Electronic Supplementary Material (ESI) for Faraday Discussions. This journal is © The Royal Society of Chemistry 2022

Electronic Supplementary Information

In the search for the bottlenecks of ammonia synthesis over Ru/Vulcan under ambient conditions

Mustafa Yasin Aslan¹, Ersen Mete², Deniz Üner^{1,*}

¹Department of Chemical Engineering, Middle East Technical University, Ankara 06800, Turkey ²Department of Physics, Balıkesir University, Balıkesir 10145, Turkey

(*uner@metu.edu.tr)

S.1. IR spectra of bare Vulcan and empty reactor cell

Figure S.1.(a) DRIFT spectra of bare Vulcan; (b-k) DRIFT spectra of empty sample holder between 4000 cm⁻¹ and 2900 cm⁻¹ wavenumber exposed to experimental steps

Figure S.2. IR Spectra of Liquid NH₄OH (recorded at room temperature and under atmospheric pressure)

S.3. NH₃ Molecule in Gas Phase

Table S1. Calculated vibrational IR frequencies and intensities of NH₃.

Mode	Freq. (cm^{-1})	Intensity
1	3526.6	0.022
2	3526.1	0.022
3	3401.7	0.058
4	1620.4	0.117
5	1619.2	0.117
6	1006.8	1.000
7	71.4	0.430
8	86.9	0.433

Figure S3. DFT-optimized geometry of NH₃.

S.4. N-NH Molecule in Gas Phase

Mode	Freq. (cm ⁻¹)	Intensity
1	2592.9	1.000
2	1904.7	0.300
3	1093.4	0.353
4	80.6	0.386
5	19.6	0.041
6	15.7	0.026

Table S2. Calculated vibrational IR frequencies and intensities of N-NH.

Figure S4. DFT-optimized geometry of N-NH.

S.5. H-atom Addition to N-NH (N₂H+H)

Mode	Freq. (cm^{-1})	Intensity
1	3149.2	0.567
2	1314.9	0.960
3	1303.3	1.000

Table S3. Calculated vibrational IR frequencies and intensities of HN-NH (final structure).

Figure S5. Initial (left) and DFT-optimized (right) geometries of N-NH + H.

S.6. N-NH₂ Molecule in Gas Phase

Mode	Freq. (cm ⁻¹)	Intensity
1	2854.6	0.796
2	2730.5	1.000
3	1698.7	0.079
4	1625.1	0.178
5	1284.6	0.048
6	996.1	0.309
7	66.0	0.022
8	38.8	0.098
9	13.0	0.075
10	10.9	0.030
11	7.8	0.023

Table S4. Calculated vibrational IR frequencies and intensities of N-NH₂.

S.7. H-atom Addition to N-NH₂ (N₂H₂+H)

Mode	Freq. (cm ⁻¹)	Intensity
1	3548.2	0.155
2	3384.7	0.053
3	3346.7	0.067
4	1605.0	0.062
5	1446.4	0.126
6	1220.6	0.011
7	1099.0	0.216
8	659.3	0.896
9	489.4	1.000
10	36.9	0.058
11	33.1	0.217
12	30.7	0.150
13	28.0	0.177

Table S5. Calculated vibrational IR frequencies and intensities of HN-NH₂ (final structure).

Figure S7. Initial (left) and DFT-optimized (right) geometries of N-NH₂ + H.

S.8. N-NH₃ Molecule in Gas Phase

Mode	Freq. (cm ⁻¹)	Intensity
1	3051.9	1.000
2	2994.5	0.055
3	2994.3	0.054
4	1558.0	0.038
5	1556.4	0.038
6	1415.7	0.023
7	939.3	0.110
8	936.6	0.109
9	771.6	0.221
10	40.1	0.057
11	19.4	0.105
12	22.2	0.016
13	24.4	0.166
14	43.4	0.200

Table S6. Calculated vibrational IR frequencies and intensities of N-NH₃.

Figure S8. DFT-optimized geometry of N-NH₃.

S.9. H-atom Addition to HN-NH₂ (N₂H₃ + H)

Table S7. Calculated vibrational IR frequencies and intensities of H₂N-NH₂.

Mode	Freq. (cm^{-1})	Intensity
1	3486.6	0.013
2	3480.5	0.013
3	3383.0	0.043
4	3372.2	0.171
5	1639.9	0.068
6	1625.2	0.090
7	1293.5	0.021
8	1263.6	0.035
9	1099.0	0.118
10	955.8	1.000
11	761.2	0.483
12	444.7	0.277
13	103.2	0.353
14	64.0	0.076

Figure S9. Initial (left) and DFT-optimized (right) geometries of $HN-NH_2 + H$.

S.10. HN-NH₃ Molecule in Gas Phase

Mode	Freq. (cm^{-1})	Intensity
1	3406.2	0.059
2	3326.1	0.137
3	3041.8	1.000
4	2941.0	0.120
5	1619.1	0.103
6	1577.8	0.014
8	1436.7	0.023
9	1037.3	0.119
10	1013.7	0.152
11	814.5	0.224
12	372.5	0.273
13	58.1	0.027
14	37.2	0.158
15	25.2	0.099

Table S8. Calculated vibrational IR frequencies and intensities of HN-NH₃.

Figure S10. DFT-optimized geometry of HN-NH₃.

S.11. Ru-NH₃ Molecule in Gas Phase

Mode	Freq. (cm ⁻¹)	Intensity
1	3390.6	0.070
2	3390.4	0.070
3	3311.3	0.388
4	1573.1	0.124
5	1570.5	0.124
6	1119.1	1.000
7	573.2	0.032
8	571.7	0.032
9	467.7	0.024
10	58.0	0.015
11	30.9	0.055
12	21.1	0.072

Table S9. Calculated vibrational IR frequencies and intensities of Ru-NH₃.

Figure S11. DFT-optimized geometry of Ru-NH₃.

S.12. Ru-N-NH₃ Structure in Gas Phase

Table S10. Calculated vibrational IR frequencies and intensities of Ru-N-NH₃ (final structure).

Mode	Freq. (cm ⁻¹)	Intensity
1	3518.6	0.011
2	3516.9	0.011
3	3399.3	0.060
4	1624.9	0.051
5	1621.2	0.052
6	1205.5	0.288
7	1039.1	1.000
8	71.1	0.217
9	31.8	0.010
10	16.1	0.023
11	15.4	0.014
12	9.9	0.006
13	28.9	0.020
14	75.0	0.123
15	82.5	0.136

Figure S12. Initial (left) and DFT-optimized (right) geometries of Ru-N-NH₃.

S.13. Ru-N₂H₄ (Ru+H₂N-NH₂) Structure

Table S11. Calculated vibrational IR frequencies and intensities of Ru-N₂H₄ (final structure).

Mode	Freq. (cm ⁻¹)	Intensity
1	3147.5	0.156
2	3130.0	1.000
3	3115.0	0.132
4	1499.4	0.047
5	1488.3	0.125
6	1063.1	0.022
7	1001.6	0.049
8	970.1	0.015
9	961.9	0.006
10	553.4	0.005
11	510.3	0.024
12	355.6	0.005

Figure S13. Initial (left) and DFT-optimized (right) geometries of Ru-N₂H₄.

S.14. H₂O-NH₃ Structure in Gas Phase

Table S12. Calculated vibrational IR frequencies and intensities of H₂O-NH₃ (final structure).

Mode	Freq. (cm ⁻¹)	Intensity
1	3801.4	0.055
2	3529.5	0.013
3	3526.8	0.014
4	3406.4	0.018
5	3352.8	1.000
6	1631.0	0.004
7	1619.4	0.024
8	1608.1	0.063
9	1059.9	0.164
10	752.5	0.095
11	483.4	0.100
12	214.5	0.055
13	198.1	0.044
14	192.3	0.016
15	75.2	0.105
16	22.9	0.011
17	12.3	0.009

Figure S14. Initial (left) and DFT-optimized (right) geometries of H_2O-NH_3 .