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Text S1 Reagents and calculations

Reagents

K,Cr,07, H,SO4, KNO3, Na;PO412H,0, Na,CO;, CaCl,, Nessler reagent and N-(1-
naphthyl)ethylenediamine dihydrochloride were purchased from Sinopharm Chemical
Reagent Co., Ltd. Na,SO4 and NaCl were purchased from Shanghai Titan Scientific
Co., Ltd. K;,S,0¢ was purchased from Thermo Fisher Scientific (China) Co., Ltd.
Calculations of efficiency and energy consumption !

The NO5™-N removal rate (R(NO3-N)), NO,-N generation rate (S(NO,-N)), NH;*-N
generation rate (S(NH4™-N)) and TN removal efficiency (R(TN)) were calculated by

the following equations,

R(NO5-N) = [ (C(NO5-N);~-C(NO5-N),) / C(NO5-N), ] x 100% (S1)
S(NO,-N) = [ C(NO,-N), / C(NO5-N), ] x 100% (S2)
S(NH,*-N) = [ C(NH,*-N), / C(NO5-N), ] x 100% (S3)

R(TN) = [(C(TN)~C(TN),) / C(TN), ] % 100% (S4)
dC(NO5-N), /dt=-kC(NO5-N), (S5)

where C(TN), and C(NO3™-N), (mg/L) are the initial concentration of NO5;-N, C(NOj5-
-N), C(NO,-N); and C(NH4*-N),; (mg/L) are the concentrations of NO3;-N, NO,-N
and NH,"-N at time t, k (min‘!) is the pseudo-first-order reaction rate constant.
Electro energy utilization efficiency (¢) of the reaction products (NH4*-N, NO,-N
and N,) is determined by the expression,

¢=[(QINO;-N);+ Q(N2-N); + Q(NH4™-N))]/Q; * 100% (S6)

Q,=JSt/1000 (S7)



Q(NOy-N), =2 x [C(NOy-N)x V/My] x F (S8)
Q(N>-N), = 5 % [(C(NO3-N)~C(NO3-N)~C(NO,-N),~C(NH,*-N),) x V/My] * F (S9)
Q(NH,*-N)= 8 x [C(NH,*-N)x V/My] x F (S10)
Q: (C) is the total electric quantity that provide at time t (s); J (mA/cm?) is the current
density; S (cm?) is the area of cathode; Q(NO,™-N),, Q(N,-N), and Q(NH4"-N), are the
electric quantities that cost during NO3™-N reduction to NO,-N, N,-N and NH,"-N at
time t; C(NO5-N), (mg/L) is the initial concentration of NO3;-N; C(NO3-N),, C(NO,™-
N); and C(NH4*-N), (mg/L) are the concentrations of NO5-N, NO,-N and NH4*-N at
time t; V is the volume of solution, My is the molar mass of N (14000 mg/mol) and F
is the Faraday’s constant (96487 C/mol)
Energy consumption (¢, kWh/kgTN) is determined by the expression,
@=1000*TV ,t/[(C(TN)o~C(TN),)Vr] (S11)
I is the current density (A), Vap is applied voltage (V), t is electrolysis time (h), C(TN),
is the TN concentration (mg/L) and Vr is working cell volume (L).
Calculations of DFT
The DFT calculations were performed with the Vienna ab initio simulation package
(VASP).? The Perdew—Burke—Ernzerhof functional (PBE) of generalized gradient
approximation functional (GGA) was used for the electronic exchange and correlation
effects. The adsorption models were simulated in a vacuum layer of 20 A in the Z-
direction. The reciprocal space was sampled by Monkhorst-Pack scheme with 3x3x1
grids. The absorbed models were free to move on all the directions during the

calculation process. The energy tolerance of 10> was set for planes self-consistency



electronic relaxation. All atoms were relaxed fully until the Hellmann-Feynmann
force acting on each atom was less than 0.03 eV/A. To describe the vdw interaction,

the dispersion corrections DFT-D2 was employed in this work.
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Fig. S1 Effect of the current density on the NO,™-N.
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Fig. S2 Effects of the electrical conductivity on the (a) NO;-N reduction, (b) NO,™-N and (c)
NH4*-N yield.
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Fig. S3 Effects of initial pH on the (a) NO;™-N reduction, (b) NO,-N and (c) NH4"-N yield, and
(d) the change in pH throughout the experiments.
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Fig. S4 Effect of CI™ concentrations on the NO,™-N.
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Fig. S5 Effects of the PO,4*" concentration on the (a) NO,™-N and (b) NH4*-N yield.
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Fig. S6 Effects of the CO32™ concentration on the (a) NO3;™-N reduction, (b) NO,™-N yield and (¢)
NH4*-N yield.
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Fig. S7 Effects of Ca?" on the (a) NO3;™-N reduction, (b) NO, -N yield and (c) NH,"-N yield.
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Fig. S8 Effects of COD on the (a) NO,™-N yield, (b) NH4*-N yield and (c) TN removal.
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Fig. S9 (a) NO,™-N yield, (b) NH4*-N yield and (c¢) TN removal of simulated wastewater I and

simulated wastewater 11

Fig. S10 Water sample (a) during and (b) after reaction.
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Fig. S11 (a) The removal load of NO;™-N, NO,-N, NH,*-N and TN, and (b) the energy

consumption in different cycle.



Table. S1. COD of solutions before and after reaction and removal load

Items COD of solutions
Before reaction (mg/L) 50 100 200
After reaction (mg/L) 42.9 87.3 185.6
COD removal load (kg/(m3-h)) 4.3%x103 7.6x1073 8.6x1073

Table. S2. Operating cost for real water treatment®

Items Quantitative estimation Total

cost/$

Ti/IrO,~RuO, anode 39.225$% X 2 + 1000 0.079
brass cathode 0.925% X 2 ¥+ 1000 0.002
DC power supply 0.024kW X 6h X (1T +12 g/mL+ 251)X 0.093$/(kW-h) 4.464
mechanic stirrer 0.008kW X 6h X (1T +12 g/mL+ 25L) X 0.093 $/(kW-h)  1.488

*The density of real wastewater is 1.2 mg/mL. The cell voltage between electrodes was 6.0 V when the current

density was 10 mA/cm?.

TN Removal amount = 564.5 mg/L ~ 42.3 mg/L = 522.2 mg/L =522.2 g/T
Total cost of 1 T wastewater =(0.079 $ + 0.002 $ + 4.464 $§ +1.488 $§) =~ 522.2 g=
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