas of sulfate for α -FeOOH (d), β -FeOOH (e) and γ -FeOOH (f) within 60 min.

References

- L. D. Kong, X. Zhao, Z. Y. Sun, Y. W. Yang, H. B. Fu, S. C. Zhang, T. T. Cheng, X. Yang, L. Wang and J. M. Chen, The effects of nitrate on the heterogeneous uptake of sulfur dioxide on hematite, *Atmospheric Chemistry and Physics*, 2014, 14, 9451-9467.
- H. Fu, X. Wang, H. Wu, Y. Yin and J. Chen, Heterogeneous Uptake and Oxidation of SO₂ on Iron Oxides, *The Journal of Physical Chemistry C*, 2007, 111, 6077-6085.
- C. Liu, Q. Ma, Y. Liu, J. Ma and H. He, Synergistic reaction between SO₂ and NO₂ on mineraloxides: a potential formation pathway of sulfate aerosol, *Phys. Chem. Chem. Phys.*, 2012, 14, 1668-1676.
- K. Li, L. Kong, A. Zhanzakova, S. Tong, J. Shen, T. Wang, L. Chen, Q. Li, H. Fu and L. Zhang, Heterogeneous conversion of SO₂ on nano α-Fe₂O₃: the effects of morphology, light illumination and relative humidity, *Environmental Science: Nano*, 2019, 6, 1838-1851.
- 5. C. E. Nanayakkara, J. Pettibone and V. H. Grassian, Sulfur dioxide adsorption and photooxidation on isotopically-labeled titanium dioxide nanoparticle surfaces: roles of surface hydroxyl groups and adsorbed water in the formation and stability of adsorbed sulfite and sulfate, *Physical Chemistry Chemical Physics*, 2012, 14, 6957.