Designing Mixed-Metal Electrocatalyst Systems for Photoelectrochemical Dinitrogen Activation

Manpreet Kaur, Marc Walker, Steven Hindmarsh, Charlotte Bolt, Stephen York, Yisong Han, Martin R. Lees, <u>Katharina Brinkert</u>*

*<u>katharina.brinkert@warwick.ac.uk</u>

Contents

1 Nitrogen 1s XP spectra	2
Fig. S1	2
2 Grain masks used in Gwyddion to calculate maximum height distributions	3
Fig. S2	3
3 Table of XPS binding energies	4
Table S1	4
4 Magnetisation of the p-InP substrate	5
Fig. S3	5
5 XP spectrum of MoCl ₃ reagent	6
Fig. S4	6
6 Photoelectrode surface characterisation	7
Fig. S5	7
Fig. S6	8
Fig. S7	9
Fig. S8	10
Fig. S9	11
Fig. S10	12
7 Co-photoelectrodepositions of Co, Mo and Ru	13
Fig. S11	13
Fig. S12	14
8 Magnetometry data for the consecutively deposited electrodes	15
Fig. S13	15
Fig. S14	16
Fig. S15	17
Fig. S16	18
9 References	19

1 Nitrogen 1s XP spectra

Sample XP spectra for the N 1s region were obtained for consecutively deposited p-InP-Mo-Co electrodes from the Na₂MoO₄ and CoCl₂-based electrolytes and p-InP-CoMo electrodes prepared by co-photoelectrodeposition in the presence of boric acid. Both spectra do not indicate the presence of nitrogen on the photoelectrode surface.

Fig. S1 XP spectra of (a) consecutively deposited p-InP-Mo-Co photoelectrodes from Na_2MoO_4 and $CoCl_2$ electrolytes, and (b) a p-InP-CoMo photoelectrode prepared by codeposition in the presence of boric acid. Shown is the Mo 3p and N 1s region.

2 Grain masks used in Gwyddion to calculate maximum height distributions

Fig. S2 AFM images (scale bar 500 nm) masked using the watershed method to calculate the maximum height distribution data of the grains. (a) is the Na₂MoO₄ - CoCl₂ deposition, (b) is the Na₂MoO₄ - CoSO₄ deposition, (c) is the MoCl₃ - CoSO₄ deposition, (d) is the MoCl₃ - CoCl₂ deposition, (e) is the CoMo co-deposition with boric acid, (f) is CoMo co-deposition without boric acid, (g) is CoMo-Ru consecutive deposition and (h) is the CoMoRu co-deposition.

Table of XPS binding energies

Species	Oxidation state	Binding energies (eV)
Mo 3d _{5/2}	Mo ⁰	227.7 - 229.1
	Mo ²⁺	229.4
	Mo ⁴⁺	230.5 - 232.0
	Mo ⁶⁺	231.8 - 232.8
Co 2p _{3/2}	Co ⁰	777.5 - 777.9
	Co ²⁺	780.9 - 781.3
Mo 3p _{3/2}	Mo ⁶⁺ (Mo-N)	397.8
N 1s	Mo-N	398.1
	Mo-NH ₂	400.3
	Mo-NH ₃ ⁺	402.5

Table S1. XPS binding energies obtained for the Mo $3d_{5/2}$ region and component 1 of the Co $2p_{3/2}$ region.^{1,2}

4 Magnetisation of the p-InP substrate

The magnetisation vs applied field plots at 5 K and 300 K for the p-InP substrate (Fig. S13 (a)) were fitted with a simple linear field response and used to estimate the diamagnetic contribution in the magnetisation data that arises from the substrate of each film. The magnetic susceptibility, M/H, of approximately -300×10^{-9} emu/g is in reasonable agreement with previous reports.³

Fig. S3 Magnetisation *vs* applied field plots at 5 K and 300 K of p-InP (**a**) and magnetisation *vs* temperature data collected in a magnetic field of 250 Oe with the field applied in the plane of the p-InP substrate (**b**).

5 XP spectrum of MoCl₃ reagent

Fig. S4 XP spectrum of the Mo 3d component in the MoCl₃ reagent.

6 Photoelectrode surface characterisation

6.1 Consecutive photoelectrodeposition from Na₂MoO₄ - CoCl₂ electrolytes

Fig. S5 Cross-sectional TEM image with a 50 nm scale bar (a), XP spectrum of Mo 3d (b), and XP spectrum of Co $2p_{3/2}$ (c) for the p-InP-Mo-Co electrodes prepared via photoelectrodeposition. Mo deposition was realised from an aqueous solution of Na₂MoO₄ (10 mM), Na₂SO₄ (1 M), and H₃BO₃ (0.5 M) at a potential of -0.09 V *vs* RHE applied for 10 s. Subsequent Co deposition occurred from an aqueous solution of CoCl₂ (0.1 M), NaCl (0.5 M) and 2-propanol (0.5% v/v) at a potential of -0.09 V *vs* RHE applied for 3 s. An Xe arc lamp with a power density of 100 mW/cm² was used as an illumination source.

6.2 Consecutive photoelectrodeposition from Na₂MoO₄ - CoSO₄ electrolytes

Fig. S6 Cross-sectional TEM image with a 150 nm scale bar (a), XP spectrum of Mo 3d (b), and XP spectrum of Co $2p_{3/2}$ (c) for the p-InP-Mo-Co electrodes prepared via photoelectrodeposition. Mo deposition was realised from an aqueous solution of Na₂MoO₄ (10 mM), Na₂SO₄ (1 M), and H₃BO₃ (0.5 M) at a potential of -0.09 V *vs* RHE applied for 10 s. Subsequent Co deposition occurred from an aqueous solution of CoSO₄ (0.2 M), Na₂SO₄ (1 M), and H₃BO₃ (0.5 M) at a potential of -0.09 V *vs* RHE applied for 3 s. An Xe arc lamp with a power density of 100 mW/cm² was used as an illumination source.

6.3 Consecutive photoelectrodepositions from MoCl₃ - CoSO₄ electrolytes

Fig. S7 Cross-sectional TEM image with a 50 nm scale bar (a), XP spectrum of Mo 3d (b), and XP spectrum of Co $2p_{3/2}$ (c) for the p-InP-Mo-Co electrodes prepared via photoelectrodeposition. Mo deposition was realised from an aqueous solution of MoCl₃ (1 mM), NaCl (0.5 M) and 2-propanol (0.5% v/v) at a potential of -0.09 V *vs* RHE applied for 10 s. Subsequent Co deposition occurred from an aqueous solution of CoSO₄ (0.2 M), Na₂SO₄ (1 M), and H₃BO₃ (0.5 M) at a potential of -0.09 V *vs* RHE applied for 3 s. An Xe arc lamp with a power density of 100 mW/cm² was used as an illumination source.

6.4 Consecutive photoelectrodepositions from MoCl₃ - CoCl₂ electrolytes

Fig. S8 Cross-sectional TEM image with a 50 nm scale bar (a), XP spectrum of Mo 3d (b), and XP spectrum of Co $2p_{3/2}$ (c) for the p-InP-Mo-Co electrodes prepared via photoelectrodeposition. Mo deposition was realised from an aqueous solution of MoCl₃ (1 mM), NaCl (0.5 M) and 2-propanol (0.5% v/v) at a potential of -0.09 V vs RHE applied for 10 s. Subsequent Co deposition occurred from an aqueous solution of CoCl₂ (0.1 M), NaCl (0.5 M) and 2-propanol (0.5% v/v) at a potential of -0.09 V vs RHE applied for 3 s. An Xe arc lamp with a power density of 100 mW/cm² was used as an illumination source.

6.5 Co-photoelectrodeposition of CoMo in the presence of boric acid

Fig. S9 Cross-sectional TEM image with a 40 nm scale bar (a), XP spectrum of Mo 3d (b), and XP spectrum of Co $2p_{3/2}$ (c) for the p-InP-CoMo electrodes prepared via co-photoelectrodeposition. An aqueous solution of CoSO₄ (0.2 M), Na₂MoO₄ (10 mM), Na₂SO₄ (1 M), and H₃BO₃ (0.5 M) was used for the deposition and a potential of -0.09 V *vs* RHE was applied for 10 s. An Xe arc lamp with a power density of 100 mW/cm² was used as an illumination source.

6.6 Co-photoelectrodeposition of CoMo in the absence of boric acid

Fig. S10 Cross-sectional TEM image with a 20 nm scale bar (**a**), XP spectrum of Mo 3d (**b**), and XP spectrum of Co $2p_{3/2}$ (**c**) for the p-InP-CoMo electrodes prepared via co-photoelectrodeposition. An aqueous solution of CoSO₄ (0.2 M), Na₂MoO₄ (10 mM), and Na₂SO₄ (1 M) was used for the deposition and a potential of -0.09 V *vs* RHE was applied for 10 s. An Xe arc lamp with a power density of 100 mW/cm² was used as an illumination source.

7 Co-photoelectrodepositions of Co, Mo and Ru

7.1 p-InP-CoMo-Ru photoelectrodes

Fig. S11 Optical analyses of the p-InP-CoMo-Ru photoelectrodes. AFM images of the electrode surface are shown with a scale bar of 200 nm (a) and 500 nm (b) with a corresponding particle height analysis (c) across 980 nm of the electrode surface. (d) and (e) show SEM images of the surface with scale bars of 200 nm and 500 nm, respectively. (f) provides an overview of the maximum particle heights found on the electrode surface. CoMo deposits were obtained firstly via photoelectrodeposition from an aqueous solution of CoSO₄ (0.2 M), Na₂MoO₄ (10 mM), Na₂SO₄ (1 M), and H₃BO₃ (0.5 M) at a potential of -0.09 V *vs* RHE applied for 10 s. Subsequent Ru deposition occurred from an aqueous solution of RuCl₃ (0.33 mM), NaCl (0.5 M) and 2-propanol (0.5% v/v) at a potential of -0.09 V *vs* RHE applied for 5 s. An Xe arc lamp with a power density of 100 mW/cm² was used as an illumination source.

7.2 p-InP-CoMoRu photoelectrodes

Fig. S12 Optical analysis of the p-InP-CoMoRu photoelectrodes. CoMoRu deposits were obtained from co-photoelectrodeposition from an aqueous solution of $CoCl_2$ (2 mM), MoCl₃ (0.1 mM), RuCl₃ (0.1 mM), H₃BO₃ (0.1 M), and NaCl (0.5 M) at a potential of -0.09 V vs RHE applied for 5 s. AFM images of the electrode surface are shown with a scale bar of 200 nm (a) and 500 nm (b) with a corresponding particle height analysis (c) across 980 nm. (d) and (e) show SEM images of the surface with scale bars of 200 nm and 500 nm, respectively. (f) provides an overview of the maximum particle height distribution found on the electrode surface.

8 Magnetometry data for the consecutively deposited electrodes

8.1 Consecutive photoelectrodepositions from Na₂MoO₄-CoCl₂ electrolytes

Fig. S13 Magnetisation *vs* applied field plots at 5 K and 300 K with a magnetic field applied in plane (**a**) and out of plane (**b**) of the deposited film. Magnetisation vs temperature data collected in a magnetic field of 250 Oe with the field applied either parallel (**c**) or perpendicular to the plane (**d**) of the deposited film for photoelectrodepositions using Na_2MoO_4 and $CoCl_2$ electrolytes.

8.2 Consecutive photoelectrodepositions from Na₂MoO₄ - CoSO₄ electrolytes

Fig. S14 Magnetisation *vs* applied field plots at 5 K and 300 K with a magnetic field applied in plane (**a**) and out of plane (**b**) of the deposited film. Magnetisation vs temperature data collected in a magnetic field of 250 Oe with the field applied either parallel (**c**) or perpendicular to the plane (**d**) of the deposited film for photoelectrodepositions using Na₂MoO₄ and CoSO₄ electrolytes.

8.3 Consecutive photoelectrodepositions from MoCl₃ - CoSO₄ electrolytes

Fig. S15 Magnetisation *vs* applied field plots at 5 K and 300 K with a magnetic field applied in plane (**a**) and out of plane (**b**) of the deposited film. Magnetisation *vs* temperature data collected in a magnetic field of 250 Oe with the field applied either parallel (**c**) or perpendicular to the plane (**d**) of the deposited film for photoelectrodepositions using MoCl₃ and CoSO₄ electrolytes.

8.4 Consecutive photoelectrodepositions from MoCl₃ - CoCl₂ electrolytes

Fig. S16 Magnetisation *vs* applied field plots at 5 K and 300 K with a magnetic field applied in plane (**a**) and out of plane (**b**) of the deposited film. Magnetisation *vs* temperature data collected in a magnetic field of 250 Oe with the field applied either parallel (**c**) or perpendicular to the plane (**d**) of the deposited film for photoelectrodepositions using $MoCl_3 - CoCl_2$ electrolytes.

9 References

(1) P. A. Spevack and N. S. McIntyre, J. Phys. Chem., 1992, 96, 9029-9035.

(2) M. C. Biesinger, B. P. Payne, A. P. Grosvenor, L. W. M. Lau, A. R. Gerson and R. St. C. Smart, *Appl. Surf. Sci.*, 2011, 257, 2717-2730.

(3) V. V. Romanov, V. A. Kozhevnikov, V. A. Mashkov and N. T. Bagraev, *Semiconductors*, 2020, 54, 1593-1597.