Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2022

Supporting information for

Practical Considerations for the Electrochemical Denitrification of

Real Wastewater

Dehui Li, Cheng Fu, Chan Wang and Qijun Song*

Key Laboratory of Synthetic and Biological Colloids, Ministry of

Education, School of Chemical and Material Engineering, Jiangnan

University, 1800 Lihu Road, Wuxi, Jiangsu Province 214122, PR China

Corresponding Authors: Prof. Dr. Qijun Song

Email: <u>qsong@jiangnan.edu.cn</u> (Qijun Song)

Text S1 Reagents and calculation

- Fig. S1 Effect of the current density on the NO₂⁻-N.
- Fig. S2 Effects of the electrical conductivity on the (a) NO₃⁻-N reduction, (b)

 NO_2^--N and (c) NH_4^+-N yield.

Fig. S3 Effects of initial pH on the (a) NO₃⁻-N reduction, (b) NO₂⁻-N and (c)

NH₄⁺-N yield, and (d) the change in pH throughout the experiments.

Fig. S4 Effect of Cl⁻ concentrations on the NO₂⁻-N.

Fig. S5 Effects of the PO₄³⁻ concentration on the (a) NO₂⁻-N and (b) NH₄⁺-N yield.

- Fig. S6 Effects of the CO₃²⁻ concentration on the (a) NO₃⁻-N reduction, (b) NO₂⁻⁻N yield and (c) NH₄⁺-N yield.
- Fig. S7 Effects of Ca²⁺ on the (a) NO₃⁻-N reduction, (b) NO₂⁻-N yield and (c) NH₄⁺-N yield.
- Fig. S8 Effects of COD on the (a) NO₂⁻-N yield, (b) NH₄⁺-N yield and (c) TN removal.
- Fig. S9 (a) NO₂⁻-N yield, (b) NH₄⁺-N yield and (c) TN removal of simulated wastewater I and simulated wastewater II.
- Fig. S10 Water sample (a) during and (b) after reaction.
- Fig. S11 (a) The removal load of NO₃⁻-N, NO₂⁻-N, NH₄⁺-N and TN and (b) the energy consumption in different cycle.

Table. S1. COD of solutions before and after reaction and removal load

Table. S2. Operating cost analysis

Text S1 Reagents and calculations

Reagents

K₂Cr₂O₇, H₂SO₄, KNO₃, Na₃PO₄·12H₂O, Na₂CO₃, CaCl₂, Nessler reagent and N-(1naphthyl)ethylenediamine dihydrochloride were purchased from Sinopharm Chemical Reagent Co., Ltd. Na₂SO₄ and NaCl were purchased from Shanghai Titan Scientific Co., Ltd. K₂S₂O₈ was purchased from Thermo Fisher Scientific (China) Co., Ltd.

Calculations of efficiency and energy consumption ¹

The NO₃⁻-N removal rate ($R(NO_3^{-}-N)$), NO₂⁻-N generation rate ($S(NO_2^{-}-N)$), NH₄⁺-N generation rate ($S(NH_4^{+}-N)$) and TN removal efficiency (R(TN)) were calculated by the following equations,

$$R(NO_{3}^{-}-N) = [(C(NO_{3}^{-}-N)_{0} - C(NO_{3}^{-}-N)_{t}) / C(NO_{3}^{-}-N)_{0}] \times 100\%$$
(S1)

$$S(NO_{2}-N) = [C(NO_{2}-N)_{t} / C(NO_{3}-N)_{0}] \times 100\%$$
(S2)

$$S(NH_4^+-N) = [C(NH_4^+-N)_t / C(NO_3^--N)_0] \times 100\%$$
(S3)

$$R(TN) = [(C(TN)_0 - C(TN)_t) / C(TN)_0] \times 100\%$$
(S4)

$$dC(NO_{3}-N)_{t}/dt = -kC(NO_{3}-N)_{t}$$
 (S5)

where $C(TN)_0$ and $C(NO_3^--N)_0$ (mg/L) are the initial concentration of NO_3^--N , $C(NO_3^--N)_t$, $C(NO_2^--N)_t$ and $C(NH_4^+-N)_t$ (mg/L) are the concentrations of NO_3^--N , NO_2^--N and NH_4^+-N at time t, k (min⁻¹) is the pseudo-first-order reaction rate constant. Electro energy utilization efficiency (φ) of the reaction products (NH_4^+-N , NO_2^--N and N_2) is determined by the expression,

$$\varphi = [(Q(NO_2 - N)_t + Q(N_2 - N)_t + Q(NH_4 - N)_t)]/Q_t \times 100\%$$
(S6)

$$Q_t = JSt/1000$$
(S7)

$$Q(NO_2 - N)_t = 2 \times [C(NO_2 - N)_t \times V/M_N] \times F$$
(S8)

$$Q(N_2-N)_t = 5 \times [(C(NO_3-N)_0-C(NO_3-N)_t-C(NO_2-N)_t-C(NH_4+N)_t) \times V/M_N] \times F$$
(S9)

$$Q(NH_4^+-N)_t = 8 \times [C(NH_4^+-N)_t \times V/M_N] \times F$$
 (S10)

 Q_t (C) is the total electric quantity that provide at time t (s); J (mA/cm²) is the current density; S (cm²) is the area of cathode; Q(NO₂⁻-N)_t, Q(N₂-N)_t and Q(NH₄⁺-N)_t are the electric quantities that cost during NO₃⁻-N reduction to NO₂⁻-N, N₂-N and NH₄⁺-N at time t; C(NO₃⁻-N)₀ (mg/L) is the initial concentration of NO₃⁻-N; C(NO₃⁻-N)_t, C(NO₂⁻-N)_t and C(NH₄⁺-N)_t (mg/L) are the concentrations of NO₃⁻-N, NO₂⁻-N and NH₄⁺-N at time t; V is the volume of solution, M_N is the molar mass of N (14000 mg/mol) and F is the Faraday's constant (96487 C/mol)

Energy consumption (ϕ , kWh/kgTN) is determined by the expression,

$$\varphi = 1000 * IV_{apt} / [(C(TN)_0 - C(TN)_t)Vr]$$
(S11)

I is the current density (A), Vap is applied voltage (V), t is electrolysis time (h), $C(TN)_0$ is the TN concentration (mg/L) and Vr is working cell volume (L).

Calculations of DFT

The DFT calculations were performed with the Vienna ab initio simulation package (VASP).² The Perdew–Burke–Ernzerhof functional (PBE) of generalized gradient approximation functional (GGA) was used for the electronic exchange and correlation effects. The adsorption models were simulated in a vacuum layer of 20 Å in the Z-direction. The reciprocal space was sampled by Monkhorst-Pack scheme with $3\times3\times1$ grids. The absorbed models were free to move on all the directions during the calculation process. The energy tolerance of 10^{-5} was set for planes self-consistency

electronic relaxation. All atoms were relaxed fully until the Hellmann-Feynmann force acting on each atom was less than 0.03 eV/Å. To describe the vdw interaction, the dispersion corrections DFT-D2 was employed in this work.

Fig. S1 Effect of the current density on the NO₂⁻-N.

Fig. S2 Effects of the electrical conductivity on the (a) NO_3^--N reduction, (b) NO_2^--N and (c) NH_4^+-N yield.

Fig. S3 Effects of initial pH on the (a) NO₃⁻-N reduction, (b) NO₂⁻-N and (c) NH₄⁺-N yield, and (d) the change in pH throughout the experiments.

Fig. S4 Effect of Cl⁻ concentrations on the NO₂⁻-N.

Fig. S5 Effects of the PO_4^{3-} concentration on the (a) NO_2^{-} -N and (b) NH_4^{+} -N yield.

Fig. S6 Effects of the CO_3^{2-} concentration on the (a) NO_3^{-} -N reduction, (b) NO_2^{-} -N yield and (c) NH_4^+ -N yield.

Fig. S7 Effects of Ca^{2+} on the (a) NO_3^{-} -N reduction, (b) NO_2^{-} -N yield and (c) NH_4^{+} -N yield.

Fig. S8 Effects of COD on the (a) NO₂⁻-N yield, (b) NH₄⁺-N yield and (c) TN removal.

Fig. S9 (a) NO₂⁻-N yield, (b) NH₄⁺-N yield and (c) TN removal of simulated wastewater I and simulated wastewater II

Fig. S10 Water sample (a) during and (b) after reaction.

Fig. S11 (a) The removal load of NO₃⁻-N, NO₂⁻-N, NH₄⁺-N and TN, and (b) the energy consumption in different cycle.

Items	COD of solutions		
Before reaction (mg/L)	50	100	200
After reaction (mg/L)	42.9	87.3	185.6
COD removal load (kg/(m ³ ·h))	4.3×10 ⁻³	7.6×10 ⁻³	8.6×10 ⁻³

Table. S1. COD of solutions before and after reaction and removal load

Table. S2. Operating cost for real water treatment*

Items	Quantitative estimation		
		cost/\$	
Ti/IrO2-RuO2 anode	$39.225 \$ \times 2 \div 1000$	0.079	
brass cathode	$0.925 \ \ \times \ \ 2 \ \ \div \ \ 1000$	0.002	
DC power supply	$0.024 \text{ kW} \times 6 \text{ h} \times (1 \text{ T} \div 1.2 \text{ g}/mL \div 2.5 \text{ L}) \times 0.093 /(\text{kW}\cdot\text{h})$	4.464	
mechanic stirrer	$0.008 \text{ kW} \times 6 \text{ h} \times (1 \text{ T} \div 1.2 \text{ g}/mL \div 2.5 \text{ L}) \times 0.093 /(\text{kW}\cdot\text{h})$	1.488	
*The density of medianeterstance is 1.2 med/ml. The celling here here an electric descence (0.1) when the comment			

*The density of real wastewater is 1.2 mg/mL. The cell voltage between electrodes was 6.0 V when the current density was 10 mA/cm².

TN Removal amount = 564.5 mg/L - 42.3 mg/L = 522.2 mg/L = 522.2 g/T

Total cost of 1 T wastewater = $(0.079 \ + 0.002 \ + 4.464 \ + 1.488 \) \div 522.2 \ g=$

 $0.012 \ \ g_{TN}$

Notes and references

- 1. L. Su, K. Li, H. Zhang, M. Fan, D. Ying, T. Sun, Y. Wang and J. Jia, Electrochemical nitrate reduction by using a novel Co3O4/Ti cathode, *Water Res*, 2017, **120**, 1-11.
- G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, *Physical Review B*, 1996, 54, 11169-11186.