Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2023

1 Supplementary materials for:

2 Evaluating the performance of integrated membrane-aerated biofilm

3 reactor (MABR) system for high-strength brewery wastewater treatment

4

5 Table S1 The effect of coagulation/flocculation process at different PAC dosages along with constant 6

PAC/50 g L ⁻¹	COD concentration	Removal efficiency	Turbidity
(mL)	(mg L ⁻¹)	(%)	(NTU)
0	8100	0	42.4
2	7000	13.6	1.5
5	6600	18.5	0.5
7	5700	29.6	0.25
10	6000	25.9	0.17
15	6000	25.9	0.73

6 mL PAM (2 g L^{-1}) dosage in each flask experiment (500 mL wastewater).

PAM/2 g L ⁻¹	COD concentration	Removal efficiency	Turbidity
(mL)	(mg L ⁻¹)	(%)	(NTU)
0	8100	0	42.4
2	6100	24.7	0.04
4	5900	27.2	0.05
6	5700	29.5	0.04
8	6400	21.0	0.23
10	6600	18.5	0.07

9 Table S2 The effect of coagulation/flocculation process at different PAM dosages along with constant 7
10 mL PAC (5%) dosage in each flask experiment (500 mL wastewater).

14 Fig. S1 (a) Ammonia (NH₄⁺-N) and (b) nitrate (NO₃⁻-N) concentrations in influent and effluent at different

15 units throughout the operational period.

36 Fig. S2 Turbidity in raw wastewater, C/F effluent (C/F), effluent at Stage 1 (S1), effluent at Stage 2 (S2)

³⁷ and effluent at Stage 3 (S3).

45 Fig. S3 Scanning electron microscopy (SEM) images of biofilm at different bioreactor units and

46 operational periods.

66 Fig. S4 Relative abundances of KEGG pathway level2 in different MABR biofilms.

68 Section S1- Initial biofilm formation and fast start-up

The seeding sludge, originated from the oxidation ditch of activated sludge stream at 69 Wulongkou wastewater treatment plant (WWTPs) (Zhengzhou, China), was inoculated into 70 the membrane surface. A thin and compact biofilm was formed on the membranes after ten 71 days. During the period, glucose (300-500 mg/L, as readily biodegradable carbon source for 72 faster growth of microorganisms) and ammonium chloride (NH₄Cl) (45-50 mg N/L) together 73 with low concentration of sodium nitrate (NaNO₃) (3.1-5.8 mg N/L) were supplied as the 74 organic carbon and inorganic nitrogen source, respectively. Subsequently, the biofilms were 75 suffered from the effluent wastewater from C/F unit for the fast start-up and acclimation 76 during the first two weeks (Stage 1) in the long-term process. 77

78 Section S2- Results of C/F optimization experiment

It can be seen that the COD removal efficiency was highest under the following C/F conditions: 7 mL PAC (50 g L⁻¹) dosage, 6 mL PAM (2 g L⁻¹) dosage for each 500 mL raw wastewater based on Fig.S1 and Fig.S2. Meanwhile, TN, TP and turbidity also decreased substantially (TN: from 42.2 mg L⁻¹ to 27.8 mg L⁻¹, TP: from 32.8 mg L⁻¹ to 9.2 mg L⁻¹, turbidity: 42.4 NTU to 0.04 NTU). Thus, the ultimate concentrations of PAC and PAM in raw brewery wastewater were defined as 700 mg PAC L⁻¹ and 25 mg PAM L⁻¹, respectively.