Electronic Supplementary Material (ESI) for Faraday Discussions. This journal is © The Royal Society of Chemistry 2022

Supplementary Information for:

Mechanochemical Solid-State Vinyl Polymerization with Anionic Initiator

Kwangho Yoo^{a,b,+}, Gue Seon Lee^{a,+}, Hyo Won Lee^{a,+}, Byeong-Su Kim^b, and Jeung Gon Kim^{*,a}

^a Department of Chemistry and Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea. ^b Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea.

[†] These authors are contributed equally.

Table S1. Mechanochemical radical polymerization of 4-VBP and 4-BPMA without an external initiator(Raw Data of Table 1)

Entry		D - 11-		Conv. (%) ^[a]	
	Container	Balls	HZ	4-VBP	4-BPMA
1-1	Ziroonia (10 ml.)	Zirconia 9 mm 2 ca	30	99	97
1-2		zirconia 8 mm, z ea		99	93
2-1	- Ziroonia (10 ml.)	Zirconia 9 mm 2 ca	20	37	< 1
2-2		zirconia 8 mm, z ea	20	17	< 1
3-1	- Zirconia (10 ml.)	Zirconia 10 mm 1 aa	20	75	< 1
3-2			20	66	< 1
4-1	- Zirconia (10 ml.)	Zirconia E mm 9 oa	20	< 1	< 1
4-2			20	< 1	< 1
5-1	- Zirconia (10 ml.)	Zirconia E mm 9 oa	25	< 1	< 1
5-2			25	< 1	< 1
6-1	Zirconia (10 ml.)	Zirconia 5 mm 9 oa			< 1
6-2		211 conia 5 mm, 8 ed	30	< 1	< 1

^[a] Determined by ¹H NMR spectroscopy with CH₂Br₂ as an internal standard.

Table S2. Polymerization of 4-vinyl biphenyl with s-BuLi initiator.^[a] (Raw Data of Table 2)

Entry	Monomer	Hz	[M]/[I]	Conv.(%) ^[b]	$DP_{exp}^{[c]}$	M _n ^[d] (kg/mol)	M _{w^[d] (kg/mol)}	$\boldsymbol{\mathcal{D}}^{[d]}$		
[M]/[I] variation set										
1-1		20	25	99	25	12.6	23.5	1.87		
1-2	— 4-VBP	30	25	99	25	12.6	24.7	1.96		
2-1	4.1/22	20	50	88	44	36.8	83.4	2.27		
2-2	— 4-VBP	30	50	78	39	44.5	116	2.60		
3-1	4.1/22	20	100	53	53	110	282	2.57		
3-2	— 4-VВР	30	100	55	55	99.9	254	2.54		
4-1	4 554 44	20	25	69	17	35.7	62.0	1.74		
4-2	— 4-врма	30	25	76	19	35.5	62.4	1.76		
5-1	4 554 44	20	50	54	27	42.8	76.9	1.80		
5-2	— 4-врма	30	50	45	23	41.6	75.7	1.82		
6-1	4 554 44	20	100	42	42	44.6 84.7	84.7	1.90		
6-2	— 4-врма	30	100	45	45	45.9	85.5	1.86		
	Vibration energy variation set									
1-1		20	50	88	44	36.8	83.4	2.27		
1-2	- 4-VBP	30	50	78	39	44.5	116	2.60		
2-1		25	50	51	26	48.7	133	2.73		
2-2	4-V DP	25	50	56	28	41.1	101	2.46		
3-1		20	50	17	9	47.0	210	4.46		
3-2	4-V DP	20	50	19	10	135	309	2.29		
4-1		20	50	54	27	42.8	76.9	1.80		
4-2		5U	, 50 	45	23	41.6	75.7	1.82		
5-1		25	50	< 1	-	-	-	-		
5-2	4-07 WIA		50	6	-	-	-	-		
6-1		20	50	< 1	-	-	-	-		
6-2	4-DYIVIA	nvia 20	20 50	< 1	-	-	-	-		

^[a] *s*-BuLi solution (1.4 M in cyclohexane) was used. ^[b] Determined by ¹H NMR spectroscopy with CH_2Br_2 as an internal standard. ^[c] $DP_{exp}=[M]/[I]$ X conversion. ^[d] Determined by SEC calibrated with polystyrene standards in THF at 40°C. Table S3. A raw data of the polymerization time vs. conversion (Raw data of Figure 3)^[a]

Zirconia jar (10 mL) Zirconia balls (5 mm, 8 ea) 30Hz, [M]/[I] = 50

Entry	Time	Conv.(%)	DP _{exp} ^[c]	Mn ^[d] (kg/mol)	M _w ^[d] (kg/mol)	${\cal D}^{[d]}$	
1-1	10	< 1	-	-	-	-	_
1-2	- 10	< 1	-	-	-	-	
2-1	20	< 1	-	-	-	-	-
2-2	- 20	2	-	-	-	-	
3-1	20	6	3	59.6	89.6	1.50	-
3-2	- 30	8	4	62.9	94.4	1.50	
4-1	- 40	8	4	56.0	70.1	1.25	_
4-2	- 40	13	7	55.2	75.1	1.36	
5-1	- 50	33	17	45.6	78.0	1.71	
5-2	50	33	17	45.4	77.6	1.71	
6-1	- 60	47	24	42.7	76.0	1.78	
6-2	00	56	28	45.8	84.0	1.83	
7-1	- 00	93	47	24.6	59.8	2.43	
7-2	30	93	47	24.8	62.9	2.53	_
8-1	- 120	97	49	20.4	47.3	2.32	
8-2	120	97	49	20.4	46.1	2.26	

^[a] *s*-BuLi solution (1.4 M in cyclohexane) was used. ^[b] Determined by ¹H NMR spectroscopy with CH_2Br_2 as an internal standard. ^[c] DP_{exp} =[M]/[I] X conversion. ^[d] Determined by SEC calibrated with polystyrene standards in THF at 40°C.

	Lo		Η ₂ Ο 40 μL						
	s-BuLi + 100 mg 50 equ	V.	50 min Ball milling, 30 Hz	Mixture A	40 min Ball milling, 30 Hz	Mixture B			
Entry	Time	Conv.(%)	DP _{exp} ^[b]	<i>M</i> n ^[c] (kg/mol)	M _w ^[c] (kg/mol)	Ð			
1-1	E0	43 ^[d]	22	47.3	89.6	1.89			
1-2	50	38 ^[d]	19	47.1	83.0	1.76			
2-1	E0 + 40	99 ^[e]	50	12.6	25.0	1.99			
2-2		99 ^[e]	50	12.7	25.3	1.99			

Table S4. Anion quenching experiments (Raw data of Figure 4.)^[a]

^[a] <u>s</u>-BuLi solution (1.4 M in cyclohexane) was used. ^[b] $DP_{exp}=[M]/[I]$ X conversion. ^[c] Determined by SEC calibrated with polystyrene standards in THF at 40°C. ^[d] Determined by ¹H NMR spectroscopy using conv. (%) = 1 – [(unreacted 4-BPMA)/(total products)] ^[e] Determined by ¹H NMR spectroscopy with CH₂Br₂ as an internal standard.