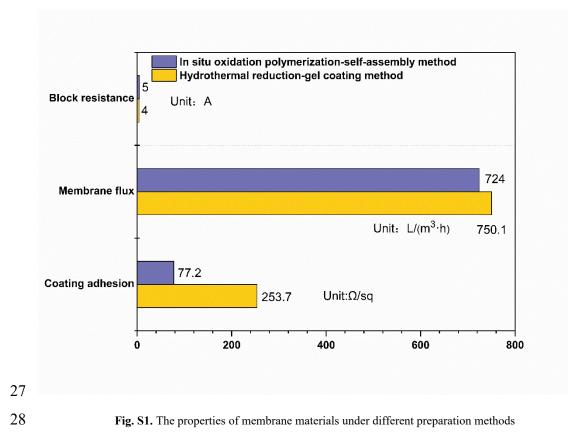
Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2023

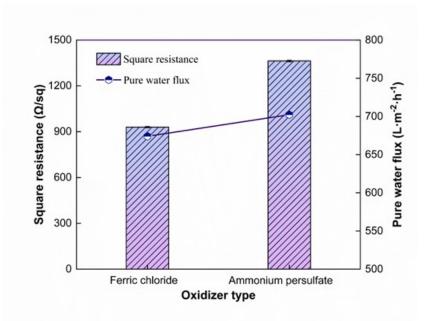
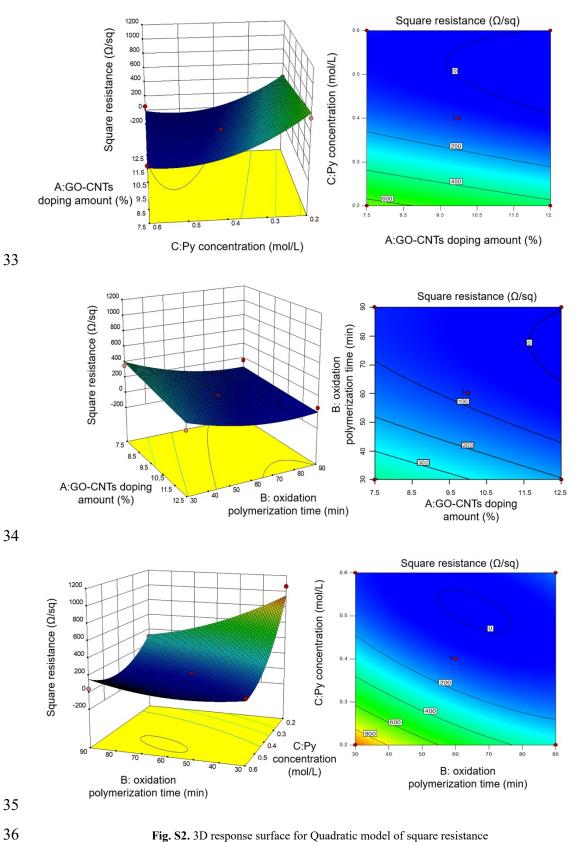
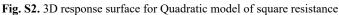
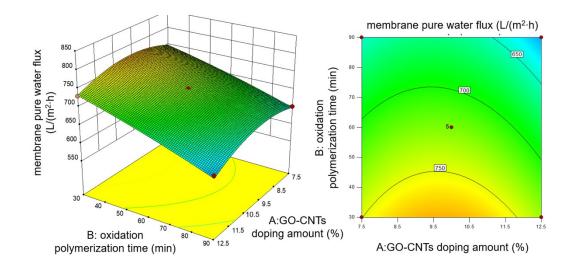

1	Supporting Information
2	
3	Preparation and application of in situ polymerization self-assembly
4	conductive ceramic membranes via graphene/carbon
5	nanotube/polypyrrole
6	Xinling Wang ^a , Chunhui Zhang ^{a*} , Zong Liu ^{a b} , Bingxu Quan ^a , Wenjing Lu ^a ,
7	Xuezhi Li ^a , Peidong Su ^{a*} , Yuanhui Tang ^a , Yuanqing Bu ^c , Rong Zhou ^c
8 9	^a College of Chemistry and Environmental Engineering, China University of Mining
10	and Technology, Beijing 100083, China;
11	^b Beijing Tianma Intelligent Control Technology Co., Ltd. Beijing 101399, China;
12	^c Key Laboratory of Pesticide Environmental Assessment and Pollution Control,
13	Nanjing Institute of Environmental Science, Ministry of Ecology and Environment,
14	Nanjing, China;
15	
16	* Correspondence: Room 607, Yifu Science & Research Building, Ding 11 Xueyuan
17	Road, 100083, Beijing, China. Tel/fax: +86 10 6233 9331; Chunhui Zhang.
18	
18	2 Tables
20	5 Figure
21	
22	

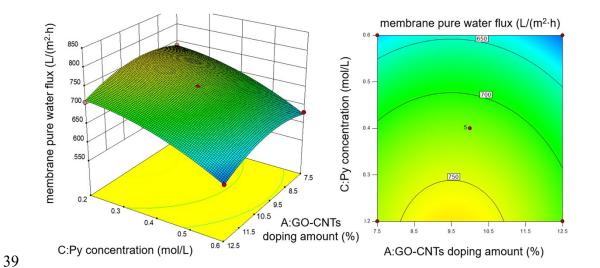
Source	Sum of Squares	df	Mean Square	F-value	Prob>F
Model	1.088E+006	9	1.209E+005	14.25	0.0010
A-GO-CNTs doping amount	37531.15	1	37531.15	4.30	0.0735
B- oxidation polymerization time	1.413E+005	1	1.413E+005	16.66	0.0047
C-Py concentration	5.496E+005	1	5.496E+005	64.80	< 0.0001
AB	3918.76	1	3918.76	0.46	0.5185
AC	5704.03	1	5704.03	0.67	0.4392
BC	1.241E+005	1	1.241E+005	14.63	0.0065
A^2	27.40	1	27.40	3.231E-005	0.9563
B^2	36323.71	1	36323.71	4.28	0.0773
C^2	1.786E+005	1	1.786E+005	21.05	0.0025

Table 1 Analysis of Variance for Quadratic model of square resistance

Source	Sum of Squares	df	Mean Square	F-value	Prob>F
Model	57869.61	9	642.96	157.99	< 0.0001
A-GO-CNTs doping amount	1262.53	1	1262.53	31.02	0.0008
B- oxidation polymerization time	23620.51	1	23620.51	580.37	< 0.0001
C-Py concentration	25969.20	1	25969.20	638.07	< 0.0001
AB	71.40	1	71.40	1.75	0.2269
AC	0.25	1	0.25	6.143E-003	0.9397
BC	0.090	1	0.090	2.211E-003	0.9638
A^2	4258.52	1	4258.52	104.63	< 0.0001
B^2	120.63	1	120.63	2.96	0.1288
C^2	2061.58	1	2061.58	50.65	0.0002

 $\label{eq:solution} Table \ S2 \ {\rm Analysis} \ {\rm of} \ {\rm Variance} \ {\rm for} \ {\rm Quadratic} \ {\rm model} \ {\rm of} \ {\rm membrane} \ {\rm pure} \ {\rm water} \ {\rm flux}$


Fig. S2 Effect of oxidant types on the properties of membrane materials.

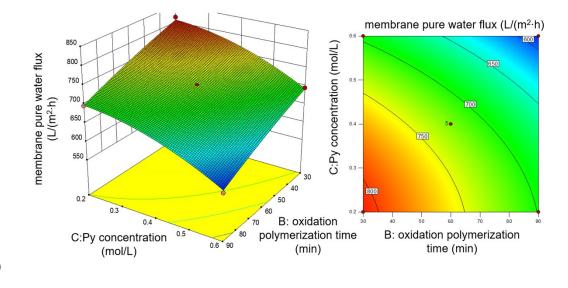
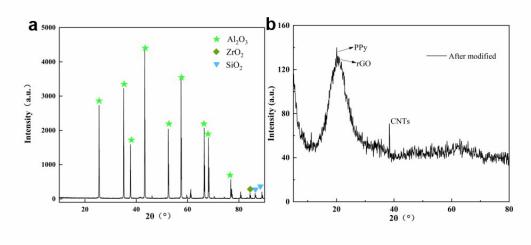
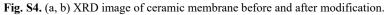




Fig. S3. 3D response surface for Quadratic model of membrane pure water flux

42 Fig. S4 shows the changes in the crystal structure of the membrane material before and after the modification. The diffraction peak in Fig. S4a is relatively sharp, 43 44 indicating the existence of a relatively well-grown crystal structure on the surface of the membrane material. The analysis by Jade software reveals that the original ceramic 45 membrane substrate surface is mainly composed of Al₂O₃ crystals and contains a small 46 47 amount of SiO₂ and ZrO₂ crystals. In the XRD spectrum of the modified conductive 48 ceramic composite membrane surface (Fig. S4b), it can be found that the broad and comprehensive diffraction peak near 2θ of 24° is the characteristic diffraction peak of 49 50 PPy, which indicates that the PPy of the membrane surface has an amorphous and amorphous structure. The weak dispersion peaks near 20 of 26° and 44° are rGO and 51 CNTs diffraction peaks [48], indicating that rGO and CNTs are successfully doped into 52 the PPy structure. After modification by rGO-CNTs-PPy, the diffraction peaks of Al₂O₃ 53 and SiO₂ disappeared, suggesting that rGO-CNTs-PPy is cross-linked with Al₂O₃ and 54 SiO₂ crystals to form a three-dimensional mesh structure. 55

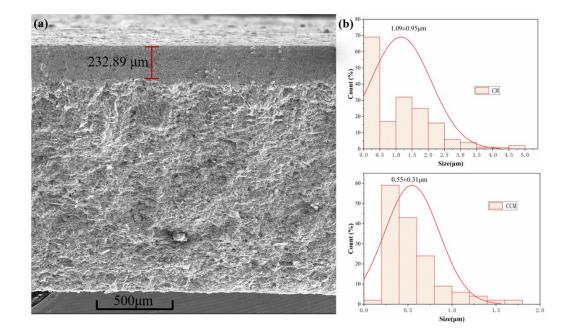


Fig. S5. (a) SEM image of modified ceramic membrane cross-section; (b) Pore size distribution of ceramic and modified ceramic membranes.