Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2022

SUPPLEMENTAL INFORMATION

Table of stochiometric values used in mass balance calculations. These values are taken from the open source SUMO2 two-step nitrification model.

Parameter	Symbol	Value	Units
Heterotrophic Yield, Aerobic	Y _{OHO}	0.67	g X _{OHO} - COD g S _B - COD
Heterotrophic Yield, Anoxic	Y _{OHO,Ax}	0.54	$\frac{\text{g X}_{\text{OHO}} \text{- COD}}{\text{g S}_{\text{B}} \text{- COD}}$
AOB Yield	Y _{AOB}	0.15	g X _{AOB} - COD g S _{NHx} - N
NOB Yield	Y _{NOB}	0.09	g X _{NOB} - COD g S _{NO2} - N
Nitrogen content of Biomass	i _{N,B}	0.07	$\frac{g N}{g COD}$

Process factor derivation for anammox (PNA and PdNA) processes. Calculations are shown using NO_X which is assumed to be all NO_2 for PNA or NO_3 for PdNA.

The effluent TIN of the first 2 steps of the process (nitrification and denitrification with influent COD) is: $TIN = NH_X + NO_X = 1 - TIN_{RO}$

By definition:

 $AVN = \frac{NH_X}{NO_X}$

 $NH_X = AVN \cdot NO_X$ (3)

(1)

Combining (1) and (3):

 $NO_X + AVN \cdot NO_X = 1 - TIN_{RO}$ $NO_X(1 + AVN) = 1 - TIN_{RO}$

Rearranging, the NOx to be removed via partial denitrification an/or anammox is then:

$$NO_X = \frac{1 - TIN_{RO}}{1 + AVN}$$

The NO₃ produced by anammox that needs to be denitrified is a stochiometric ratio of this, ie:

 $\frac{1-TIN_{Ro}}{1+AvN}v_{5,5}$

Finally, the amount of NH_X that must be undergo nitritation or nitrification, is equivalent to the effluent TIN plus the TIN removed with influent COD (TIN_{RO}), or:

 $\frac{1-TIN_{Ro}}{1+AvN}+TIN_{Ro}$