Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2022

Supplementary Information

Enhanced-Electrocoagulation Process for Natural Organic Matter Removal from Surface Drinking Water Sources: Coagulant Dose Control & Organic Matter Characteristics

Hiua Daraei,^{ae} Parth D. Intwala,^a Edoardo Bertone,^b John Awad,^{ad} Rodney A. Stewart,^b Christopher W.K. Chow,^a Jinming Duan^{ac} and John van Leeuwen^{*ac}

eSustainable Infrastructure and Resource Management (SIRM), UniSA STEM, University of South Australia, Mawson Lakes, SA, Australia

^bGriffith University, Gold Coast, QLD, Australia

^cFuture Industries Institute, Mawson Lakes, SA, Australia

^dCSIRO Land and Water, Waite Campus, Urbane, SA, Australia

^eEnvironmental Health Research Centre, Kurdistan University of Medical Sciences, Sanandaj, Kurdistan, Iran *Corresponding author: <u>John.vanleeuwen@unisa.edu.au</u>

corresponding dution: <u>John.vanieeuwen@unisa.edu.au</u>

- □ Number of Fig: 3 (Fig. S1 to Fig. S3)
- □ Number of Tables: 3 (tables S1 to S3)

Number of Appendixes: 2 (Appendix I and Appendix II)

Fig. S1a Visualized *EEM* fluorescence spectra of (1) raw water sample, (2) a treated water sample, before and following *En-EC* in a) Murray River (*P08-02*), b) Myponga River (*P10-02*) and c) Middle River (*P11-01*) samples

Fig. S1b fEEM based indices obtained through (1) FRI technique and (2) PARAFAC technique before and following En-EC in a) Murray River (P08-02), b) Myponga River (P10-02) and c) Middle River (P11-01) samples

Fig. S2a The (1) *HPSEC-UVA*₂₆₀ based *AMW* profile before and following *En-EC*, (2) the *HPSEC-UVA*₂₆₀ based indices obtained through Peak-Fitting technique before and following *En-EC* in a) Murray River (*P08-02*), b) Myponga River (P10-02) and c) Middle River (*P11-01*) samples. * The peak centres (*kDa*) are mentioned as labels to the columns

Apparent molecular weight (Da) Fig. S2b The (1) HPSEC-FI-Hu based AMW profile before and following En-EC, (2) the HPSEC-FI-Hu based indices obtained through Peak-Fitting technique before and following En-EC in a) Murray River (P08-02), b) Myponga River (P10-02) and c) Middle River (P11-01) samples. * The peak centres (kDa) are mentioned as labels to the columns

EC/Aluminum dose prediction/control based on DOC in raw water Enhanced Coagulation or %Coagulable-DOC Removal *Data Entry (Green Boxes Only)	ARC_LP 160100217 2021 July H. Daraei PhD project	Xylen Let's Solve Water
DOC mg L ⁻¹ 21.7 Turbidity (NTU) 12.6 EC reactor active volume m ³ 60.00 Influent water flow rate m ³ /sec 1.00 EC reaction time/residence time (second)* 60 Active electrodic surface m ² 100.00 Active electrodic surface per m ³ influent water (m ² /(second m ² 100.00) *Equvalant to reactor active volume (m ³) devided by influent water flow rate (m ³ /sec)	Output Data Form of Coagulant Dose mg L ⁻⁺ Al 16.32 Algo ₃ 31.1 Alg(SO ₄) ₃ 104 Alg(SO ₄) ₃ 181 Alg(SO ₄) ₃ 184 Course 203 Alg(SO ₄) ₂ 24H ₂ 0 236 coulomb/L 175.1 175.1 Current density (ampere/L) 2.92 2.92 Current density (ampere/m ²) 0.03	
Raw water pH 8.0 Raw water electric conductivity (EC) μs 250.0		OI Analytical 9210p On-line TOC Analyzer
Determination of alkalinity (CaCO ₃ mg L ⁻¹) Data Alkalinity Alum, [Al ₂ (SO ₄) ₃ :18H ₂ 0]; mg L ⁻¹ to pH 5.5 25 7 or 0.1 Sulphuric Acid (Molarity) 0.1 Sulphuric Acid mL L ⁻¹ to pH 5.5 10.0 117 or 0.2 Hydrochloric Acid (Molarity) 0.2 Hydrochloric Acid, mL L ⁻¹ to pH 5.5 10.0 117 %Coagulable-DOC Removal	Resultant pH from EC dosing 8.0 EC dosing has negligible impacts on pH and alka pH reagents for coagulation pH control (mg Sulphuric Acid 15.68 Hydrochloric Acid 11.52 NaOH 11.52 CaO Quick lime 85% 11.52 Hydrated Lime 95% 11.52 Soda Ash Na ₂ CO ₃ 50 Sodium bicarbonate NaHCO ₃ 11.52	
Target Coagulation pH (Default value is 6.12 or no entry)	Turbidity X veighting (Default value is 100 or no entr (Default va	y.

20

Fig. S3 A screenshot of the WTC-DOC-ECoag software

Table S1 The data are available in the corresponding excel file which is submitted as supplementary information

Table S2a fEEM data-based indices for Murray River sample

	Danu annuala	nple Treated with Al dose (mg L ⁻¹) of:													
	kaw sample	1.4	2.8	4.2	5.6	8.4	14	Ratio-							
P1*	5.20	5.23	7.22	8.10	6.90	9.05	8.25	0.6							
P2	18.25	18.54	19.83	20.51	19.97	20.40	20.74	0.9							
FA	48.28	47.89	44.44	42.65	43.87	44.10	43.14	1.1							
SMP	9.27	9.92	11.27	11.80	11.80	10.91	12.03	0.8							
НА	19.00	18.41	17.25	16.94	17.46	15.54	15.84	1.2							
HIX ²	0.89	0.87	0.83	0.81	0.81	0.80	0.80	1.1							
BIX ³	0.64	0.72	0.80	0.80	0.80	0.86	0.86	0.7							
Peak T ⁴	0.11	0.08	0.07	0.07	0.05	0.06	0.07	2.0							
Peak A⁵	0.83	0.56	0.40	0.33	0.31	0.30	0.29	2.8							
Peak M ⁶	0.47	0.35	0.25	0.22	0.21	0.21	0.19	2.3							
Peak C ⁷	0.50	0.37	0.28	0.23	0.23	0.22	0.20	2.3							
A:T ⁸	7.66	7.18	5.08	4.49	5.11	5.23	4.44	1.5							
C:A ⁹	0.51	0.56	0.58	0.60	0.58	0.60	0.63	0.8							
C:M ¹⁰	1.21	1.16	1.14	1.03	1.05	1.00	1.06	1.2							
C:T ¹¹	3.87	3.99	2.96	2.70	2.94	3.13	2.81	1.2							
NI ¹²	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.0							
EXO EXO fDOM ¹³	0.27	0.18	0.12	0.10	0.10	0.09	0.08	3.1							
PAR_P114	0.28	0.20	0.15	0.12	0.12	0.09	0.09	3.1							
PAR_P2	0.21	0.13	0.08	0.06	0.06	0.07	0.06	2.9							
PAR_P3	0.10	0.10	0.09	0.09	0.09	0.07	0.08	1.4							
PAR_P4	0.23	0.17	0.11	0.09	0.09	0.09	0.07	2.6							
PAR_P5	0.39	0.26	0.17	0.14	0.12	0.16	0.15	2.4							

*Weighted average percentage values for P1, P2, FA, SMP and HA indices.

¹Ratio of the fluorescence index value in the raw sample to a sample treated with \geq EnD. ²Humification index (HIX_250nm): An indicator of humic substance content or extent of humification ¹; ³Biological index (BIX): An indicator of autotrophic productivity where >1 values correspond to recently produced DOM of autochthonous origin ²); ⁴Peak T: An indicator of tryptophan like portion of protein like compounds; ⁵Peak A: An indicator of humic Like compounds; ⁶Peak M: An indicator of marine humic Like compounds; ⁷Peak C: An indicator of Humic Like compounds; ⁶Peak M: An indicator of the amount of humic-like (labile) fluorescence ⁴); ⁹Peaks ratio (C:A): An indication of the amount of humic-like vs. fulvic-like compounds; ¹⁰Peaks ratio (C:M): An indicator of the amount of diagenetically altered (blue_shifted) fluorescence in a sample ^{5,6}; ¹¹Peaks ratios (C:T): Indicator of the amount of humic-like (recalcitrant) vs. fresh_like (labile) fluorescence ⁴); ¹²New index: Proposed to be an indicator for humification; ¹³EEM_fDOM: Is the normalized signal collected from benchtop machine output EEM spectra at the same ex-em paired wavelength which the EEM_EXO_fDOM probe use.¹⁴Peak 1: The decomposed (identified) EEM peak (component) area in the studied samples EEM spectra using PARFAC approach.

Table S2b fEEM data-based indices for Myponga River sample

	0		Tr	eated with Al	dose (mg L-1)	at:		Detta1
	Raw sample	4.1	8.2	12.3	16.4	24.6	41.1	Katio-
P1*	1.08	3.52	4.74	7.62	3.54	6.65	7.00	0.6
P2	11.67	15.85	17.74	19.80	20.64	19.92	20.30	0.8
FA	56.67	49.88	47.10	43.42	46.21	43.47	43.03	1.2
SMP	5.82	7.44	9.02	10.23	9.28	10.49	10.54	0.8
НА	24.77	23.31	21.39	18.94	20.33	19.48	19.12	1.1
HIX ²	0.97	0.94	0.91	0.88	0.93	0.87	0.87	1.1
BIX ³	0.45	0.55	0.62	0.70	0.72	0.74	0.74	0.7
Peak T⁴	0.20	0.23	0.19	0.18	0.15	0.17	0.13	2.1
Peak A⁵	3.51	2.36	1.30	0.90	0.82	0.82	0.69	3.8
Peak M ⁶	1.85	1.44	0.86	0.61	0.57	0.54	0.48	3.2
Peak C ⁷	2.25	1.69	0.98	0.71	0.64	0.63	0.54	3.1
A:T ⁸	17.23	10.09	6.57	4.75	6.28	5.23	4.84	1.8
<i>C:A⁹</i>	0.61	0.67	0.70	0.69	0.69	0.68	0.69	0.9
C:M ¹⁰	1.82	1.59	1.41	1.29	1.27	1.30	1.25	1.1
C:T ¹¹	10.59	6.77	4.61	3.28	4.31	3.55	3.34	1.6
NI ¹²	4.00	2.62	1.59	1.15	1.06	1.06	1.00	3.5
EEM EXO fDOM ¹³	1.53	0.99	0.49	0.32	0.28	0.29	0.24	3.8
PAR_P114	1.65	1.20	0.65	0.45	0.40	0.41	0.34	4.1
PAR_P2	1.32	0.74	0.32	0.19	0.16	0.17	0.15	7.6
PAR_P3	0.23	0.34	0.26	0.24	0.23	0.23	0.20	1.0
PAR_P4	0.97	0.68	0.40	0.26	0.26	0.23	0.20	4.2
PAR_P5	0.94	0.62	0.34	0.24	0.20	0.22	0.20	4.3

*Weighted average percentage values for P1, P2, FA, SMP and HA indices.

¹Ratio of the fluorescence index value in the raw sample to a sample treated with \geq EnD. ²Humification index (HIX_250nm): An indicator of humic substance content or extent of humification ¹; ³Biological index (BIX): An indicator of autotrophic productivity where >1 values correspond to recently produced DOM of autochthonous origin ²); ⁴Peak T: An indicator of tryptophan like portion of protein like compounds; ⁵Peak A: An indicator of humic Like compounds; ⁶Peak M: An indicator of marine humic Like compounds; ⁷Peak C: An indicator of Humic Like compounds ³.⁸Peaks ratios (A:T): Indicator of the amount of humic-like (recalcitrant) vs. fresh_like (labile) fluorescence ⁴); ⁹Peaks ratio (C:A): An indication of the amount of humic-like vs. fulvic-like compounds; ¹⁰Peaks ratio (C:M): An indicator of the amount of humic-like vs. fulvic-like (labile) fluorescence ⁴); ¹⁰Peaks ratio fluorescence ⁵.⁶; ¹¹Peaks ratios (C:T): Indicator of the amount of humic-like (recalcitrant) vs. fresh_like (labile) fluorescence ⁴); ¹²New index: Proposed to be an indicator for humification; ¹³EEM_fDOM: Is the normalized signal collected from benchtop machine output EEM spectra at the same ex-em paired wavelength which the EEM_EXO_fDOM probe use.¹⁴Peak 1: The decomposed (identified) EEM peak (component) area in the studied samples EEM spectra using PARFAC approach.

Table S2c fEEM data-based indices for Middle River sample

	0		Tr	eated with Al	dose (mg L-1)	of:		Dertial
	kaw sample	4	8	12	16	24	40	Katio-
P1*	1.52	2.28	2.55	2.61	2.84	2.99	3.27	0.8
P2	20.62	23.75	24.82	25.39	25.30	25.82	25.46	0.9
FA	54.12	46.96	43.92	42.38	42.43	40.97	40.58	1.1
SMP	6.84	9.16	10.34	10.80	10.83	11.18	11.40	0.8
НА	16.90	17.85	18.37	18.81	18.60	19.03	19.30	0.9
HIX ²	0.95	0.92	0.90	0.89	0.89	0.89	0.89	1.0
BIX ³	0.92	1.04	1.02	1.02	1.02	1.01	1.01	1.0
Peak T⁴	0.56	0.59	0.60	0.59	0.56	0.57	0.55	1.0
Peak A⁵	4.65	3.12	2.52	2.35	2.31	2.22	2.15	1.4
Peak M ⁶	3.24	2.58	2.22	2.11	2.09	2.02	1.96	1.3
Peak C ⁷	2.74	2.18	1.98	1.92	1.91	1.87	1.85	1.2
A:T ⁸	9.47	5.49	4.60	4.35	4.26	4.29	4.27	1.3
C:A ⁹	0.52	0.67	0.76	0.79	0.80	0.82	0.86	0.8
C:M ¹⁰	0.85	0.83	0.89	0.90	0.91	0.92	0.93	0.9
C:T ¹¹	4.96	3.65	3.50	3.44	3.42	3.53	3.65	1.0
NI ¹²	5.21	3.36	2.65	2.46	2.40	2.29	2.21	1.5
EEM EXO fDOM ¹³	1.88	1.52	1.18	1.03	0.96	0.87	0.76	1.8
PAR_P114	2.19	1.93	1.75	1.64	1.57	1.45	1.27	1.5
PAR_P2	1.27	1.02	0.72	0.60	0.54	0.46	0.40	2.8
PAR_P3	1.80	2.34	2.22	2.11	2.04	1.91	1.72	0.9
PAR_P4	0.89	-0.14	-0.18	-0.10	-0.01	0.12	0.32	7.6
PAR_P5	1.07	0.55	0.25	0.19	0.18	0.15	0.14	7.1

*Weighted average percentage values for P1, P2, FA, SMP and HA indices.

¹Ratio of the fluorescence index value in the raw sample to a sample treated with \geq EnD. ²Humification index (HIX_250nm): An indicator of humic substance content or extent of humification ¹; ³Biological index (BIX): An indicator of autotrophic productivity where ≥ 1 values correspond to recently produced DOM of autochthonous origin ²); ⁴Peak T: An indicator of tryptophan like portion of protein like compounds; ⁵Peak A: An indicator of humic Like compounds; ⁶Peak M: An indicator of marine humic Like compounds; ⁷Peak C: An indicator of Humic Like compounds; ³.⁸Peaks ratios (A:T): Indicator of the amount of humic-like (recalcitrant) vs. fresh_like (labile) fluorescence ⁴); ⁹Peaks ratio (C:A): An indication of the amount of humic-like vs. fulvic-like compounds; ¹⁰Peaks ratio (C:M): An indicator of the amount of humic-like vs. fulvic-like (labile) fluorescence ⁴); ¹⁰Peaks ratio fluorescence in a sample ^{5, 6}; ¹¹Peaks ratios (C:T): Indicator of the amount of humic-like (recalcitrant) vs. fresh_like (labile) fluorescence ⁴); ¹²New index: Proposed to be an indicator for humification; ¹³EEM_EXO_fDOM: Is the normalized signal collected from benchtop machine output EEM spectra at the same ex-em paired wavelength which the EXO_fDOM probe use.¹⁴Peak 1: The decomposed (identified) EEM peak (component) area in the studied samples EEM spectra using PARFAC approach.

				•		•				
	N	lurray Rive	er	M	yponga Riv	er	Ν	1iddle Rive	r	
	Raw	Treated	Ratio ¹	Raw	Treated	Ratio ¹	Raw	Treated	Ratio ¹	
WAMW ²	2.02	1.50	1.3	2.81	1.34	2.1	2.17	1.27	1.7	
PF-P1	0.0191	0.0126	1.5	0.0594	94 0.0274 2.2		0.1081	0.0756	1.4	
PF-P2	0.0295	0.0199	1.5	0.1079	0.1079 0.0409 2		0.1685	0.1040	1.6	
PF-P3	0.0518	0.0261	2.0	0.2569 0.0622		4.1	0.3150	0.1433	2.2	
PF-P4	0.0765	0.0093	8.2	0.5902	0.0298	19.8	0.5483	0.1250	4.4	
PF-P5	0.0922	0.0013	72.7	0.5505	0.0001	<i>9875</i>	0.5095	0.0021	244	
PF-P6	0.0098	0.0009	10.8	0.1893	0.0012	156	0.1467	0.0002	668	
PF-P7	0.0007	0.0009	0.8	0.0200	0.0008	26.3	0.0191	0.0013	14.2	

 Table S3a HPSEC-UVA260 data-based indices for Murray River, Myponga River and Middle River samples

-													
		Murray Riv	er	М	yponga Riv	/er	Middle River						
	Raw	Treated	Ratio ¹	Raw	Treated	Ratio ¹	Raw	Treated	Ratio ¹				
WAMW ²	2.0	1.9	1.1	2.4	1.1	2.3	1.2	0.8	1.6				
PF-P1	7.3	10.1	0.7	86.8	51.5	1.7	355.9	273.9	1.3				
PF-P2	5.3	0.8	6.8	58.7	25.5	2.3	150.6	117.5	1.3				
PF-P3	31.7	20.1	1.6	175.4 68.8		2.6	414.6	258.2	1.6				
PF-P4	53.2	12.9	4.1	373.0	66.9	5.6	571.0	222.1	2.6				
PF-P5	68.9	5.1	13.6	618.9	3.5	178.2	576.1	12.5	46.0				
PF-P6	3.6	5.2	0.7	57.6	2.2	26.6	42.3	1.7	25.7				
PF-P7	1.6	2.6	0.6	3.1	2.3	1.4	1.7	2.1	0.8				

 Table S3b HPSEC-FI-Hu data-based indices for Murray River, Myponga River and Middle River samples

Appendix 1

The EEM fluorescence data were pre-processed, including removing/smoothing Raman scattering, converting to Raman units, and limiting inner filter effects. The EEM spectra were standardized to Raman units (normalized to the integral of the Raman signal between 390 and 410 nm in emission at a fixed excitation of 350 nm) using Milli-Q water sample EEM spectra which are collected the same day as the samples.⁷ The EEM data were then normalized to prevent the impact of DOM content variation on the output model.

The PARAFAC analyses of the fluorescence data were performed using 'decomposition routines for Emission-Excitation Matrices' (*drEEM Version_0.6.5*, which is developed by Murphy, *et al.* (2013)) MATLAB software's toolbox. Several PARAFAC models (2- to 7-component PARAFAC models) were developed by analysing all EEM fluorescence measurements (n=200) of the raw and treated water samples collected from 3 EC and 17 CC jar tests as well as several other surface water sources' samples collected between Oct 2018 to Feb 2022. No outlier data were identified/excluded in the dataset using outlier tests and leverage plots (see Fig. A1.1). The 5-component model was selected on the basis of several criteria in turn. Fig. A1.2 shows that the addition of 6th and more fluorescence components has no noticeable impact on fitting error of PARAFAC models. In addition, the result of split validation technique, suggested by Murphy, *et al.* (2013) (which is performed using 'split-validation' function in drEEM toolbox) indicated 'Validated for all comparisons as Overall Result' in the case of six splits validation test trials of the 5-components model (where this was unsuccessful for models with larger number of components). The results of the comparison between validation datasets obtained through different combinations of the dataset splits are presented in Fig A1.3a&b.

The potential sources and functions of the identified PARAFAC component in the 5-component (hereafter referred to as fluorophores PAR-C1 to PAR-C5) PARAFAC model (Fig. A1.4) are presented in Table A1.1. These are attained through comparisons of the PARAFAC fluorescence components which are identified in the current study to the components reported in the literature. The comparison was performed using an online spectral library referred to as OpenFluor database^{9.10} This showed that all components have been previously identified/reported frequently as DOM components (Tucker congruence coefficient \geq 0.95 on both the excitation and emission spectra, OpenFluor references in Table A1.1). As summarised in Table A1.1, humic-like components PAR-C1, PAR-C2 and PAR-C4 are among the most common fluorophores found in freshwaters (large number of matches in OpenFluor database library, Table A1.1) and are associated with high-molecular-weight and aromatic compounds of terrestrial origin¹¹. PAR-C3 and PAR-C5 components are classified as microbial protein-like components related to the production of DOM within aquatic ecosystems (see Table A1.1).

Component	Peak position $(\lambda_{ex}/\lambda_{em})$	% Contribution to the model	No. matches in OpenFluor ($(TCC_{ex} > 0.95)$ and $(TCC_{em} > 0.95)$)	Traditional Classification	Possible source (Previous attributions	ID in OpenFluor	References (Top matches)	Common components in between models (Our model => Ref model)	Sample studied in the reference
PAR_P1	325/424	48	68	Peak A/Peak C	Humic-like Terrestrial delivered OM	44	Shutova <i>, et al</i> . (2014)	1=>2; 2=>1; 3=>3; 4=>4;	Raw and treated water of Capalaba WTP (QLD) South Maclean WTP (QLD); Grahamstown WTP (NSW); Gresford WTP (NSW) Yarra Glen WTP (VIC) are collected between October 2011 and September 2012
PAR_P2	370/487	23	90	Peak A/Peak C	Humic-like Terrestrial delivered OM	692	Osburn <i>, et al.</i> (2017)	1=>2; 2=>1; 3=>4; 4=>3; 5=>5;	Arctic lakes located in three clusters across south- west (SW) Greenland
PAR_P3	305/379.5	14	23	Peak T	Protein-like Microbial delivered	2617	Groeneveld, et al. (2020)	1=>2; 2=>3; 3=>4; 4=>1; 5=>5;	20 lakes, three peats and seven streams and rivers throughout Sweden are collected between 28 August and 6 September 2016
PAR_P4	325/423	13	35	Peak A/Peak C	Humic-like Processed OM	7	Graeber <i>, et</i> <i>al.</i> (2012)	1=>1; 2=>2; 3=>5; 4=>4; 5=>7;	Central European headwater streams
PAR_P5	270/314	2	64	Peak T	Protein-like Microbial delivered	58	Walker <i>, et al.</i> (2009)	1=>1; 2=>3; 3=>4; 4=>2; 5=>5;	Coastal Canadian Arctic surface waters
*The compo < 0.95 on th	onents with ne excitation	red text are ide or/and emiss	entified with Tu ion spectra	cker congruen	ce coefficient	14	Lambert <i>, et</i> <i>al.</i> (2016)	1=>1; 2=>2; 3=>3; 4=>4;	Zambezi River samples are collected during wet season 2012 (1 February to 5 May, n = 40), wet season 2013 (6 January to 21 March, n = 41), and dry season 2013 (15 October to 28 November, n = 24;
						3630	Wang <i>, et al.</i> (2020)	1=>1; 2=>2; 3=>3; 4=>4;	314 surface water samples are collected from 111 New York Lakes over the 2018 and 2019
						4353	Wauthy, <i>et al.</i> (2018)	1=>1; 2=>2; 3=>4; 4=>3; 5=>5;	356 freshwaters samples from 253 ponds are located in the regions span over a wide geographic area, covering around 200 degrees of longitude (from Alaska to Russia) and 30 degrees of latitude (from Subarctic to High Arctic) during the summer periods from 2002 to 2016.
						464	Peleato <i>, et al.</i> (2016) 464	1=>1; 2=>2; 3=>4; 4=>3;	The Otonabee River, Peterborough, Ontario

Table A1.1 Interpretation of the EEM fluorescent components identified through PARAFAC analysis

Fig. A1.1 Leverage and score graph of the 5-component mode for all studied samples

Fig. A1.2 Fitting error in PARAFAC models with increasing number of fluorescence components (in the 1-component to 7-component models) in a) the range of studied ex/em wavelengths & samples and b) overall studied range of samples and ex/em wavelengths (accumulative error)

Fig. A1.3a Comparison of the dataset's in six splits for each identified fluorescence components. This indicating similarity of the identified components in all six splits datasets.

Model 5	Model	5 Model 5	5 Model	5 Model 5	Model 5	Model 5	Model 5	Model 5	5 Model 5	Model 5	5 Model 5	Model 5	Model 5	5 Model 5	
1 2 vs 3 4 -	etx 2 vs 1 3	3 - dx 2 vs 2 4	- etx 2 vs 1 4	- etx 2 vs 2 3 -	ex 4 vs 1 3 -	ex 4 vs 2 4	- ex 4 vs 1 4 -	ex 4 vs 2 3	- etx 3 vs 2 4	- etx 3 vs 1 4	- etx 3 vs 2 3 - 6	x4 vs 1 4	- 62x 4 vs 2 3	- ebx 4 vs 2 3 -	ex
0.5	0.45	0.45	0.45	0.45	0.5	0.5	0.5	0.5	0.45	0.45 -	0.45 0	.45 -	0.45 -	0.45	
	0.4	0.4	0.4	0.4					0.4	0.4	0.4	0.4	0.4	0.4	
0.4	0.35	- 0.35	0.35	0.35	0.4	0.4	0.4	0.4	0.35	0.35	0.35 0	.35	0.35	0.35	
0.3	0.3	- 0.3	0.3	0.3	0.3	03	03	0.3	0.3	0.3	0.3	0.3	0.3	0.3	1st comp 1
0.0	0.25	0.25	0.25	0.25	0.0	0.0	0.0	0.0	0.25	0.25	0.25 - 0	.25	0.25	0.25	1st comp 1 1st comp 2 1st comp 3
0.2	0.2	- 0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2 🎽 -	0.2	0.2	1st comp 4
	0.15	- 0.15 -	0.15	0.15			A		0.15	0.15 -	0.15 - 0	.15 -	0.15	0.15 -	2nd comp 1 2nd comp 2
0.1 -	0.1 -	- 0.1 -	0.1 -	0.1 -	0.1 -	0.1	0.1	0.1 -	0.1 -	0.1 -	0.1 -	0.1 - 2 -	0.1 -	0.1	2nd comp 3 2nd comp 4
	0.05	0.05	0.05	0.05					0.05	0.05	0.05	.05	0.05	0.05	2nd comp 5
300 500	300 500	300 500	300 500	300 500	300 500	300 500	300 500	300 500	300 500	300 500	300 500	300 500	300 500	300 500	

Fig. A1.3b Comparison of the emission fluorescence signal in 30 combinations of the splits for each identified fluorescence components. This indicating similarity of the identified components in all six combinations.

Fig. A1.1 3D Contour plots and 2D diagram of the five fluorescence EEM components identified

5-component models exhibiting no atypical spectral features⁸

Appendix 2 Precision of Techniques [Coefficient of Variation (CV)]

The precisions of water quality analyses and treatment techniques were determined using two water samples collected separately from the same water sources (Murray and Myponga rivers). These had contrasting water qualities *i.e.* Murray River sample having high turbidity but low in DOM content and Myponga River sample with high in DOM content but low turbidity (see Table A2.1). Determination of CV values of water quality analyses are presented in Table A2.2a for Myponga samples) and in Table A2.2b for Murray River. The CV values for the treatment techniques (EC and CC) are presented in Table A2.3.

Table A2.1 Raw water quality parameters of samples used for determination of co-efficient of variation (CV) data

WQ parameters	Murray River	Myponga River
рН	7.38	7.10
Conductivity (µS cm ⁻¹)	255	633
Turbidity (NTU)	87.0	8.7
A₂₅₄ (m⁻¹)	22	93.6
True colour (HU)	58	182

*DOC-specific A₂₅₄ (Lmg⁻¹m⁻¹); **Corrected fDOM_s (RFU) for turbidity, temperature and pH (***and for inner filter effect [IFE]) impacts using a mathematical model-based approach which has developed by us recently (not published yet).

Table A2.2a Co-efficient of variation (CV) values of water quality analyses performed in triplicate, for Myponga River raw and treated (EC and CC) water samples

				Муро	nga Riv	ver v	vater s	ample	– Raw	ı samp	le and	Jar	1 treat	ed sar	nple			
		Ra	w sam	ple (R)		E	C trea	ted sa	mple (EC T)		C	C trea	ted sa	mple (CC T)	
	R1	R2	R3	М	SD	CV	ECT_1	EC T ₂	EC T ₃	Μ	SD	CV	CC T ₁	CC T ₂	CC T₃	Μ	SD	CV
A ₂₅₄	1.026	1.044	1.036	1.035	0.007	0.7	0.128	0.126	0.124	0.126	0.002	1.3	0.133	0.138	0.138	0.136	0.002	1.7
True colour (HU)	189	204	206	199.7	7.65	3.8	11	11	11	11.2	0.00	0.0	10	10	11	10.5	0.61	5.8
Tur. (NTU)	8.8	8.6	8.6	8.7	0.1	1.1	2.5	2.2	2.0	2.2	0.2	9.2	2.7	2.2	2.4	2.4	0.2	8.4
рН	6.89	7.17	7.24	7.10	0.15	2.1	6.89	6.81	6.87	6.86	0.03	0.5	6.15	6.12	6.12	6.13	0.01	0.2
Cond. (µS cm ⁻¹)	632	633	633	633	0.5	0.1	-	-	-	-	-	-	-	-	-	-	-	-

R: Raw water sample, T: Treated water sample from Jar test 1 sample.

Table A2.2b Co-efficient of variation (CV) values of water quality analyses performed in triplicate for Murray River raw and treated (EC and CC) water samples

				Μ	urray	River	water	sampl	e - Rav	v samp	ole and	Jar 1	treated	d samp	ole			
		Ra	w san	nple (R	k)			EC tre	ated s	ample	(EC T)			CC tre	ated s	ample	(CC T)	
	R1	R2	R3	Μ	SD	CV	EC T ₁	EC T ₂	EC T ₃	М	SD	CV	CCT_1	CC T ₂	CC T₃	Μ	SD	CV
A ₂₅₄	0.221	0.224	0.214	0.220	0.004	1.9	0.065	0.065	0.066	0.065	>0.001	0.7	0.052	0.052	0.051	0.052	>0.001	0.9
True colour (HU)	45	53	40	46.0	5.55	12.1	6	7	7	6.7	0.61	9.1	4	5	5	5.0	0.35	7.1
Tur. (NTU)	86.7	87.8	86.6	87.0	0.5	0.6	4.5	3.9	5.9	4.8	0.8	17.6	3.0	3.6	1.7	2.8	0.8	28.7
рН	7.36	7.38	7.40	7.38	0.02	0.2	7.07	7.07	7.13	7.09	0.03	0.4	6.24	6.31	6.39	6.31	0.06	1.0
Cond. (µS cm ⁻¹)	255	255	255	255	<1.0	<1.0	-	-	-	-	-	-	239	239	239	239	>1	>1.0

R: Raw water sample, T: Treated water sample from Jar test 1 sample.

Table A2.3 Determination of co-efficient of variation (CV) values for standard jar and electro jar techniques, using Myponga River and Murray River water samples (performed in triplicate)

				Γ	Nypon	ga Riv	er w	ater sa	mple									Muri	ay Riv	er wa	ter sar	nple				
				EC				CC									EC						C	С		
	Raw	EJ1	EJ2	EJ3	м	SD	CV	J1	J2	J3	М	SD	CV	Raw	EJ1	EJ2	EJ3	М	SD	CV	J1	J2	J3	М	SD	CV
A₂₅₄ (cm⁻¹)	1.035	0.126	0.134	0.134	0.131	0.004	2.9	0.136	0.137	0.138	0.137	0.001	0.6	0.220	0.065	0.066	0.077	0.069	0.005	7.8	0.052	0.051	0.051	0.051	<0.001	0.9
True colour (HU)	199	11	13	10	11.5	0.93	8.1	10	10	10	10.0	0.35	3.5	46	4	7	5	5.50	0.93	17.0	5.2	4.5	5.2	5.00	0.35	7.0

EC: Electro-coagulation; CC: Chemical coagulation; J: Jar test, EJ: electro jar test

References

- 1. T. Ohno, Fluorescence inner-filtering correction for determining the humification index of dissolved organic matter, *Environmental Science & Technology*, 2002, **36**, 742-746.
- 2. A. Huguet, L. Vacher, S. Relexans, S. Saubusse, J.-M. Froidefond and E. Parlanti, Properties of fluorescent dissolved organic matter in the Gironde Estuary, *Organic Geochemistry*, 2009, **40**, 706-719.
- 3. P. G. Coble, in *Subsea Optics and Imaging*, Elsevier, 2013, pp. 98-118.
- 4. A. M. Hansen, T. E. Kraus, B. A. Pellerin, J. A. Fleck, B. D. Downing and B. A. Bergamaschi, Optical properties of dissolved organic matter (DOM): Effects of biological and photolytic degradation, *Limnology and Oceanography*, 2016, **61**, 1015-1032.
- 5. J. R. Helms, A. Stubbins, E. M. Perdue, N. W. Green, H. Chen and K. Mopper, Photochemical bleaching of oceanic dissolved organic matter and its effect on absorption spectral slope and fluorescence, *Marine Chemistry*, 2013, **155**, 81-91.
- 6. P. G. Coble, Characterization of marine and terrestrial DOM in seawater using excitationemission matrix spectroscopy, *Marine chemistry*, 1996, **51**, 325-346.
- 7. R. G. Zepp, W. M. Sheldon and M. A. Moran, Dissolved organic fluorophores in southeastern US coastal waters: correction method for eliminating Rayleigh and Raman scattering peaks in excitation–emission matrices, *Marine chemistry*, 2004, **89**, 15-36.
- 8. K. R. Murphy, C. A. Stedmon, D. Graeber and R. Bro, Fluorescence spectroscopy and multi-way techniques. PARAFAC, *Analytical Methods*, 2013, **5**, 6557-6566.
- 9. K. R. Murphy, C. A. Stedmon, P. Wenig and R. Bro, OpenFluor- an online spectral library of autofluorescence by organic compounds in the environment, *Analytical Methods*, 2014, **6**, 658-661.
- 10. K. R. Murphy, C. A. Stedmon, P. Wenig and R. Bro, OpenFluor–an online spectral library of autofluorescence by organic compounds in the environment, *Analytical Methods*, 2014, **6**, 658-661.
- 11. T. Lambert, C. R. Teodoru, F. C. Nyoni, S. Bouillon, F. Darchambeau, P. Massicotte and A. V. Borges, Along-stream transport and transformation of dissolved organic matter in a large tropical river, *Biogeosciences*, 2016, **13**, 2727-2741.
- 12. Y. Shutova, A. Baker, J. Bridgeman and R. K. Henderson, Spectroscopic characterisation of dissolved organic matter changes in drinking water treatment: From PARAFAC analysis to online monitoring wavelengths, *Water research*, 2014, **54**, 159-169.
- C. L. Osburn, N. J. Anderson, C. A. Stedmon, M. E. Giles, E. J. Whiteford, T. J. McGenity, A. J. Dumbrell and G. J. Underwood, Shifts in the source and composition of dissolved organic matter in Southwest Greenland lakes along a regional hydro-climatic gradient, *Journal of Geophysical Research: Biogeosciences*, 2017, **122**, 3431-3445.
- 14. M. Groeneveld, N. Catalán, K. Attermeyer, J. Hawkes, K. Einarsdóttir, D. Kothawala, J. Bergquist and L. Tranvik, Selective adsorption of terrestrial dissolved organic matter to inorganic surfaces along a boreal inland water continuum, *Journal of Geophysical Research: Biogeosciences*, 2020, **125**, e2019JG005236.
- 15. D. Graeber, J. Gelbrecht, M. T. Pusch, C. Anlanger and D. von Schiller, Agriculture has changed the amount and composition of dissolved organic matter in Central European headwater streams, *Science of the Total Environment*, 2012, **438**, 435-446.
- 16. S. A. Walker, R. M. Amon, C. Stedmon, S. Duan and P. Louchouarn, The use of PARAFAC modeling to trace terrestrial dissolved organic matter and fingerprint water masses in coastal Canadian Arctic surface waters, *Journal of Geophysical Research: Biogeosciences*, 2009, **114**.

- 17. S. Wang, M. Matt, B. L. Murphy, M. Perkins, D. A. Matthews, S. D. Moran and T. Zeng, Organic micropollutants in New York lakes: A statewide citizen science occurrence study, *Environmental Science & Technology*, 2020, **54**, 13759-13770.
- M. Wauthy, M. Rautio, K. S. Christoffersen, L. Forsström, I. Laurion, H. L. Mariash, S. Peura and W. F. Vincent, Increasing dominance of terrigenous organic matter in circumpolar freshwaters due to permafrost thaw, *Limnology and Oceanography Letters*, 2018, **3**, 186-198.
- 19. N. M. Peleato, M. McKie, L. Taylor-Edmonds, S. A. Andrews, R. L. Legge and R. C. Andrews, Fluorescence spectroscopy for monitoring reduction of natural organic matter and halogenated furanone precursors by biofiltration, *Chemosphere*, 2016, **153**, 155-161.