An oral hydrogel carrier for delivering resveratrol into intestinesspecific released with high encapsulation efficiency and loading capacity based on structure-selected alginate and pectin

Nan Zhang ${ }^{\text {a }}$, Chuanbo Zhang ${ }^{\text {b }}$, Jiaming Liu ${ }^{\text {b }}$, Chaozhong Fan ${ }^{\text {a }}$, Jinjin Yin*b, Tao Wu*a

${ }^{\text {a }}$ State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science \& Technology, Tianjin, 300457, China
${ }^{\mathrm{b}}$ College of Chemical Engineering and Materials Science, Tianjin University of Science \& Technology, Tianjin, 300457, China

Corresponding Author: *Jinjin Yin, yinjinjin@tust.edu.cn; Tao Wu, wutaoxx@gmail.com

A
A (a)

(b)
(b)

(a)

(a)
(b)

D

(a)
(b)

(c)

E

(b)

(c)

Fig. S1. Physical properties and drug release of beads. The EE\%, LC, hardness and elasticity of beads made by different mass ratios of ALG and LMP (A), concentration of raw materials (B), concentration of crosslinker (C), cross-linking time (D) and concentration of RES (E), and in vitro release profile of RES.

Where, $0 \sim 2 \mathrm{~min}$: simulated oral digestion, $2 \sim 120 \mathrm{~min}$: simulated gastric digestion, 120-360 min: simulated small intestine digestion, and 360~480 min: simulated colonic digestion.

Note: Each digestion stage is separated by a vertical dotted line.

Fig. S2. Perturbation plot for interaction among influence factors on EE\%. Type of factor coding: Actual. Actual factors include: the concentration of raw materials (factor M), crosslinking agent CaCl_{2} (factor N), and RES (factor P).

Table S1 Box-Behnken factor level and process design

Factors	level		
	-1	0	1
M	1%	2%	3%
N	3%	4%	5%
P	$0.2 \mathrm{~g} / 10 \mathrm{~mL}$	$0.3 \mathrm{~g} / 10 \mathrm{~mL}$	$0.4 \mathrm{~g} / 10 \mathrm{~mL}$

Where M, N, and P are the concentration of raw materials, crosslinking agent CaCl_{2}, and RES, respectively.

Table S2 Experimental plan for optimization of EE\% using CCD.

group	Concentration of raw materials $(\%)$	Concentration of CaCl_{2} $(\%)$	Concentration of RES $(\mathrm{g} / 10 \mathrm{~mL})$	EE $(\%)$
1	2	5	0.2	89.82
2	1	4	0.4	67.22
3	3	3	0.3	84.79
4	1	3	0.3	65.00
5	2	4	0.3	91.37
6	2	4	0.3	87.73
7	3	4	0.4	91.81
8	2	5	0.3	86.53
9	1	5	0.3	64.21
10	2	3	0.4	90.04
11	3	3	0.3	85.21
12	2	4	0.2	83.95
13	2	4	0.4	86.33
14	1	4	0.2	63.67
15	2		0.3	89.99
16	2	0.3	89.95	
17	3		0.2	83.93

