Electronic Supplementary Material (ESI) for Food & Function. This journal is © The Royal Society of Chemistry 2022

Supplementation with Ginseng, Lilii Bulbus, and Poria induces alterations in the serum metabolic profile of healthy adults

Fangzhi Xie<sup>a</sup>, Liang Chen<sup>b</sup>, Shuna Jin<sup>c</sup>, Feng Qiu<sup>a</sup>, Juntao Kan<sup>b</sup>, Yujie Li<sup>b</sup>, Hanjin Wang<sup>a</sup>, Min Huang<sup>a</sup>, Xiaojie Sun<sup>a</sup>, Jun Du<sup>b</sup>, Yuanyuan Li<sup>a</sup>

- a. Key Laboratory of Environment and Health (HUST), Ministry of Education &
   Ministry of Environmental Protection, School of Public Health, Tongji Medical
   College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- b. Nutrilite Health Institute, Amway Innovation & Science, Shanghai, China
- c. College of Basic Medicine, Hubei University of Chinese Medicine, 16 Huangjiahu West Road, Hongshan District, Wuhan, China

## **Contents**

| Supplementary Material 1. The inclusion and exclusion criteria of              |
|--------------------------------------------------------------------------------|
| population study designS-1                                                     |
| Supplementary Material 2. Herbal preparation and dispensing                    |
| Supplementary Material 3. Details of metabolomics analysis methodS-3           |
| Supplementary Material 4. Serum biomarker measurementsS-4                      |
| Figure S1. Scoring plots for PCA model of before- and after- placeboS-5        |
| Figure S2. Scoring plots for 999-time permutation validation test for OPLS-    |
| DA models of GLP                                                               |
| Table S1. Identification result of chemical composition of GLP                 |
| Table S2. Difference in serum biomarkers before and after GLP                  |
| administration group at baseline                                               |
| Table S3. OPLS-DA Model Parameters Table    S-9                                |
| Table S4. The correlation coefficients of differential metabolites with TNF-α, |
| SOD, and TCS-10                                                                |
| Table S5. Levels of 14 serum metabolites in placebo and intervention group     |
| $[mean \pm SD] \dots S-11$                                                     |

# Supplementary Material 1. The inclusion and exclusion criteria of population study design

The inclusion criteria were: (1) healthy volunteers aged 18-35 years; (2) local residence in Wuhan within one year after the trial begins; (3) be able to participate in normal activities; (4) those who had not renovated their living rooms in the previous two years and would not do so in the coming year; (5) be willing to cooperate with the experimental study, provide biological specimens, give informed consent, and voluntarily participate in the study. Exclusion criteria: (1) psychopath; (2) inability to cooperate with the experimental study or the investigator due to dysgnosia or behavioral disorder; (3) suffering from systemic diseases (e.g., pneumonia, tuberculosis, atherosclerosis, and other immune system diseases that the investigators consider unsuitable for the study; (4) idiopathic sleep disorder >1 night/week; (5) alcohol consumption (>1 drink per week); (6) suffering from heart disease, chronic obstructive pulmonary disease, asthma, and malignancy; (7) inability to participate in normal activities.

#### Supplementary Material 2. Herbal preparation and dispensing

GLP was prepared as chewable tablets consisting of 200 mg of crude Ginseng powder containing 2% total ginsenosides, 120 mg of aqueous extract of Lilii bulbus containing ≥0.30% regaloside B and 50 mg of aqueous extract of Poria containing ≥10% crude polysaccharide. The detailed active ingredients of GLP were determined by UPLC mass spectrometry (Table S1). The placebo consisted of maltodextrin, sorbitol, caramel coloring and artificial ginseng flavoring, which were identical to GLP in color, shape, size and packaging. Subjects took two tablets/twice-daily of GLP or placebo as instructed. Both GLP and placebo were manufactured in a Good Manufacturing Practice pilot plant (Amway, Guangzhou, China) according to specific quality assurance instructions for the active compounds, microorganisms, heavy metals, and pesticide residues. The study staff and participants were not aware of the random assignment.

#### Supplementary Material 3. Details of metabolomics analysis method

Before analysis, all serum samples were thawed at 4 °C. Then, each 100 mL of serum was mixed with 250 mL of acetonitrile (ACN) and 50 mL of internal standard (2 mg/mL fexofenadine). The extract was mixed vigorously for 5 min, followed by a 10 min centrifugation by 12000 rpm in 4 °C to remove precipitated proteins. The untargeted metabolomic analysis was conducted with Waters Xevo G2-XS ultra-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS/MS, Waters, Milford, Massachusetts) with ACQUITY UPLC BEH C18 column (2.1×100 mm, 1.8 mm, Waters Corporation). The temperature of the column stayed at 40 °C with a sample injection volume of 2 mL. The mobile phase A was water with 0.1% formic acid, and the mobile phase B was acetonitrile. The programmed gradient was: 1) 0 min, 5% (B); 2) 15 min, 95% (B); 3) 20 min, 95% (B); 4) 21 min, 5% (B); 5) 25 min, 5% (B). The mass spectrometer was performed and data was obtained with MSEmode. The parameters were as follows: capillary voltage, 3000 V; cone voltage, 30 V; source temperature, 200°C; desolvation gas flow, 800 L/h; scan interval, 100 ms; scan range, at 50-1500 m/z (mass-to-charge ratio). Besides, enkephalin was used to correct high-resolution molecular mass during acquisition, which cold ensure accurate mass measurement. All samples were assigned at random. QC samples were made by mixing equal volumes of serum from 20 random samples of participants in the present study. QC samples and blank samples were injected every ten samples in the analytical sequence to provide a set of data for repeatability assessment. The CV of peak intensity ranged from 2.88% to 14.4%. The accepted mass

difference was set as 10 ppm during the search.

### Supplementary Material 4. Serum biomarker measurements

As mentioned in the text, we tested a total of 10 serum biomarkers of oxidative stress and inflammation. Interleukin-1 (IL-1), interleukin-6 (IL-6) and tumor necrosis factor (TNF- $\alpha$ ), and Paraoxonase1 (PON1) were measured by enzyme-linked immunosorbent assay; total antioxidant capacity (TAC), glutathione peroxidase (GSH-PX) and  $\gamma$ -glutamyl transpeptidase ( $\gamma$ -GT) were measured by colorimetric method; Superoxide dismutase (SOD) was measured by hydroxylamine method; Triglyceride (TG), and Triglyceride (TC) were performed using enzymatic methods.

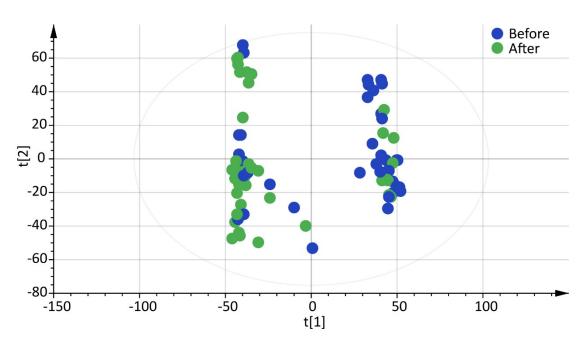



Figure S1. Scoring plots for principal component analysis (PCA) model of beforeand after- placebo.

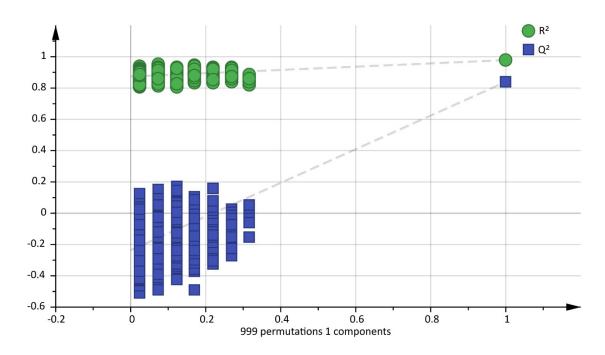



Figure S2. Scoring plots for 999-time permutation validation test for OPLS-DA models of GLP.

Abbreviations: OPLS-DA, orthogonal partial least squares discrimination analysis.

Table S1. Identification result of chemical composition of GLP.

| NO       | RT (min)       | M/Z<br>Actual<br>value | M/Z<br>Theoretical<br>value | Formula                                         | Active ingredient             | $\mathrm{MS}^2$ data                                                | Medicinal herbs              |
|----------|----------------|------------------------|-----------------------------|-------------------------------------------------|-------------------------------|---------------------------------------------------------------------|------------------------------|
| 1        | 0.91           | 341.1095               | 341.1089                    | C <sub>12</sub> H <sub>22</sub> O <sub>11</sub> | Sucrose                       | 179.0567; 161.0471; 143.0356; 119.0357                              | Poria                        |
| 2        | 1.51           | 191.0202               | 191.0197                    | $C_6H_8O_7$                                     | Citric acid                   | 129.0189; 111.0089; 87.0087; 85.0294; 67.0186; 57.0344              | Poria                        |
| 3        | 1.94           | 243.0623               | 243.0623                    | $C_9H_{12}N_2$ $O_6$                            | L-uridine                     | 200.0526; 127.8685; 110.0243; 82.0288                               | Poria                        |
| 4        | 3.61           | 142.0516               | 142.051                     | $C_6H_9NO_3$                                    | /                             | 142.0511                                                            | Poria                        |
| 5        | 5.84           | 232.119                | 232.119                     | $C_{10}H_{19}N$ $O_5$                           | /                             | 146.0819; 102.0562; 86.0605; 84.0454; 71.0498                       | Poria                        |
| 6        | 8.19           | 415.1243               | 415.1246                    | $C_{18}H_{24}O_{11}$                            | Regaloside C                  | 179.0354; 161.0244; 135.0451                                        | Lilii Bulbus                 |
| 7        | 8.57           | 399.1298               | 399.1297                    | $C_{18}H_{24}O_{10}$                            | Regaloside A                  | 163.0401; 145.0302; 119.0507; 117.0346; 59.0138                     | Lilii Bulbus                 |
| 8<br>9   | 10.09<br>11.23 | 399.1302<br>429.1412   | 399.1297<br>429.1402        | $C_{18}H_{24}O_{10}$ $C_{19}H_{26}O_{11}$       | Regaloside D<br>Regaloside F  | 163.0399; 145.0291; 119.0501<br>429.1403; 193.0506; 175.0400        | Lilii Bulbus<br>Lilii Bulbus |
| 10       | 13.22          | 457.1359               | 457.1352                    | $C_{20}H_{26}O_{12}$                            | Regaloside E                  | 415.1249; 397.1144; 179.0354; 161.0251; 135.0460; 59.0144           | Lilii Bulbus                 |
| 11       | 16.09          | 441.1412               | 441.1402                    | $C_{20}H_{26}O_{11}$                            | Regaloside B                  | 399.1324; 381.1232; 163.0518; 145.0308; 119.0508; 117.0355; 59.0138 | Lilii Bulbus                 |
| 12       | 16.76          | 441.1408               | 441.1402                    | $C_{20}H_{26}O_{11}$                            | 4-Acetyl<br>Regaloside D      | 399.1302; 381.1198; 261.0781; 163.0393; 145.0286                    | Lilii Bulbus                 |
| 13       | 19.94          | 1007.547<br>8          | 1007.5432                   | $C_{48}H_{82}O_{19}$                            | 20-gluco-<br>ginsenoside Rf   | 1007.5540; 961.5434; 799.5075; 637.4490; 475.342                    | Ginseng                      |
| 14       | 20.65          | 977.5366               | 977.5327                    | $C_{47}H_{80}O_{18}$                            | Notoginsenoside<br>R1         | 977.5509; 931.5279; 799.4854                                        | Ginseng                      |
| 15       | 21.89          | 845.4924               | 845.4904                    | $C_{42}H_{72}O_{14}$                            | Ginsenoside Rg1               | 799.4898; 637.4347; 619.4236; 475.3807; 179.0565; 161.0445          | Ginseng                      |
| 16       | 22.04          | 991.5522               | 991.5483                    | $C_{48}H_{82}O_{18} \\$                         | Ginsenoside Re                | 945.5561; 799.4943; 783.5009; 637.4403; 475.3876                    | Ginseng                      |
| 17<br>18 | 24.76<br>24.92 | 947.4857<br>949.5026   | 947.4857<br>949.5014        | $C_{45}H_{74}O_{18}$ $C_{45}H_{76}O_{18}$       | Protobioside                  | 755.4265; 739.4282<br>903.4967; 757.4385; 595.3824                  | Lilii Bulbus                 |
| 19       | 26.55          | 845.4926               |                             | $C_{42}H_{72}O_{14}$                            | Ginsenoside Rf                | 845.4915,799.4852,637.4312,475.3778                                 | Ginseng                      |
| 20       | 27.36          | 815.4803               | 815.4798                    | $C_{41}H_{70}O_{13}$                            | Isomer of notoginsenoside R2  | 769.4818; 637.4337; 475.3806; 161.0464                              | Ginseng                      |
| 21       | 28.36          | 1153.604<br>9          | 1153.6011                   | $C_{54}H_{92}O_{23}$                            | Ginsenoside Rb1               | 1107.6036; 945.5470; 783.4812; 621.4299; 459.3779                   | Ginseng                      |
| 22       | 28.5           | 683.4379               | 683.4376                    | $C_{36}H_{62}O_9$                               | Ginsenoside Rh1               | 683.4397; 637.4343; 475.2761; 391.2934                              | Ginseng                      |
| 23       | 29.17          | 1123.593<br>7          | 1123.5906                   | $C_{53}H_{90}O_{22}$                            | Ginsenoside Rc                | 1077.5951; 945.5486; 783.5000                                       | Ginseng                      |
| 24       | 29.61          | 955.4931               | 955.4908                    | $C_{48}H_{76}O_{19}$                            | Ginsenoside Ro                | 793.4421; 731.4407; 569.3839; 523.3804                              | Ginseng                      |
| 25       | 29.89          | 1165.605<br>2          | 1165.6011                   | $C_{55}H_{92}O_{23}$                            | Ginsenoside Rs1 or isomer     | 1119.5945; 1077.5769; 1059.5705                                     | Ginseng                      |
| 26       | 30.06          | 1123.594<br>7          | 1123.5906                   | $C_{53}H_{90}O_{22}$                            | Ginsenoside Rb2               | 1077.5965; 945.5510; 915.5387; 783.5034; 149.0459                   | Ginseng                      |
| 27       | 30.81          | 1165.602<br>5          | 1165.6011                   | $C_{55}H_{92}O_{23}$                            | Ginsenoside Rs1 or isomer     | 1119.6023; 1077.5999; 1059.5777                                     | Ginseng                      |
| 28       | 31.31          | 1195.614<br>7          | 1195.6117                   | $C_{56}H_{94}O_{24}$                            | Quinquenoside<br>R1 or isomer | 1149.6114; 1107.5923; 1089.5809; 945.5369                           | Ginseng                      |
| 29       | 32.08          | 991.5527               | 991.5483                    | $C_{48}H_{82}O_{18}$                            | Ginsenoside Rd                | 945.5557; 783.4979; 621.4441; 161.0457;<br>459.3830                 | Ginseng                      |
| 30       | 32.4           | 1165.605<br>8          | 1165.6011                   | $C_{55}H_{92}O_{23}$                            | Ginsenoside Rs1 or isomer     | 1119.5968; 1077.5796; 1059.5753                                     | Ginseng                      |
| 31       | 32.64          | 793.4377               | 793.438                     | $C_{42}H_{66}O_{14}$                            | Chikusetsusaponi<br>n Iva     | 793.4398; 673.3938; 631.3876; 569.3860                              | Ginseng                      |
| 32       | 33.43          | 1165.605<br>5          | 1165.6011                   | $C_{55}H_{92}O_{23}$                            | Ginsenoside Rs1 or isomer     | 1119.5978; 1077.5848; 1059.5715; 945.5447                           | Ginseng                      |
| 33       | 35.24          | 1033.560<br>7          | 1033.5589                   | $C_{50}H_{84}O_{19}$                            | Quinquenoside III or isomer   | 987.5667; 945.5516; 927.5426; 765.4833                              | Ginseng                      |
| 34       | 36.63          | 665.4301               | 665.427                     | $C_{36}H_{60}O_{8}$                             | Ginsenoside Rh4 or isomer     | 619.426; 161.0460                                                   | Ginseng                      |
| 35       | 36.81          | 793.4413               | 793.438                     | $C_{42}H_{66}O_{14}$                            | Zingibroside R1               | 793.4362; 613.3902; 569.3817; 455.3568                              | Ginseng                      |

| 36 | 37.13 | 829.499  | 829.4955 | $C_{42}H_{72}O_{13}$ | Ginsenoside Rg3           | 829.4944; | 783.4881; | 621.4381; 459.3887 | Ginseng |
|----|-------|----------|----------|----------------------|---------------------------|-----------|-----------|--------------------|---------|
| 37 | 38.53 | 811.489  | 811.4849 | $C_{42}H_{70}O_{12}$ | Ginsenoside Rg5 or isomer | 765.4850; | 603.4311  |                    | Ginseng |
| 38 | 38.66 | 811.4875 | 811.4849 | $C_{42}H_{70}O_{12}$ | Ginsenoside Rg5 or isomer | 765.4901; | 603.4334; | 161.0463           | Ginseng |

Table S2. Difference in serum biomarkers before and after GLP administration group at baseline.

| Serum biomarkers      | Before-GLP           | After-GLP group      | Pa     |
|-----------------------|----------------------|----------------------|--------|
|                       | group                |                      |        |
| IL-1β, pg/mL          | $2.89 \pm 0.83$      | $3.24{\pm}1.08$      | 0.0859 |
| IL-6, pg/mL           | $3.43 \pm 1.30$      | $2.96\pm1.47$        | 0.0749 |
| TNF- $\alpha$ , pg/mL | $1.12\pm0.62$        | $0.83 \pm 0.52$      | 0.0034 |
| SOD, U/mL             | $325.15\pm141.88$    | $434.05\pm150.36$    | 0.0005 |
| GSH-PX, mU/mL         | $1178.99 \pm 333.64$ | $1063.06 \pm 335.80$ | 0.0894 |
| TAC, U/mL             | $15.62 \pm 4.48$     | $15.68\pm4.96$       | 0.9513 |
| PON1, ng/mL           | $623.83\pm295.30$    | $1209.62\pm322.77$   | <.0001 |
| TC, mmol/L            | $4.24\pm0.66$        | $4.39\pm0.72$        | 0.0287 |
| TG, mmol/L            | $0.78 \pm 0.29$      | $0.71 \pm 0.21$      | 0.0731 |
| γ-GT, U/L             | $15.44 \pm 5.06$     | $15.02\pm5.47$       | 0.0987 |

Abbreviations:  $\gamma$ -GT,  $\gamma$ -glutamyl transpeptidase; GSH-PX, Glutathione Peroxidase; IL-1 $\beta$ , Interleukin1 $\beta$ ; IL-6, Interleukin-6; PON1, paraoxonase1; SOD, Superoxide Dismutase; Tumor necrosis factor- $\alpha$ , TNF- $\alpha$ ; T-AOC, total antioxidant capacity; TC, Total cholesterol; TG, Total triglycerides

<sup>a</sup>compared with the after-GLP group and obtained from independent Student's t test for continuous normal distribution data or independent Wilcoxon signed rank test for continuous non-normal distribution data.

**Table S3. OPLS-DA Model Parameters Table** 

| Model Type | R2X(cum) | R2Y(cum) | Q2(cum) |  |
|------------|----------|----------|---------|--|
| OPLS-DA    | 0.219    | 0.978    | 0.839   |  |

Table S4. The correlation coefficients of differential metabolites with TNF- $\alpha$ , SOD, and TC.

| Metabolites                   | TNF-α | SOD   | TC    |
|-------------------------------|-------|-------|-------|
| Tryptophan                    | -0.07 | 0.23  | 0.27  |
| 5-hydroxytryptophol           | 0.30  | -0.31 | -0.15 |
| Palmitoylcarnitine            | 0.24  | -0.25 | -0.16 |
| Hydroxyhexadecanoylcarnitine  | -0.21 | 0.30  | 0.08  |
| 12-oxo-leukotriene B4         | -0.25 | 0.32  | 0.08  |
| Prostaglandin E2 ethanolamide | 0.22  | -0.31 | -0.04 |
| 20-dihydroxyleukotriene B4    | 0.25  | -0.21 | -0.05 |
| Leukotriene E4                | 0.18  | -0.25 | -0.19 |
| PC (12:0/14:0)                | -0.16 | 0.37  | 0.22  |
| LysoPA(16:0)                  | -0.15 | 0.36  | 0.18  |
| cPA(18:0)                     | 0.17  | -0.18 | -0.09 |
| Phytosphingosine              | 0.27  | -0.35 | -0.10 |
| Pantetheine 4'-phosphate      | 0.29  | -0.32 | -0.13 |
| Dihydroceramide               | 0.23  | -0.21 | -0.16 |

Table S5. Levels of 14 serum metabolites in placebo and intervention group [mean  $\pm$  SD]. (n=82)

| Metabolites                   | No. | before-GLP group      | after-GLP group       | before-placebo       | after-placebo         |
|-------------------------------|-----|-----------------------|-----------------------|----------------------|-----------------------|
| Tryptophan                    | C1  | 31198.64±17295.70     | 50823.74±13987.10     | 27080.02±13400.56    | 37536.71±20373.05     |
| 5-hydroxytryptophol           | C2  | 1634.66±375.10        | 450.24±127.77         | 1540.35±435.25       | 1719.62±244.55        |
| Prostaglandin E2 ethanolamide | C3  | 3837.35±1770.55       | 415.05±238.54         | 2998.02±1212.11      | 3228.48±947.55        |
| Phytosphingosine              | C4  | 827.49±132.28         | 1680.27±408.35        | 838.53±373.12        | 842.99±364.74         |
| Pantetheine 4'-phosphate      | C5  | 692.91±89.83          | 1820.78±242.80        | 854.09±390.96        | 879.03±319.67         |
| Dihydroceramide               | C6  | 8021.79±2437.47       | $3664.02 \pm 1908.46$ | 5880.03±1558.81      | $6314.08 \pm 1541.94$ |
| 12-oxo-leukotriene B4         | C7  | 9265.75±4567.13       | 3637.84±784.31        | 11368.59±5985.03     | 9633.35±4898.85       |
| PC (12:0/14:0)                | C8  | 31228.99±9356.34      | 13060.52±6557.68      | 29662.92±14100.85    | 25357.59±10769.92     |
| Palmitoylcarnitine            | C9  | $2088.36 \pm 1435.99$ | 11145.37±5687.36      | $2407.84 \pm 679.79$ | 2330.33±575.07        |
| Hydroxyhexadecanoylcarnitine  | C10 | $3058.20\pm2746.56$   | 11528.03±5746.28      | 2799.20±463.07       | $2686.34 \pm 605.57$  |
| LysoPA(16:0)                  | C11 | 16137.70±13671.66     | 2348.95±1354.04       | 13261.12±4594.66     | 11771.495029.66       |
| cPA(18:0)                     | C12 | 12606.62±2597.63      | $3660.82 \pm 996.38$  | 11230.35±2417.82     | 10611.05±2715.50      |
| 20-dihydroxyleukotriene B4    | C13 | 11141.29±2827.04      | 1651.10±336.55        | 13513.22±2634.93     | $12164.70\pm1648.00$  |
| Leukotriene E4                | C14 | $2326.06{\pm}1074.71$ | 599.86±249.04         | 1732.20±572.94       | 1553.93±392.62        |