Supplementary Information For

Disinfection of bromide-containing tryptophan water by UV/chlorine: Brominated halonitromethanes formation, impact factors, and pathways

Tao Wang, Lin Deng*, Wenjuan Dai, Jun Hu, Rajendra Prasad Singh, Chaoqun Tan

Department of Municipal Engineering, Southeast University, Nanjing 211189, China

* Corresponding author: Lin Deng E-mail address: <u>denglin10974@163.com</u> Tel: +86 13951974771

This document consists of 15 pages including 6 texts, 4 tables, and 7 figures.

Contents

Text S1. Chemicals and reagents
Text S2. The average light intensity of the UV lamp
Text S3. The analytical methods for Br-HNMs4
Text S4. The analytical methods for intermediates
Text S5. Determination of chlorine and nitrogen
Text S6. The calculation of bromine utilization factors (BUFs)6
Table S1. Physical and chemical properties of nine HNMs 7
Table S2. Properties of tryptophan 8
Table S3. The degradation of Br-HNMs by LP-UV irradiation and HO•8
Table S4. The information on the possible intermediates
Fig. S1. Illustration of experimental set-up. The 500 mL cylindrical quartz reactor has double layers with an inner diameter of 10.0 cm, a height of 20.0 cm, and a thickness of 1.0 cm. A low-pressure UV mercury lamp (254 nm) was used to supply UV irradiation. The average fluence rate (Ep^0) of this UV lamp was determined to be 2.1 mW cm ⁻² (Text S2)
Fig. S2. Time-dependent profile of I_3^- absorbance at 352 nm
Fig. S3. Photolysis of H_2O_2 at 254 nm
Fig. S4. Degradation efficiencies and kinetics of BNM, DBNM, TBNM, BCNM, DBCNM, and BDCNM under UV irradiation, UV+chlorine, and UV+Br ⁻ , respectively. Experimental conditions: [BNM] = [DBNM] = [TBNM] = [BCNM] = [DBCNM] = [BDCNM] = 200 μ g L ⁻¹ , [free chlorine] = 1.0 mg L ⁻¹ , [Br ⁻] = 1.0 mg L ⁻¹ , pH=7.0, UV intensity was 2.1 mW cm ⁻²
Fig. S5. Effects of free chlorine concentration on bromine utilization factors (BUFs) in the presence of Br^- during UV/chlorine disinfection. [Tryptophan] = 2.0 mmol/L, [free chlorine] = 0.2, 0.3, 0.6, 1.2, 1.8 mmol/L, [Br^-] = 0.6 mmol/L, pH = 7.013
Fig. S6. Effects of pH on bromine utilization factors (BUFs) in the presence of Br ⁻ during UV/chlorine disinfection. Experimental conditions: [Tryptophan] = 2.0 mmol/L, [free chlorine] = 1.8 mmol/L, [Br ⁻] = 0.6 mmol/L, pH = 6.0, 7.0, 8.013
Fig. S7. GC/MS spectra for intermediate products during UV/chlorine disinfection in the presence of tryptophan and Br ⁻ . Experimental conditions: [Tryptophan] = 2.0 mmol/L, [free chlorine] = 1.8 mmol/L , [Br ⁻] = 0.6 mmol/L , pH = $7.0 \dots 14$

Text S1. Chemicals and reagents

Bromonitromethane (BNM), dibromonitromethane (DBNM), tribromonitromethane (TBNM), bromochloronitromethane (BCNM), bromochloronitromethane (BDCNM), and dibromochloronitromethane (BDCNM) were purchased from Quality Control Chemicals (USA). Methyl tert-butyl ether (MTBE) was purchased from Aladdin (China). Tryptophan, sodium bromide (NaBr), sodium thiosulfate (Na₂S₂O₃), disodium phosphate (Na₂HPO₄), and sodium dihydrogen phosphate (NaH₂PO₄) were purchased from Sinopharm (China). Sodium hypochlorite (NaOCl, 5%) purchased from Sigma-Aldrich (China) was used to prepare free chlorine solution.

Text S2. The average light intensity of the UV lamp

Photon fluence rate. The photon fluence rate (I_0) was measured by iodide/iodate chemical actinometry. The reaction solution (500 mL, pH 9.0) consisted of potassium iodide (0.6 M), potassium iodate (0.1 M) and sodium tetraborate (0.01 M). The value of I_0 was calculated by Eq. S1.

$$A_{352} = \Phi_{\rm L} \times I_0 \times \varepsilon_{\rm L} \times t \tag{S1}$$

where A_{352} , Φ_{I3-} and ε_{I3-} are the absorbance of I_3^- at 352 nm, apparent quantum yield of I_3^- (M einstein⁻¹), and molar absorption coefficient of I_3^- (M⁻¹ cm⁻¹), respectively; *t* is the radiation time (s). At 352 nm, the values of Φ_{I3-} and ε_{I3-} were 0.74 mol einstein⁻¹ and 26400 M⁻¹ cm⁻¹, respectively. The time-dependent profile of I_3^- absorbance is shown in SI Fig. S2. Thus, the value of I_0 was determined to be 1.45×10^{-6} Einstein L⁻¹ s⁻¹.

Effective path length. The effective path length (L) was measured by the photolysis kinetics of hydrogen peroxide (H₂O₂) with low concentrations and then calculated by Eq. S2.

$$\frac{dc_t}{dt} = -2.303 \times L \times \Phi_{\mathrm{H_2O_2}} \times I_0 \times \varepsilon_{\mathrm{H_2O_2}} \times c_t = -k_{\mathrm{obs}}c_t \tag{S2}$$

where c_t is the concentration of H₂O₂ (M), $\varepsilon_{\text{H2O2}}$ is the molar absorption coefficient of H₂O₂ (M⁻¹ cm⁻¹), I_0 is the photon fluence rate (Einstein L⁻¹ s⁻¹) and Φ_{H2O2} is the apparent quantum yield of H₂O₂ photolysis (mol Einstein⁻¹). At 254 nm, the values of Φ_{H2O2} and $\varepsilon_{\text{H2O2}}$ were 1.0 mol einstein⁻¹ and 19.6 M⁻¹ cm⁻¹, respectively. The photolysis kinetics of H₂O₂ was shown in SI Fig. S3. The effective path length was measured to be 3.05 cm.

Average fluence rate. The average fluence rate (E_p^0) was calculated by Eq. S3.

$$E_{p}^{0} = I_{0} \times L \times u_{\lambda} \tag{S3}$$

where I_0 is the photon fluence rate (Einstein L⁻¹ s⁻¹), *L* is the effective path length (cm), u_{λ} is the energy of 1 M photons (4.71×10⁵ J Einstein⁻¹ at 254 nm). The value of E_p^{0} was 2.1 mW cm⁻².

Text S3. The analytical methods for Br-HNMs

The concentrations of Br-HNMs were measured using a gas chromatograph (Agilent HP6890, USA) equipped with an HP-1 chromatographic column (30.0 m \times 0.32 mm \times 5.0 µm). The temperature program consisted of an initial temperature of 50 °C for 5 min, followed by ramping to 140 °C at 10 °C min⁻¹, and then ramping to 280 °C at 20 °C min⁻¹. The temperature of the injection port was set at 235 °C, and the ECD detector temperature was set at 280 °C. The injection volume (1 µL) was carried by a high purity nitrogen (99.999%) gas with a constant flow rate of 1.0 mL min⁻¹.

Text S4. The analytical methods for intermediates

The analysis of intermediates was performed using a gas chromatographquadrupole mass spectrometer (GC-MS, Agilent 7890A GC, 5975 MS) equipped with an HP-5m separation column (30 m × 0.25 mm, 0.25 μ m). The temperature program consisted of an oven temperature of 40 °C for 2 min, followed by ramping to 300 °C at 40 °C min⁻¹ and held for 5 min. The temperature of the injection port was set at 300 °C, and the detector temperature was set at 280 °C. The injection volume (1 μ L) was carried by a helium gas with a constant flow rate of 1.0 mL min⁻¹. The MS was operated in the total ion chromatogram mode and selected ion monitoring mode.

Text S5. Determination of chlorine and nitrogen

The concentrations of free chlorine and total chlorine were determined by the DPD-FAS method. The concentrations of total nitrogen (TN), ammonium nitrogen (NH_4^+ -N), and nitrate nitrogen (NO_3^- -N) were determined by alkaline potassium persulfate digestion-UV spectrophotometry, Nessler's reagent spectrophotometry, and UV spectrophotometry, respectively. The concentration of dissolved organic nitrogen (DON) was obtained by subtracting the concentrations of NH_4^+ -N, nitrite nitrogen (NO_2^- -N), and NO_3^- -N from the concentration of TN, and the concentration of NO_2^- -N was neligible because of the strong oxidative status of the reaction system.

Text S6. The calculation of bromine utilization factors (BUFs)

Bromine utilization factors (BUFs) represent the ratio of bromide ions used to form Br-HNMs to the initial concentration of bromide ions in the water samples, which can be calculated by Eq. S4.

$BUF = \frac{[BNM] + [BCNM] + [BDCNM] + 2[DBNM] + 2[DBCNM] + 3[TBNM]}{[Br^{-}]}$ (S4)

where all concentrations are on a molar basis.

Compounds	Abbreviation	Structure	Weight	pKa	Boiling point (°C, 760 mm Hg)	Solubility (mg/L, 20°C)
Chloronitromethane	CNM		95.5	7.30	122.5	32020
Dichloronitromethane	DCNM		130	5.97	107	11750
Trichloronitromethane	TCNM		164.5		112	105800
Bromonitromethane	BNM	BrO.	140.0	7.56	147.472	18680
Dibromonitromethane	DBNM	Br N ⁺ O ⁻	219.0	6.08	152.7	4577
Tribromonitromethane	TBNM	Br Br Br	298.0		155.9	227.5
Bromochloronitromethane	BCNM	Br Cl	174.5	7.28	132.7	9163
Bromodichloronitromethane	BDCNM	Br, N ⁺ , O ⁻	209.0		115.5	1007
Dibromochloronitromethane	DBCNM	CI Br Br Br	253.5		134.9	486.1

Table S1. Physical and chemical properties of nine HNMs

Table S	2. Proper	ties of t	ryptophan
---------	-----------	-----------	-----------

Table S3. The degradation of Br-HNMs by LP-UV irradiation and HO•

HNMs	$\varepsilon_{254} (\mathrm{M}^{-1} \mathrm{cm}^{-1})$	Φ ₂₅₄	$k_{\rm f}$ (×10 ⁻⁴ cm ² mJ ⁻¹)	$k_{\rm HO\bullet} (\times 10^8 {\rm M}^{-1} {\rm s}^{-1})$
BNM	136	0.109	N.A.	0.84
BCNM	N.A.	N.A.	N.A.	4.2
DBNM	1570	0.146	N.A.	4.75
BDCNM	228	0.52	5.8	1.16
DBCNM	525	0.54	13.7	1.65
TBNM	729	0.59	20.8	2.38

N.A. represents not available.

 ε is the molar absorption coefficient for HNMs (M⁻¹ cm⁻¹), Φ is the quantum yield, k_f is the photolysis rate constant, and k_{HO}. is the second-order rate constant of the reaction of HO• and HNMs^[1-5].

Molecular formulas	Structure	Weight	m/z	Ions
$\mathrm{C}_{11}\mathrm{H}_{11}\mathrm{N}_{2}\mathrm{O}_{2}\mathrm{Br}$	O HN-CH-C-OH Br CH ₂ HN-C	283	283	
C ₁₀ H ₉ N ₂ OBr	Br N-CH HO CH	253	252.9	
CH ₃ NOBr ₂	Br Br N-CH2 HO	205	205.1	
CH ₂ NOBr	$\mathbf{O}=\mathbf{N}-\mathbf{CH}_{2}$	124	125	$(M+H)^+$
CH ₂ NOBrCl ₂	Cl Br N-C-Cl HO H	195	194.9	
CHNOBr ₂	O=N-C-Br H	203	203.1	
CNOBr ₃	Br O=N-C-Br Br	282	283	$(M+H)^+$

Table S4. The information on the possible intermediates

Fig. S1. Illustration of experimental set-up. The 500 mL cylindrical quartz reactor has double layers with an inner diameter of 10.0 cm, a height of 20.0 cm, and a thickness of 1.0 cm. A low-pressure UV mercury lamp (254 nm) was used to supply UV irradiation. The average fluence rate (E_p^0) of this UV lamp was determined to be 2.1 mW cm⁻² (Text S2).

Fig. S2. Time-dependent profile of I_3^- absorbance at 352 nm

Fig. S3. Photolysis of $\rm H_2O_2$ at 254 nm

Fig. S4. Degradation efficiencies and kinetics of BNM, DBNM, TBNM, BCNM, DBCNM, and BDCNM under UV irradiation, UV+chlorine, and UV+Br⁻, respectively. Experimental conditions: $[BNM] = [DBNM] = [TBNM] = [BCNM] = [DBCNM] = [BDCNM] = 200 \ \mu g \ L^{-1}$, [free chlorine] = 1.0 mg L^{-1} , $[Br^{-}] = 1.0 \ mg \ L^{-1}$, pH=7.0, UV intensity was 2.1 mW cm⁻².

Fig. S5. Effects of free chlorine concentration on bromine utilization factors (BUFs) in the presence of Br⁻ during UV/chlorine disinfection. [Tryptophan] = 2.0 mmol/L, [free chlorine] = 0.2, 0.3, 0.6, 1.2, 1.8 mmol/L, [Br⁻] = 0.6 mmol/L, pH = 7.0.

Fig. S6. Effects of pH on bromine utilization factors (BUFs) in the presence of Br⁻ during UV/chlorine disinfection. Experimental conditions: [Tryptophan] = 2.0 mmol/L, [free chlorine] = 1.8 mmol/L, [Br⁻] = 0.6 mmol/L, pH = 6.0, 7.0, 8.0.

Fig. S7. GC/MS spectra for intermediate products during UV/chlorine disinfection in the presence of tryptophan and Br⁻. Experimental conditions: [Tryptophan] = 2.0 mmol/L, [free chlorine] = 1.8 mmol/L, [Br⁻] = 0.6 mmol/L, pH = 7.0.

Reference

- S.K. Cole, W.J. Cooper, R.V. Fox, P.R. Gardinali, S.P. Mezyk, B.J. Mincher, K.E. O'Shea, Free radical chemistry of disinfection byproducts. 2. rate constants and degradation mechanisms of trichloronitromethane (chloropicrin), Environ. Sci. Technol. 41 (2007) 863-869.
- [2] Y.-H. Chuang, K.M. Parker, W.A. Mitch, Development of predictive models for the degradation of halogenated disinfection byproducts during the UV/H₂O₂ advanced oxidation process, Environ. Sci. Technol. 50 (2016) 11209-11217.
- [3] X. Lei, Y. Lei, X. Zhang, X. Yang, Treating disinfection byproducts with UV or solar irradiation and in UV advanced oxidation processes: A review, J. Hazard. Mater. 408 (2021) 124435.
- [4] S.P. Mezyk, T. Helgeson, S.K. Cole, W.J. Cooper, R.V. Fox, P.R. Gardinali, B.J. Mincher, Free radical chemistry of disinfection-byproducts. 1. kinetics of hydrated electron and hydroxyl radical reactions with halonitromethanes in water, J. Phys. Chem. A 110 (2006) 2176-2180.
- [5] Y. Zhang, Y. Xiao, Y. Zhang, T.T. Lim, UV direct photolysis of halogenated disinfection byproducts: Experimental study and QSAR modeling, Chemosphere 235 (2019) 719-725.