# Boosting the activity of Mizoroki-Heck cross-coupling reactions with a supramolecular palladium catalyst favouring remote $\mathrm{Zn} \cdots$ pyridine interactions 

Naba Abuhafez and Rafael Gramage-Doria

e-mail: rafael.gramage-doria@univ-rennes1.fr

## Table of contents

1. General methods ..... S3
2. Synthesis of the supramolecular ligand L ..... S3
3. NMR experiments ..... S4
4. General procedure for the Mizoroki-Heck cross-coupling reactions ..... S16
5. Control experiments ..... S17
6. Preliminary kinetic study ..... S21
7. Characterization of products ..... S22
8. References ..... S26
9. NMR data ..... S27

## 1. General methods.

Solvents were purified with an MB SPS-800 purification system or dried with $\mathrm{CaH}_{2}$ and distillated prior to use. $\mathrm{CDCl}_{3}$ was filtered through alumina and stored under argon over molecular sieves. All chemicals were purchased from commercial sources and used as received. Unless otherwise specified, reactions were carried out under argon atmosphere by employing standard Schlenk and vacuum-line techniques. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded with a Bruker GPX ( 400 MHz ) spectrometer. ${ }^{1} \mathrm{H}$ NMR spectra were referenced to residual protiated solvent ( $\delta=7.26 \mathrm{ppm}$ for $\left.\mathrm{CDCl}_{3}\right) .{ }^{13} \mathrm{C}$ NMR spectra were referenced to $\mathrm{CDCl}_{3}(\delta=77.00 \mathrm{ppm})$. Abbreviations for signal couplings are: br, broad; s, singlet; d, doublet; t, triplet; q, quadruplet; p, pentuplet; hept, heptuplet; m, multiplet; dd, doublet of doublets; dt, triplet of doublets; td , doublet of triplets; tt , triplet of triplets; tdd, doublet of doublet of triplets. Coupling constants, J, were reported in hertz unit ( Hz ). The reactions were monitored by using a Shimadzu 2014 gas chromatograph equipped with an EquityTM-1 Fused Silica capillary column ( $30 \mathrm{~m} \times 0.25 \mathrm{~mm} \times 0.25 \mu \mathrm{~m}$ ) and an FID detector. Purifications were done by combiflash nextgen 300 teledyne flash chromatography.

## 2. Synthesis of the supramolecular ligand L.

With exclusion of light, 2-cyanobenzaldehyde ( $1.89 \mathrm{~g}, 14 \mathrm{mmol}$ ) was dissolved in propionic acid $(100 \mathrm{~mL})$ and the mixture heated to reflux. Pyrrole ( $1.0 \mathrm{~mL}, 14 \mathrm{mmol}$ ) was added and the thusobtained dark mixture was further heated at reflux for 2 h . The solvent was removed by vacuum distillation and the crude product was purified by chromatography ( $\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ as eluent). The fraction containing the porphyrin was evaporated to dryness and crystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ heptane to give free-base porphyrin as a dark violet solid (121 mg, $4.7 \%$ ). In air atmosphere, the free-base porphyrin $(0.16 \mathrm{mmol})$ and $\mathrm{Zn}(\mathrm{AcO})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(140 \mathrm{mg}, 0.64 \mathrm{mmol})$ were dissolved in $\mathrm{CHCl}_{3} / \mathrm{MeOH}(4: 1,25 \mathrm{~mL}$ ). The mixture was heated to reflux for 2 h , after which no free-base porphyrin was detected by TLC analysis, and evaporated to dryness. The crude reaction mixture was filtered through a short pad of alumina with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as eluent. The fraction containing L evaporated to dryness. The NMR data is in agreement with the literature. ${ }^{1}$

## 3. NMR experiments.

All experiments were performed in a dried NMR tube.

- For experiments described in Section 3.1 and 3.2., $\mathbf{L}\left(2.3 \times 10^{-3} \mathrm{mmol}\right)$ was dissolved in deuterated solvent ( 1.0 mL ). A $2.3 \times 10^{-2} \mathrm{M}$ solution of $\mathbf{1 a}$ and $\mathbf{2 a}$ in deuterated solvent $\mathrm{CDCl}_{3}$ were added and a ${ }^{1} \mathrm{H}$ NMR spectrum was recorded at room temperature.
- The competition experiment in Section 3.3. between 1a and 2a for $\mathbf{L}$ coordination was performed by dissolving an equimolar amount of $L$ and 1 a ( $2.3 \times 10^{-3} \mathrm{mmol}$ ) in 1,1,2,2tetrachloroethane $-d_{2}(0.6 \mathrm{~mL})$ and by adding $\mathbf{2 a}\left(2.3 \times 10^{-3} \mathrm{mmol}\right) .{ }^{1} \mathrm{H}$ NMR spectra were before and after 2a addition.


### 3.1. NMR binding experiment between $L$ and 1 (1:1 ratio).



Figrue S1. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right.$ ) spectra of pure 3-bromopyridine $\mathbf{1}$ (bottom), $\mathbf{L}$ (middle) and self-assembly $[\mathbf{L} \subset 1]$ in an equimolar ratio (top).


Figure S2. Variable high-temperature ${ }^{1} \mathrm{H}$ NMR (1,1,2,2-tetrachloroethane- $d_{2}, 400 \mathrm{MHz}$ ) spectra of 1 and $\mathbf{L}$ in an equimolar ratio in the range $30-120^{\circ} \mathrm{C}$ (bottom to top).


Figure S3. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY (1,1,2,2-tetrachloroethane- $d_{2}, 400 \mathrm{MHz}$ ) experiment of $\mathbf{1}$ and $\mathbf{L}$ combined in equimolar ratio.


Figure S4. DOSY (1,1,2,2-tetrachloroethane-d2, 400 MHz ) experiment of pure 1.


Figure S5. DOSY (1,1,2,2-tetrachloroethane- $d_{2}, 400 \mathrm{MHz}$ ) experiment of $\mathbf{1}$ and $\mathbf{L}$ combined in equimolar ratio.
3.2. $N M R$ binding experiment between $L$ and butylacrylate (1:1 ratio).


Figure S6. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ spectra of 1.0 equivalent of $\mathbf{2 a}$ combined with $\mathbf{L}$ solution (top) and pure $\mathbf{2 a}$ (bottom).


Figure S7. $\operatorname{DOSY}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ experiment of pure 2a.


Figure S8. DOSY $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ experiment of $\mathbf{2 a}$ and $\mathbf{L}$ combined in equimolar ratio.
3.3. Competition experiment between 1a and 2a for coordination to $L$.


Figure S9. ${ }^{1} \mathrm{H}$ NMR (1,1,2,2-tetrachloroethane- $d_{2}, 400 \mathrm{MHz}$ ) spectra of 1.0 equivalent of 1 combined with 1.0 equivalent $\mathbf{L}$ solution (bottom) and after addition of 1.0 equivalent of $\mathbf{2 a}$ (top) at room temperature. Asterisks (*) denote traces of solvents (water and heptane).


Figure S10. DOSY ( $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$ ) experiment of equimolar amounts of $\mathbf{1}: \mathbf{2 a}: \mathbf{L}$ at room temperature.


Figure S11. Variable high-temperature ${ }^{1} \mathrm{H}$ NMR (1,1,2,2-tetrachloroethane- $d_{2}, 400 \mathrm{MHz}$ ) spectra of equimolar amounts of $\mathbf{1 : 2 a}: \mathbf{L}$ in the range $40-120^{\circ} \mathrm{C}$ (bottom to top).

## 4. General procedure for heck cross-coupling reactions:

An overnight-dried Schlenk tube was filled, under an argon atmosphere, with 3-bromopyridine 1 ( $7.9 \mathrm{mg}, 4.8 \mu \mathrm{~L}, 0.05 \mathrm{mmol}, 1$ equiv.), butyl acrylate $\mathbf{2 a}$ ( $19.2 \mathrm{mg}, 21.6 \mu \mathrm{~L}, 0.15 \mathrm{mmol}, 3$ equiv.), potassium carbonate ( $20.7 \mathrm{mg}, 0.15 \mathrm{mmol}, 3$ equiv.), the supramolecular ligand $\mathrm{L}(7.8 \mathrm{mg}, 0.01$ mmol, 0.2 equiv.), $\mathrm{Pd}(\mathrm{OAc})_{2}(1.12 \mathrm{mg}, 0.005 \mathrm{mmol}, 0.1$ equiv.) and toluene ( 1 mL ). After 5 min stirring at room temperature the mixture was placed in a preheated oil bath at $130^{\circ} \mathrm{C}$ and stirred for one hour. The reaction mixture was cooled down to room temperature and further analyzed

by GC-MS.

Table S1. Reaction optimization.

| entry | $\mathrm{Pd}(\mathrm{OAc})_{2}(\boldsymbol{x}$ mol\%) | $\mathbf{L}(\boldsymbol{y} \mathbf{m o l} \%)$ | Base | Temperature $\left({ }^{\circ} \mathrm{C}\right)$ | Yield of $\mathbf{3 a}(\%)$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 5 | 10 | $\mathrm{~K}_{2} \mathrm{CO}_{3}$ | 130 | 50 |
| 2 | 5 | 10 | DIPEA | 130 | 5 |
| 3 | 5 | 10 | $\mathrm{CsCO3}$ | 130 | 12 |
| 4 | 5 | 10 | tBuOK | 130 | - |
| 5 | 5 | 10 | NaOAc | 130 | 5 |
| 6 | 5 | 10 | $2,6-$ lutidine | 130 | 7 |
| 7 | 5 | 10 | $\mathrm{~K}_{2} \mathrm{CO}_{3}$ | 80 | 21 |
| 8 | 5 | 10 | $\mathrm{~K}_{2} \mathrm{CO}_{3}$ | 100 | 26 |
| 9 | 5 | 10 | $\mathrm{~K}_{2} \mathrm{CO}_{3}$ | 120 | 32 |
| 10 | 5 | 10 | $\mathrm{~K}_{2} \mathrm{CO}_{3}$ | 140 | 60 |
| 11 | 10 | 20 | $\mathrm{~K}_{2} \mathrm{CO}_{3}$ | 130 | 78 |


|  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Entry | toluene:DMF | Yield of 3 a wi | 3'w | Relative Reactivity |
| 1 | 100:0 | 50 | 10 | 6 |
| 2 | 80:20 | 30 | 10 | 3 |
| 3 | 70:30 | 34 | 16 | 2 |
| 4 | 50:50 | 90 | 70 | 1.3 |

concerning polarity of the solvent.

## 5. Control experiments.

Control experiment without L: An overnight-dried Schlenk tube was filled, under an argon atmosphere, with 3-bromopyridine 1 ( $7.9 \mathrm{mg}, 4.8 \mu \mathrm{~L}, 0.05 \mathrm{mmol}$, 1 equiv.), butyl acrylate $\mathbf{2 a}$ (19.2 $\mathrm{mg}, 21.6 \mu \mathrm{~L}, 0.15 \mathrm{mmol}, 3$ equiv.), potassium carbonate ( $20.7 \mathrm{mg}, 0.15 \mathrm{mmol}, 3$ equiv.), $\mathrm{Pd}(\mathrm{OAc})_{2}$ ( $1.12 \mathrm{mg}, 0.005 \mathrm{mmol}, 0.1$ equiv.) and toluene ( 1 mL ). After 5 min stirring at room temperature the mixture was placed in a preheated oil bath at $130^{\circ} \mathrm{C}$ and stirred for one hour. The reaction mixture was cooled down to room temperature and further analyzed by GC-MS showing 23\%

yield formation of $\mathbf{3 a}$.

Control experiment with ZnTPP and benzonitrile: An overnight-dried Schlenk tube was filled, under an argon atmosphere, with 3-bromopyridine 1 ( $7.9 \mathrm{mg}, 4.8 \mu \mathrm{~L}, 0.05 \mathrm{mmol}, 1$ equiv.), butyl acrylate 2a ( $19.2 \mathrm{mg}, 21.6 \mu \mathrm{~L}, 0.15 \mathrm{mmol}, 3$ equiv.), potassium carbonate ( $20.7 \mathrm{mg}, 0.15 \mathrm{mmol}, 3$ equiv.), zinc(II)tetraphenylporphyrin ( $6.78 \mathrm{mg}, 0.010 \mathrm{mmol}, 0.2$ equiv.), benzonitrile ( $4.12 \mathrm{mg}, 4.1$

$\mu \mathrm{L}, 0.040 \mathrm{mmol}, 0.8$ equiv.), $\mathrm{Pd}(\mathrm{OAc})_{2}(1.12 \mathrm{mg}, 0.005 \mathrm{mmol}, 0.1$ equiv.) and toluene ( 1 mL ). After 5 min stirring at room temperature the mixture was placed in a preheated oil bath at $130^{\circ} \mathrm{C}$ and stirred for one hour. The reaction mixture was cooled down to room temperature and further analyzed by GC-MS showing 28\% yield formation of product 3a.

Control experiment with $\mathbf{H}_{\mathbf{2}} \mathrm{L}$ : An overnight-dried Schlenk tube was filled, under an argon atmosphere, with 3-bromopyridine $\mathbf{1}$ ( $7.9 \mathrm{mg}, 4.8 \mu \mathrm{~L}, 0.05 \mathrm{mmol}$, 1 equiv.), butyl acrylate $\mathbf{2 a}$ ( 19.2 $\mathrm{mg}, 21.6 \mu \mathrm{~L}, 0.15 \mathrm{mmol}, 3$ equiv.), potassium carbonate ( $20.7 \mathrm{mg}, 0.15 \mathrm{mmol}, 3$ equiv.), $\mathrm{H}_{2} \mathrm{~L}$ ( 7.14 $\mathrm{mg}, 0.01 \mathrm{mmol}, 0.2$ equiv.), $\mathrm{Pd}(\mathrm{OAc})_{2}(1.12 \mathrm{mg}, 0.005 \mathrm{mmol}, 0.1$ equiv.) and toluene ( 1 mL ). After 5 min stirring at room temperature the mixture was placed in a preheated oil bath at $130^{\circ} \mathrm{C}$ and

stirred for one hour. The reaction mixture was cooled down to room temperature and further analyzed by GC-MS showing $24 \%$ yield formation of 3 a.

Control experiment with ZnTPP: An overnight-dried Schlenk tube was filled, under an argon

atmosphere, with 3-bromopyridine $\mathbf{1}$ ( $7.9 \mathrm{mg}, 4.8 \mu \mathrm{~L}, 0.05 \mathrm{mmol}$, 1 equiv.), butyl acrylate $\mathbf{2 a}$ (19.2 $\mathrm{mg}, 21.6 \mu \mathrm{~L}, 0.15 \mathrm{mmol}, 3$ equiv.), potassium carbonate ( $20.7 \mathrm{mg}, 0.15 \mathrm{mmol}, 3$ equiv.), zinc(II)tetraphenylporphyrin ( $6.78 \mathrm{mg}, 0.010 \mathrm{mmol}, 0.2$ equiv.), $\mathrm{Pd}(\mathrm{OAc})_{2}(1.12 \mathrm{mg}, 0.005 \mathrm{mmol}$, 0.1 equiv.) and toluene ( 1 mL ). After 5 min stirring at room temperature the mixture was placed in a preheated oil bath at $130^{\circ} \mathrm{C}$ and stirred for one hour. The reaction mixture was cooled down to room temperature and further analyzed by GC-MS showing $23 \%$ yield formation of product 3 a.

Competition between ligand L and zinc(II)-salphen: An overnight-dried Schlenk tube was filled, under an argon atmosphere, with 3-bromopyridine 1 ( $7.9 \mathrm{mg}, 4.8 \mu \mathrm{~L}, 0.05 \mathrm{mmol}$, 1 equiv.), butyl acrylate 2a ( $19.2 \mathrm{mg}, 21.6 \mu \mathrm{~L}, 0.15 \mathrm{mmol}, 3$ equiv.), potassium carbonate ( $20.7 \mathrm{mg}, 0.15 \mathrm{mmol}, 3$ equiv.), the supramolecular ligand $\mathbf{L}(7.8 \mathrm{mg}, 0.01 \mathrm{mmol}, 0.2$ equiv.), zinc(II)-salphen $\mathbf{Z S}$ ( 6.04 mg , $0.01 \mathrm{mmol}, 0.2$ equiv. $), \mathrm{Pd}(\mathrm{OAc})_{2}(1.12 \mathrm{mg}, 0.005 \mathrm{mmol}, 0.1$ equiv.) and toluene ( 1 mL ). After 5 $m i n$ stirring at room temperature the mixture was placed in a preheated oil bath at $130^{\circ} \mathrm{C}$ and stirred for one hour. The reaction mixture was cooled down to room temperature and further

analyzed by GC-MS showing 5\% yield formation of product 3a.

Competition between 1a and 4-dimethylaminopyridine (DMAP): An overnight-dried Schlenk tube was filled, under an argon atmosphere, with 3-bromopyridine 1 ( $7.9 \mathrm{mg}, 4.8 \mu \mathrm{~L}, 0.05 \mathrm{mmol}$, 1 equiv.), DMAP ( $6.10 \mathrm{mg}, 0.05 \mathrm{mmol}, 1$ equiv.), butyl acrylate $\mathbf{2 a}(19.2 \mathrm{mg}, 21.6 \mu \mathrm{~L}, 0.15 \mathrm{mmol}$, 3 equiv.), potassium carbonate ( $20.7 \mathrm{mg}, 0.15 \mathrm{mmol}, 3$ equiv.), the supramolecular ligand L ( 7.8 $\mathrm{mg}, 0.01 \mathrm{mmol}, 0.2$ equiv.), zinc(II)-salphen $\mathbf{Z S}\left(6.04 \mathrm{mg}, 0.01 \mathrm{mmol}, 0.2\right.$ equiv.), $\mathrm{Pd}(\mathrm{OAc})_{2}(1.12$ $\mathrm{mg}, 0.005 \mathrm{mmol}, 0.1$ equiv.) and toluene ( 1 mL ). After 5 min stirring at room temperature the mixture was placed in a preheated oil bath at $130^{\circ} \mathrm{C}$ and stirred for one hour. The reaction mixture was cooled down to room temperature and further analyzed by GC-MS showing $42 \%$ yield formation of product 3a.

6.

Preliminary study.


[3a] (\%) versus time (h)
Figure S12. production time with L mol\%).

Figure S13. [3a] production versus time without L.

## 7. Characterization of products.

## Butyl (E)-3-(pyridin-3-yl)acrylate (3a)



Following the optimized conditions, $78 \%$ yield was estimated by GC-MS analysis. Purification was done by flash chromatography with a mixture of heptane and ethyl acetate as the eluent affording analytically pure product $3 \mathrm{a} .{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=8.74(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.59(\mathrm{dd}, \mathrm{J}=$ $4.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{dt}, J=8.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.14(\mathrm{~m}, 1 \mathrm{H}), 6.50(\mathrm{~d}$, $J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.69(\mathrm{dq}, J=8.5,6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.43(\mathrm{~h}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 0.96$ $(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=166.37,150.92,149.67,140.79,134.18$, $130.25,123.71,120.53,64.70,30.73,19.17,13.71 \mathrm{ppm}$. The data match those reported previously. ${ }^{2}$

Methyl (E)-3-(pyridin-3-yl)acrylate (3b)


Following the optimized conditions, $48 \%$ yield was estimated by GC-MS analysis. Purification was done by flash chromatography with a mixture of heptane and ethyl acetate as the eluent affording analytically pure product 3b. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=8.74(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.60(\mathrm{dd}, \mathrm{J}=$ $4.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{dt}, J=8.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{dd}, J=8.0,4.8 \mathrm{~Hz}, 1 \mathrm{H})$, $6.51(\mathrm{~d}, \mathrm{~J}=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=166.74,151.02$,
149.71, 141.15, 134.22, 130.18, 123.74, 120.05, 51.83 ppm . The data match those reported previously. ${ }^{3}$
tert-Butyl (E)-3-(pyridin-3-yl)acrylate (3c)


Following the optimized conditions, $59 \%$ yield was estimated by GC-MS analysis. Purification was done by flash chromatography with a mixture of heptane and ethyl acetate as the eluent affording analytically pure product $3 \mathrm{c} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.73(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.59(\mathrm{dd}, \mathrm{J}=$ $4.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{dt}, J=8.0,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{dd}, J=8.0,4.8 \mathrm{~Hz}, 1 \mathrm{H})$, $6.44(\mathrm{~d}, \mathrm{~J}=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.54(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=165.59,150.72$, $149.60,139.77,134.12,123.69,122.45,81.01$ ppm. The data match those reported previously. ${ }^{4}$
(Benzyl (E)-3-(pyridin-3-yl)acrylate (3d)


Following the optimized conditions, $87 \%$ yield was estimated by GC-MS analysis. Purification was done by flash chromatography with a mixture of heptane and ethyl acetate as the eluent affording analytically pure product 3 d . ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.77(\mathrm{~s}, 1 \mathrm{H}), 8.63(\mathrm{~d}, \mathrm{~J}=4.8 \mathrm{~Hz}, 1 \mathrm{H})$, 7.85 (dt, J = 8.0, 2.0 Hz, 1H), 7.74 (d, J = $16.1 \mathrm{~Hz}, 1 \mathrm{H}$ ), $7.50-7.32$ (m, 6H), 7.28 (s, 1H), 6.58 (d, J = $16.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{~s}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=166.13,151.10,149.77,141.46$, $135.79,134.24,130.14,128.67,128.42,128.39,123.77,120.11 \mathrm{ppm}$. The data match those reported previously. ${ }^{5}$
(E)-3-Styrylpyridine (3e)


Following the optimized conditions, $95 \%$ yield was estimated by GC-MS analysis. Purification was done by flash chromatography with a mixture of heptane and ethyl acetate as the eluent affording analytically pure product $\mathbf{3 e} .{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=8.69(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.45(\mathrm{dd}, \mathrm{J}=$ 4.8, 1.6 Hz, 1H), 7.79 (dt, J = 7.9, 2.0 Hz, 1H), 7.54-7.45 (m, 2H), 7.39-7.30 (m, 2H), 7.28-7.23 (m, $2 \mathrm{H}), 7.13(\mathrm{~d}, \mathrm{~J}=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ 148.70, 136.80, 133.14, 132.79, 130.99, 128.93, 128.36, 126.80, 125.05, 123.66 ppm. The data match those reported previously. ${ }^{6}$

3-(4-methoxystyryl)pyridine (3f)


Following the optimized conditions, $89 \%$ yield was estimated by GC-MS analysis. Purification was done by flash chromatography with a mixture of heptane and ethyl acetate as the eluent affording analytically pure product $3 f .{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=8.82-8.61(\mathrm{~m}, 1 \mathrm{H}), 8.54-8.37(\mathrm{~m}, 1 \mathrm{H})$, $7.80(\mathrm{dt}, J=8.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.26(\mathrm{q}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H})$, 6.99-6.84 (m, 3H), $3.84(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=159.78,148.33,148.14$, $133.37,132.40,130.38,129.49,127.96,123.52,122.73,114.26,55.35 \mathrm{ppm}$. The data match those reported previously. ${ }^{7}$

3-(4-Fluorostyryl)pyridine (3g)


Following the optimized conditions, $43 \%$ yield was estimated by GC-MS analysis. Purification was done by flash chromatography with a mixture of heptane and ethyl acetate as the eluent affording
analytically pure product $3 \mathrm{~g} .{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=8.76-8.68(\mathrm{~m}, 1 \mathrm{H}), 8.55-8.45(\mathrm{~m}, 1 \mathrm{H})$, 7.80 (dt, J = 7.9, 2.1 Hz, 1H), 7.49 (ddq, $J=10.5,5.2,3.0 \mathrm{~Hz}, 2 \mathrm{H}$ ), 7.34-7.22 (m, 1H), 7.16-7.02 (m, $3 \mathrm{H}), 6.98(\mathrm{dd}, \mathrm{J}=16.4,2.1 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=163.72,161.25$, $148.46,148.32,132.72,132.69,132.67,132.40,129.42,128.08,128.00,124.56,124.54,123.36$, $115.71,115.49 \mathrm{ppm}$. The data match those reported previously. ${ }^{8}$

N,N-dimethyl 3-(pyridin-3-yl)acrylamide (3h)


Following the optimized conditions, $26 \%$ yield was estimated by GC-MS analysis. Purification was done by flash chromatography with a mixture of heptane and ethyl acetate as the eluent affording analytically pure product $3 \mathrm{f} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.75(\mathrm{~s}, 1 \mathrm{H}), 8.55(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H})$, 7.80 (dt, J = 8.0, 1.9 Hz, 1H), 7.63 (d, J = $15.5 \mathrm{~Hz}, 1 \mathrm{H}$ ), $7.35-7.23(\mathrm{~m}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H})$, $3.17(\mathrm{~s}, 3 \mathrm{H}), 3.07(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=165.97,150.26,149.21,138.68$, $134.26,131.12,123.60,119.61,37.43,35.96$ ppm. The data match those reported previously. ${ }^{9}$

Methyl (E)-2-methyl-3-(pyridin-3-yl)acrylate (3i)


Following the optimized conditions, $50 \%$ yield was estimated by GC-MS analysis. Purification was done by flash chromatography with a mixture of heptane and ethyl acetate as the eluent affording analytically pure product $3 \mathrm{~g} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.65(\mathrm{~s}, 1 \mathrm{H}), 8.56(\mathrm{~s}, 1 \mathrm{H}), 7.71(\mathrm{~d}, \mathrm{~J}=$ $7.9 \mathrm{~Hz}, 1 \mathrm{H}$ ), $7.64(\mathrm{~s}, 1 \mathrm{H}), 7.34(\mathrm{dd}, \mathrm{J}=7.9,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 2.13(\mathrm{~d}, \mathrm{~J}=1.5 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$. The data match those reported previously. ${ }^{10}$

## 8. References.

[1] P. Zardi, T. Roisnel and R. Gramage-Doria, Chem. Eur. J., 2019, 25, 627-634.
[2] T. Sato, A. Ohno, S. Sarkar, Y. Uozumi and Y. Yamada, ChemCatChem, 2015 ,7, 2141-2148.
[3] A. El-Batta, C. Jiang, W. Zhao, R. Anness, A. Cooksy and M. Bergdahl, J. Org. Chem., 2007, 72, 5244-5259.
[4] Y. Wu, J. Zhao, J. Chen, C. Pan, L. Li and H. Zhang, Org. Lett., 2009, 11, 597-600.
[5] W. H. Miller, K. A. Newlander, M. A. Seefeld, I. N. Uzinskas, W. E., Jr. Dewolf and D. R Jakas, WO2001027103 A1 2001-04-19.
[6] E. Alacid and C. Najera, J. Org. Chem., 2008, 73, 2315-2322.
[7] P. Colbon, J. Barnard, M. Purdie, K. Mulholland, Kozhevnikov and J. Xiao, Adv. Synth. Catal., 2012, 354, 1395-1400.
[8] C.-T. Cao, L. Yan. C. Cao, J. Phys. Org. Chem., 2021, 34, e4246.
[9] M. Ye, G. Gao, J. Yu, J. Am. Chem. Soc., 2011, 133, 6964-6967.
[10] A. F. Littke, G. C. Fu, J. Am. Chem. Soc., 2001, 123, 6989-7000.
9. NMR data.







26





| 0.5 | 10.0 | 9.5 | 9.0 | 8.5 | 8.0 | 7.5 | 7.0 | 6.5 | 6.0 | 5.5 | 5.0 | 4.5 | 4.0 | 3.5 | 3.0 | 2.5 | 2.0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |






