Hypoglycemic activity in vitro and vivo of a water-soluble polysaccharide from

Astragalus membranaceus

Xiaoxia Chen^a, Chun Chen^{a, b, c, d*}, and Xiong Fu^{a, b, c, d**}

^a SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China

^b Guangzhou Institute of Modern Industrial Technology, Nansha, 511458, China

^c Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, China

^d Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China

Corresponding author

*Chun Chen: chenc@scut.edu.cn

**Xiong Fu: lfxfu@scut.edu.cn

		SOD		CAT		MDA		GSH	
		r	Р	r	Р	r	Р	r	Р
Blood glucose	FBG	-0.896	0.001	-0.901	0.001	0.788	0.012	-0.786	0.012
	GSP	-0.885	0.002	-0.899	0.001	0.571	0.108	-0.862	0.003
	AUC-OGTT	-0.946	0.000	-0.956	0.000	0.727	0.026	-0.927	0.000
	FINS	-0.929	0.000	-0.933	0.000	0.672	0.047	0.938	0.000
	HOMA-IR	-0.986	0.000	-0.968	0.000	0.793	0.011	-0.902	0.001
Blood lipid	ТС	-0.889	0.001	-0.893	0.001	0.843	0.004	-0.885	0.002
	TG	-0.946	0.000	-0.939	0.000	0.832	0.005	-0.855	0.003
	LDL-C	-0.940	0.000	-0.940	0.000	0.900	0.001	-0.922	0.000
	HDL-C	0.939	0.000	0.947	0.000	-0.845	0.004	0.933	0.000
	Liver index	-0.948	0.000	-0.952	0.000	0.799	0.010	-0.852	0.004
Liver- related parameters	AST	-0.865	0.003	-0.841	0.004	0.716	0.030	-0.857	0.003
	ALT	-0.795	0.010	-0.797	0.010	0.743	0.022	-0.768	0.016
	Hepatic glycogen	0.902	0.001	0.925	0.000	-0.947	0.000	0.856	0.003
	TC	-0.943	0.000	-0.916	0.001	0.732	0.025	-0.806	0.009
	TG	-0.952	0.000	-0.950	0.000	0.834	0.005	-0.868	0.002

 Table S1. Pearson correlation analysis of oxidative stress and diabetes related symptoms.

Supplementary Figure Captions:

Fig. S1. The HPGPC chromatogram of AMP.

Fig. S2. The ion chromatograms of (A) standard monosaccharides and (B) AMP hydrolysate.

Fig. S3. AMP improved the symptoms of T2DM mice. (A-B) Body weight, (C-D) food consumption, and (E-F) water consumption curves of experimental mice were measured throughout the 6-weeks period and at week 6. Data were presented as means \pm SEM. ***P < 0.001; ns, not statistically significant.

Fig. S4. The following indicators included (A) ALT and (B) AST in liver of experimental mice were analyzed after AMP administration for 6 weeks. Data were presented as means \pm SEM. * *P*< 0.05, ***P*< 0.01, ****P*< 0.001.

Fig. S1.

Fig. S2.

Fig. S3.

