Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2022

Supplementary Material

Phosphorus recovery by re-dissolution from activated sludge – Effects of carbon source and supplementation level revisited

Annika Anders, Harald Weigand, Harald Platen

Competence Centre for Sustainable Engineering and Environmental Systems (ZEuUS), THM University of Applied Sciences, Wiesenstr. 14, D-35390 Giessen, Germany.

Table of contents

- Table S1: Best-fit parameters (I [0 min; 220 min]) of the modified Gompertz model used to describe the kinetics of P re-dissolution after supplementation of activated sludge with formate, acetate, propionate and butyrate
- Calculation of indicators of the P re-dissolution stoichiometry
- Table S2: Key enzymes and transporter involved in polyP hydrolysis, glycogen degradation and PHB synthesis
- Additional information on Figure 3

Table S1: Best-fit parameters (I [0 min; 220 min]) of the modified Gompertz model used to describe the kinetics of P re-dissolution after supplementation of activated sludge with formate, acetate, propionate and butyrate.

	formate	acetate	propionate	butyrate
A _{max} [mmol P/L]	0.25	1.45	0.56	0.46
μ [mmol Ρ/ (L*min)]	1.41*10 ⁻³	17.20*10 ⁻³	4.29*10 ⁻³	2.58*10 ⁻³
λ [min]	28.57	8.49	14.93	29.71
R ²	0.990	0.991	0.991	0.977

Calculation of indicators of the P re-dissolution stoichiometry

Prelease/Cuptake ratio:

 $P_{release}/C_{uptake}$ ratios were calculated for the time t_{μ} of the maximum P release rate μ as predicted from the modified Gompertz model (Equation (1)). For each of the different VFA supplementations t_{μ} was located by equating the second derivative of the modified Gompertz model (Equation (2)) to zero. Employing the best-fit parameters summarized in Table 1A t_{μ} values were 40 min, 63 min, 94 min and 96 min for acetate, propionate, formate and butyrate, respectively. Equation (1) was solved for $P_{i,rel}$ (t_{μ}) to obtain the numerator of the $P_{release}/C_{uptake}$ ratio. Its denominator was found from the corresponding VFA time profile (Figure 1B). Therefore, linear regression lines fit to an appropriate time interval were evaluated for the t_{μ} values. C_{uptake} was calculated from obtained aqueous phase VFA concentration converted in C-mol.

Modified Gompertz Model:

$$P_{i,rel}(t) = A_{max} \cdot \exp\left\{-\exp\left[\frac{\mu \cdot \exp(1)}{A_{max}}(\lambda - t) + 1\right]\right\}$$
(1)

Second derivative:

$$\mathsf{P}_{i,\mathsf{rel}}''(t) = \frac{\mu}{\mathsf{A}_{\mathsf{max}}} \cdot \left\{ \exp\left[\frac{\mu \cdot \exp\left(1\right) \cdot \left(\lambda - t\right)}{\mathsf{A}_{\mathsf{max}}}\right] - 1 \right\} \cdot \exp\left\{\frac{\mu \cdot \exp\left(1\right) \cdot \left(\lambda - t\right)}{\mathsf{A}_{\mathsf{max}}} + 3 - \exp\left[\frac{\mu \cdot \exp\left(1\right) \cdot \left(\lambda - t\right)}{\mathsf{A}_{\mathsf{max}}} + 1\right] \right\}$$
(2)

$$P_{i,rel}''(t) = 0$$
 with $t = \frac{A_{max}}{\mu \cdot exp(1)} + \lambda$

Pyield/VFAspike and Pyield/VFAconsumed ratio:

 P_{yield}/VFA_{spike} and $P_{yield}/VFA_{consumed}$ were calculated with Equation (3) and (4), respectively. The term $P_{i,rel,t=220 min}$ [mmol P] is the aqueous P concentration at the end of the experiment. VFA_{spike,t=0min} [mmol VFA] is the initial concentration of the supplemented VFA. VFA _{t=220min} [mmol VFA] is the aqueous VFA concentration at the end of the experiment.

$$\frac{P_{\text{Yield}}}{\text{VFA}_{\text{spike}}} = \frac{P_{\text{i,rel,t=220min}}}{\text{VFA}_{\text{spike,t=0min}}}$$
(3)

 $\frac{P_{\text{Yield}}}{\text{VFA}_{\text{consumed}}} = \frac{P_{i,\text{rel},t=220\text{min}}}{\text{VFA}_{\text{spike},t=0\text{min}} - \text{VFA}_{t=220\text{min}}}$

3

(4)

Table S2: Key enzymes and transporter involved in polyP hydrolysis, glycogen degradation

 and PHB synthesis.

No.	EC number ^a	name	
1		low affinity inorganic phosphate transporter (pit)	
2		acetate permease, acetate:H+ symporter (ActP)	
3	3.6.1.1	inorganic diphosphatase	
4	6.2.1.1	acetate-CoA ligase	
5	2.7.4.3	adenylate kinase	
6	2.3.1.9	acetyl-CoA C-acetyltransferase	
7	1.1.1.35	3-hydroxyacyl-CoA dehydrogenase	
8	2.3.1.304	poly((R)-3-hydroxyalkanoate) polymerase	
9	2.7.4.1	polyphosphate kinase 1	
10	2.4.1.1	glycogen phosphorylase	
11	5.4.2.6	beta-phosphoglucomutase	
12	5.3.1.9	glucose-6-phosphate isomerase	
13	2.7.1.11	6-phosphofructokinase	
14	4.1.2.13	fructose-bisphosphate aldolase	
15	5.3.1.1	triose-phosphate isomerase	
16	1.2.1.12	glyceraldehyde-3-phosphate dehydrogenase (phosphorylating)	
17	2.7.2.3	phosphoglycerate kinase	
18	5.4.2.11/5.4.2.12	phosphoglycerate mutase	
19	4.2.1.11	phosphopyruvate hydratase	
20	2.7.1.40	pyruvate kinase	
21	1.2.1.104	pyruvate dehydrogenase system	
22	7.1.2.2	H ⁺ transporting ATPase	
23		Mg ²⁺ transporter	

^a obtained using the MetaCyc database^{S1}

Additional information on Figure 3: PolyP composition

Please note that intracellular polyP is stabilized by metal counter ions such as Mg^{2+} , K⁺, Na²⁺ or Ca²⁺. The contribution of individual ions in polyP granula has been suggested to depend on EBPR conditions and influent composition.^{S2} Li et al. (2019)^{S2} found an approximate relation of P:Mg:Na:K in the stoichiometric ratio of 1 : 0.3 : 0.17 : 0.17 for polyP granules in EBPR sludge.

For simplification, in Figure 3, we assumed that polyP has Mg^{2+} as a counter ion, only. The stoichiometric ratio of P to Mg^{2+} of 2:1, was derived from the molecular formula $(NaPO_3)_n$ (Graham's salt). Therefore, during anaerobic P re-dissolution and with hydrolysis of polyP 1 mol P will be released together with 0.5 mol Mg^{2+} .

References

- S1 R. Caspi, R. Billington, I. M. Keseler, A. Kothari, M. Krummenacker, P. E. Midford, W.
 K. Ong, S. Paley, P. Subhraveti and P. D. Karp, The MetaCyc database of metabolic pathways and enzymes-a 2019 update, *Nucleic Acids Res.*, 2020, 48, D455–D453.
- Y. Li, S. M. Rahman, G. Li, W. Fowle, P. H. Nielsen and A. Z. Gu, The Composition and Implications of Polyphosphate-Metal in Enhanced Biological Phosphorus Removal Systems, *Environ. Sci. Technol.*, 2019, **53**, 1536–1544.