Supporting Information

Direct Diels-Alder reaction of chitin derived 3-acetamido-5acetylfuran

Juliana G. Pereira,^[a] João M. J. M. Ravasco,^[a] João R. Vale,^[a] Fausto Queda,^[b] Rafael F. A. Gomes*^[a]

 [a] Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
 [b] AlmaScience Colab, Madan Parque, 2829-516 Caparica (Portugal) Email: rafael.gomes@campus.ul.pt

Table of Contents	
General information	S2
General procedure A	S2
General procedure B	S2
General procedure C:	S3
Scope of 7-ONBs	S4
Scope of hemi-acylaminals	S7
Derivatization procedures	S11
General procedure for the retro-Diels-Alder studies of 7-ONBs	S16
Computational Studies	S20
Copies of NMR spectra	S27

General information:

All solvents were distilled prior to use. All reagents were used as received from commercial suppliers, unless otherwise stated. 3-acetamido-5-acetylfuran (3A5AF) was prepared according to Padovan's procedure.¹ N-(5-(1-hydroxyethyl)furan-3-yl)acetamide was prepared from 3A5AF according to Sperry's procedure.² Non-commercial maleimides were prepared in accordance with reported procedure.³ ^{1}H ¹³C and NMR acquired Bruker MX300 spectra were on spectrometer. HPLC analysis was performed on a Thermo Scientific Dionex Ultimate 3000 apparatus with a LPG-3400SD Pump, a UV MWD-3000(RS) detector and an autosampler ACC-3000, equipped with a 20 µL loop, using a reversed-phase EC 250/4 Nucleodur 100-5 C18ec column (250×4 mm, 5 µm) Thermo ScientificTM DionexTM.

General procedure A:

To a solution of *N*-(5-acetylfuran-3-yl)acetamide (60 mg, 0.36 mmol) and the corresponding maleimide (1.2 eq, 0.43 mmol) in DMSO-d6 (0.4 mL) was added a pH 4 aqueous solution (acetic acid-sodium acetate 0.1M, 0.4 mL). The reaction mixture was stirred at 50°C for 24 hours. The reaction mixture was cooled down to room temperature and extracted with ethyl acetate (5 x 5 mL). The combined organic layers were dried with anhydrous Mg₂SO₄, filtered, and concentrated under reduced pressure. The product was isolated by flash chromatography, yielding the pure product.

General procedure B:

To a solution of *N*-(5-acetylfuran-3-yl)acetamide (20 mg, 0.12 mmol) and the corresponding maleimide (1.2 eq, 0.14 mmol) in DMSO-d6 (0.133 mL) was added pH 4 aqueous solution (acetic acid-sodium acetate 0.1M, 0.133 mL). The reaction mixture was stirred at 50°C for 24 hours. The reaction mixture was cooled down to room temperature and 2-mercaptopropanoic acid (0.14 mmol) was added and stirred for 15 minutes. The reaction mixture was extracted with ethyl acetate:NaHCO₃ saturated solution (5 x 5 mL). The combined organic layers were dried with anhydrous Mg₂SO₄, filtered, and concentrated under reduced pressure, yielding the pure products. In some cases, it was possible to observe traces of starting material that was not present in the crude ¹H-NMR evaluation, possible due to retro-Diels-Alder reaction.

Comparison of the scope from GPA and GPB:

Figure 1. Isolated yield comparison of the scope from General procedure A and General procedure B.

General procedure C:

To a solution of *N*-(5-acetylfuran-3-yl)acetamide (6 mg, 0.036 mmol) and the corresponding maleimide (1.2 eq 0.043 mmol) in DMSO-d6 (0.4 mL) was added a acetic acid-sodium acetate buffer solution 0.1 M (0.4 mL) at pH 2.6. The reaction mixture was stirred at 50°C for 24 hours. The reaction mixtures were cooled down to room temperature and washed with ethyl acetate:H₂O (5 x 5 mL). The combined aqueous layers were concentrated under reduced pressure and further freeze dried, yielding the pure products.

Scope of 7-ONBs:

N-(7-acetyl-2-methyl-1,3-dioxo-2,3,3a,4,7,7a-hexahydro-1*H*-4,7-epoxyisoindol-5-yl)acetamide (1a)

The title compound was prepared according to the general procedure A using 100 mg of 3A5AF. The product was obtained in 73% yield (115 mg) as a hygroscopic yellow solid characterized as a mixture of 2:8 of starting materials:**1a** due to retro-DA.

¹H NMR (300 MHz, (CD₃)₂SO) δ 6.11 (s, 1H), 5.16 (s, 1H), 3.39 (d, *J* = 6.50 Hz, 1H), 3.11 (d, *J* = 6.52 Hz, 1H), 2.25 (s, 3H), 1.97 (s, 3H) ppm. ¹³C NMR (75 MHz, (CD₃)₂SO) δ 202.9, 177.1, 176.1, 169.2, 169.1, 144.8, 110.4, 94.8, 80.1, 53.9, 50.3, 27.2, 23.4 ppm. HRMS (ESI-MS) *m*/*z* calculated for 279.09755 [M+H⁺], found 279.09771.

N-(7-acetyl-2-methyl-1,3-dioxo-2,3,3a,4,7,7a-hexahydro-1*H*-4,7-epoxyisoindol-5-yl)acetamide (1b)

The title compound was prepared according to the general procedure B. The product was obtained in 80% yield (27 mg) as a pale yellow hygroscopic solid.

¹H NMR (300 MHz, (CD₃)₂SO) δ 10.28 (s, 1H), 6.13 (s, 1H), 5.18 (s, 1H), 3.45 (d, *J* = 6.50 Hz, 1H), 3.18 (d, *J* = 6.49 Hz, 1H), 2.81 (s, 3H), 2.25 (s, 3H), 1.98 (s, 3H) ppm. ¹³C NMR (75 MHz, (CD₃)₂CO) δ 203.0, 176.2, 175.2, 169.1, 145.9, 111.7, 95.7, 81.6, 53.7, 50.1, 27.0, 24.9, 23.5 ppm. HRMS (ESI-MS) *m/z* calculated for 279.09755 [M+H⁺], found 279.09771.

N-(7-acetyl-2-benzyl-1,3-dioxo-2,3,3a,4,7,7a-hexahydro-1*H*-4,7-epoxyisoindol-5-yl)acetamide (1c)

The title compound was prepared according to the general procedure B using 60 mg of *N*-(5-acetylfuran-3-yl)acetamide. The product was isolated with 90% yield (114 mg) as a white solid. m.p. 137-140°C.

¹H NMR (300 MHz, (CD₃)₂SO) δ 10.30 (s, 1H), 7.35-7.20 (m, 5H), 6.14 (s, 1H), 5.22 (s, 1H), 4.55 (s, 2H), 3.50 (d, J = 6.47 Hz, 1H), 3.27 (d, J = 6.51 Hz, 1H), 2.16 (s, 3H), 1.99 (s, 3H) ppm. ¹³C NMR (75 MHz, (CD₃)₂CO) δ 203.1, 175.8, 174.8, 169.0, 145.6, 136.8, 129.1, 128.3, 111.6, 95.6, 81.5, 53.5, 49.9, 42.5, 26.8, 23.3 ppm. HRMS (ESI-MS) *m*/*z* calculated for C₁₉H₁₉N₂O₅ [M+H⁺] 355.12885, found 355.12867.

N-(7-acetyl-1,3-dioxo-2-phenyl-2,3,3a,4,7,7a-hexahydro-1*H*-4,7-epoxyisoindol-5-yl)acetamide (1d)

The title compound was prepared according to the general procedure B. The product was obtained in quantitative yield (41 mg) as a white solid. m.p.145-148°C

¹H NMR (300 MHz, (CD₃)₂CO) δ 7.51-7.38 (m, 3H), 7.27-7.24 (m, 2H), 6.27 (s, 1H), 5.40 (s, 1H), 3.59 (d, *J* = 6.60 Hz, 1H), 3.40 (d, *J* = 3.40 Hz, 1H), 2.28 (s, 3H), 2.07 (s, 3H) ppm. ¹³C NMR (75 MHz, (CD₃)₂CO) δ 203.0, 175.4, 174.3, 169.2, 146.0, 133.4, 129.8, 129.3, 127.7, 111.9, 96.1, 82.1, 53.9, 50.2, 27.1, 23.5 ppm. HRMS (ESI-MS) *m*/*z* calculated for C₁₈H₁₇N₂O₅ [M+H⁺] 341.11320, found 341.11290.

2-(6-acetamido-4-acetyl-1,3-dioxo-1,3,3a,4,7,7a-hexahydro-2H-4,7-epoxyisoindol-2-yl)ethyl acetate (1e)

The title compound was prepared according to the general procedure B. The product was isolated with 82% yield (30.3 mg) as a yellow solid. m.p 79-81°C.

¹H NMR (300 MHz, (CD₃)₂SO) δ 10.29 (s, 1H), 6.11 (s, 1H), 5.20 (s, 1H), 4.09-4.05 (m, 2H), 3.60 (td, J = 5.19 Hz, J = 1.11 Hz, 2H), 3.45 (d, J = 6.50 Hz, 1H), 3.20 (d, J = 6.52 Hz, 1H), 2.24 (s, 3H), 1.98 (s, 3H), 1.93 (s, 3H) ppm ¹³C NMR (75 MHz, (CD₃)₂CO) δ 203.0, 175.9, 174.8, 169.0, 145.6, 111.4, 95.4,

81.4, 60.9, 53.3, 49.7, 38.1, 26.9, 23.2 ppm. **HRMS (ESI-MS)** *m*/*z* calculated for C₁₆H₁₉N₂O₇ [M+H⁺] 351.11868, found 351.11812.

N-(7-acetyl-2-(2-methoxyethyl)-1,3-dioxo-2,3,3a,4,7,7a-hexahydro-1*H*-4,7-epoxyisoindol-5-yl)acetamide (1f)

The title compound was prepared according to the general procedure B. The product was isolated with 86% yield (33 mg) as a yellow oil.

¹H NMR (300 MHz, (CD₃)₂SO) δ 10.32 (s, 1H), 6.11 (s, 1H), 5.20 (s, 1H), 3.54-3.49 (m, 2H), 3.42-3.39 (m, 4H), 3.19 (s, 3H), 2.21 (s, 3H), 1.98 (s, 3H) ppm. ¹³C NMR (75 MHz, (CD₃)₂CO) δ 203.3, 175.9, 174.7, 169.0, 145.4, 111.5, 95.3, 81.3, 68.8, 58.1, 53.3, 49.5, 38.4, 26.7, 23.2 ppm. HRMS (ESI-MS) *m/z* calculated for compound C₁₅H₁₉N₂O₆ [M+H⁺] 323.12376, found 323.12343.

tert-butyl(2-(6-acetamido-4-acetyl-1,3-dioxo-1,3,3a,4,7,7a-hexahydro-2*H*-4,7-epoxyisoindol-2-yl)ethyl)carbamate (1g)

The compound was prepared according to the general procedure A. The crude mixture was isolated by flash chromatography using hexane:ethyl acetate (1:6) affording the product with 48% yield (48 mg) as an hygroscopic white solid characterized as amixture of 8.6:1.4 of **1g**:starting materials due to retro-DA.

¹H NMR (300 MHz, (CD₃)₂SO) δ 9.42 (s, 1H), 6.19 (s, 1H), 5.26 (s, 1H), 3.57-3.52 (m, 2H), 3.38 (d, *J* = 6.45 Hz), 3.25-3.18 (m, 3H), 2.23 (s, 3H), 1.38 (s, 9H) ppm. ¹³C NMR (75 MHz, (CD₃)₂CO) δ 203.2, 176.1, 175.1, 169.1, 156.6, 145.8, 111.6, 95.6, 81.6, 78.8, 53.6, 49.9, 39.3, 38.6, 28.5, 27.0, 23.4 ppm. HRMS (ESI-MS) *m*/*z* calculated for C₁₉H₂₆N₃O₇ [M+H⁺] 408.17653, found 408.17634.

Scope of Hemi-Acylaminals:

N-(7-acetyl-5-hydroxy-1,3-dioxooctahydro-1H-4,7-epoxyisoindol-5-yl)acetamide (2a)

The title compound was prepared according to the general procedure C using 50 mg of 3A5AF. The product was isolated in quantitative yield (84 mg) as a white solid. m.p 140-143°C.

¹H NMR (300 MHz, (CD₃)₂SO) δ 11.39 (s, 1H), 8.79 (s, 1H), 5.93 (s, 1H), 4.85 (s, 1H), 3.29 (d, *J* = 6.99 Hz, 1H), 3.10 (d, *J* = 6.95 Hz, 1H), 2.24 (d, *J* = 13.08 Hz, 1H), 2.16 (s, 3H), 1.88 (d, *J* = 13.17 Hz, 1H), 1.84 (s, 3H) ppm. ¹³C NMR (75 MHz, (CD₃)₂SO) δ 203.2, 178.2, 176.9, 169.9, 90.6, 85.9, 85.8, 52.3, 47.8, 47.3, 27.2, 23.0 ppm. HRMS (ESI-MS) *m*/*z* calculated for C₁₂H₁₅N₂O₆ [M+H⁺] 283.09246, found 283.09228.

N-(7-acetyl-5-hydroxy-2-methyl-1,3-dioxooctahydro-1*H*-4,7-epoxyisoindol-5-yl)acetamide (2b)

The compound was prepared according to the general procedure C. The product was isolated in quantitative yield (10.6 mg) as a yellow/brown oil.

¹H NMR (400 MHz, (CD₃)₂SO) δ 8.89 (s, 1H), 4.85 (s, 1H), 3.37 (d, *J* = 6.89 Hz, 1H), 3.14 (d, *J* = 6.89 Hz, 1H), 2.79 (s, 3H), 2.30 (d, *J* = 13.09 Hz, 1H), 2.16 (s, 3H), 1.89 (d, *J* = 13.04 Hz, 1H), 1.84 (s, 3H) ppm. ¹³C NMR (100 MHz, (CD₃)₂SO) δ 203.4, 176.7, 175.3, 170.0, 90.5, 85.9, 85.6, 51.0, 47.7, 46.1, 27.3, 24.8, 23.0 ppm. HRMS (ESI-MS) *m*/*z* calculated for C₁₃H₁₇N₂O₆ [M+H⁺] 297.10811, found 297.10886.

N-(7-acetyl-2-benzyl-5-hydroxy-1,3-dioxooctahydro-1*H*-4,7-epoxyisoindol-5-yl)acetamide (2c)

The title compound was prepared according to the general procedure C. The product was isolated with 79% yield (10.6 mg) as a white solid. No melting point is given due to decomposition observed at 160°C.

¹**H NMR (300 MHz, (CD₃)₂SO)** δ 8.87 (s, 1H), 7.31-7.25 (m, 3H), 7.20 (d, *J* = 7.4 Hz, 2H), 6.03 (s, 1H), 4.91 (s, 1H), 4.54 (s, 2H), 3.42 (d, *J* = 6.92 Hz, 1H), 3.25 (d, *J* = 6.91 Hz, 1H), 2.30 (d, *J* = 13.09 Hz, 1H), 2.07 (s, 3H), 1.91 (d, *J* = 13.04 Hz, 1H), 1.85 (s, 3H) ppm. ¹³**C NMR (100 MHz, (CD₃)₂SO)** δ 203.2, 176.5, 175.1, 170.0, 135.6, 128.5, 127.4, 127.0, 90.7, 85.8, 51.0, 47.9, 46.1, 41.6, 27.1, 23.0 ppm. **HRMS (ESI-MS)** *m*/*z* calculated for C₁₉H₂₁N₂O₆[M+H⁺] 373.13941, found 373.13972.

N-(7-acetyl-5-hydroxy-1,3-dioxo-2-phenyloctahydro-1*H*-4,7-epoxyisoindol-5-yl)acetamide (2d)

The title compound was prepared according to the general procedure C using a PBS buffer solution 0.1 M at pH 7. The product was isolated in quantitative yield (12.8 mg) as a hygroscopic yellow solid. ¹H NMR (400 MHz, (CD₃)₂SO) δ 8.97 (s, 1H), 7.52-7.43 (m, 3H), 7.17 (d, *J* = 7.7, 2H), 4.99 (s, 1H), 3.32 (d, *J* = 7.0, 1H), 2.38 (d, *J* = 13.0, 1H), 2.22 (s, 3H), 1.97 (d, *J* = 13.4, 1H), 1.88 (s, 3H) ppm. ¹³C NMR (100 MHz, (CD₃)₂SO) δ 203.4, 176.0, 174.6, 170.1, 132.1, 129.2, 128.7, 126.8, 90.9, 86.2, 86.0, 51.2, 44.5, 27.3, 23.0 ppm. HRMS (ESI-MS) *m*/*z* calculated for C₁₈H₁₉N₂O₆ [M+H⁺] 359.12376, found 359.12447.

2-(6-acetamido-4-acetyl-6-hydroxy-1,3-dioxooctahydro-2H-4,7-epoxyisoindol-2-yl)ethyl acetate (2e)

The title compound was prepared according to the general procedure C. The was isolated in 98% yield (13.1 mg) as a yellow/brown oil.

¹**H NMR (300 MHz, (CD₃)₂SO)** δ 8.89 (s, 1H), 4.87 (s, 1H), 4.10-4.00 (m, 2H), 3.63-3.55 (m, 2H), 3.39 (d, *J* = 6.94 Hz, 1H), 3.16 (d, *J* = 6.93 Hz, 1H), 2.29 (d, *J* = 13.08 Hz, 1H), 2.16 (s, 3H), 1.89 (d, *J* = 13.11 Hz, 1H) ppm. ¹³**C NMR (100 MHz, (CD₃)₂SO)** δ 203.3, 176.6, 175.1, 170.4, 170.0, 90.6, 85.9, 85.8, 60.2, 50.9, 47.8, 46.0, 37.5, 27.1, 23.0, 20.6 ppm. **HRMS (ESI-MS)** *m/z* calculated for C₁₆H₂₁N₂O₈ [M+H⁺] 369.12924, found 369.12832.

N-(7-acetyl-5-hydroxy-2-(2-methoxyethyl)-1,3-dioxooctahydro-1*H*-4,7-epoxyisoindol-5-yl)acetamide (2f)

The title compound was prepared according to the general procedure C. The product was isolated with yield 84% (10.3 mg) as a yellow oil.

¹H NMR (400 MHz, (CD₃)₂SO) δ 8.84 (s, 1H), 6.00 (s, 1H), 4.88 (s, 1H), 3.56 – 3.48 (m, 2H), 3.39 – 3.32 (m, 3H), 3.18 (s, 1H), 2.24 (s, 1H), 2.14 (s, 3H) ppm. ¹³C NMR (100 MHz, (CD₃)₂SO) δ 203.8, 176.6, 175.1, 170.1, 90.5, 85.9, 85.9, 67.9, 57.9, 51.0, 47.9, 46.0, 37.9, 27.1, 23.0 ppm. HRMS (ESI-MS) *m/z* calculated for C₁₅H₂₁N₂O₇ [M+H⁺] 341.13433, found 341.13396.

3-(6-acetamido-4-acetyl-6-hydroxy-1,3-dioxooctahydro-2*H*-4,7-epoxyisoindol-2-yl)propanoic acid (2g)

The title compound was prepared according to the general procedure A. The crude mixture was washed with ethyl acetate affording the product with 91% yield (116 mg) as a yellow oil.

¹H NMR (400 MHz, (CD₃)₂SO) δ 8.86 (s, 1H), 4.86 (s, 1H), 3.53 (t, *J* = 7.27 Hz, 2H), 3.33 (d, *J* = 6.90 Hz, 1H), 3.13 (d, *J* = 6.90 Hz, 1H), 2.39 (t, *J* = 7.33 Hz, 2H), 2.25 (br s, 1H), 2.15 (s, 3H), 1.84 (s, 3H) ppm. ¹³C NMR (100 MHz, (CD₃)₂SO) δ 203.7, 176.5, 175.1, 172.1, 170.3, 90.6, 86.0, 85.8, 51.0, 47.9, 46.1, 34.6, 31.9, 27.3, 23.0 ppm. HRMS (ESI-MS) *m/z* calculated for C₁₅H₁₈D₁N₂O₈ [M+H⁺] 356.11987, found 356.11966.

2-(6-acetamido-4-acetyl-6-hydroxy-1,3-dioxooctahydro-2*H*-4,7-epoxyisoindol-2-yl)ethan-1aminium 2,2,2-trifluoroacetate (2h)

The compound was prepared according to the general procedure C. The product was obtained in quantitative yield with traces of maleimide (16 mg) as yellow/brown oil.

¹H NMR (300 MHz, (CD₃)₂SO) δ 4.89 (s, 1H), 3.62-3.52 (m, 2H), 3.41 (d, *J* = 6.97 Hz, 1H), 3.14 (d, *J* = 6.97 Hz, 1H), 2.99-2.88 (m, 2H), 2.31-2.29 (m, 1H), 2.16 (s, 3H), 2.04-2.01 (m, 1H), 1.84 (s, 3H) ppm.¹³C NMR (75 MHz, (CD₃)₂CO) δ 204.5, 177.6, 176.2, 174.6, 174.1, 173.2, 172.2, 160.8, 160.3, 159.9, 159.5, 135.5, 91.3, 86.6, 86.3, 51.6, 46.9, 37.6, 36.8, 27.9, 23.4, 21.8 ppm. HRMS (ESI-MS) *m*/*z* calculated for C₁₄H₂₀N₃O₆ [M+H+] 326.13466, found 326.13504.

Derivatization procedures

7-acetyl-2-phenyltetrahydro-1H-4,7-epoxyisoindole-1,3,5(2H,4H)-trione (3)

To a solution of **2d** (10 mg, 0.029 mmol) in DMF (590 μ L, 0.05 M) was added *p*-toluenosulfonic acid (5 mg, 0.029 mmol). The reaction mixture was stirred for 2h at 80°C. The crude was diluted with NaHCO₃ (sat. aq.) (5 mL) and extracted with ethyl acetate (5 mL × 3). The combined organic layers were dried with anhydrous Mg₂SO₄, filtered, and concentrated under reduced pressure. The product was isolated by flash chromatography using EtOAc:Hex (8:2) affording the product in 91% yield (8 mg) as a yellow oil.

¹H NMR (400 MHz, (CD₃)₂CO) δ 7.53 – 7.42 (m, 3H), 7.30 – 7.27 (m, 2H), 4.88 (s, 1H), 4.02 (d, *J* = 7.16 Hz, 1H), 3.62 (d, *J* = 7.16 Hz, 1H), 2.87-2.82 (m, 1H), 2.68 (d, *J* = 17.76 Hz, 1H), 2.33 (s, 3H) ppm. ¹³C NMR (100 MHz, (CD₃)₂CO) δ 205.3, 201.8, 174.6, 174.4, 133.3, 129.9, 129.6, 127.7, 92.6, 83.6, 52.3, 46.6, 44.2, 27.2 ppm. HRMS (ESI-MS) *m*/*z* calculated for C₁₆H₁₃NO₅ [M+H⁺] 300.08665, found 300.08631.

5-acetamido-7-acetyl-2-benzyl-6-hydroxy-1,3-dioxooctahydro-1*H*-4,7-epoxyisoindol-5-yl 3methylbenzoate (4)

To a solution of *N*-(7-acetyl-2-benzyl-1,3-dioxo-2,3,3a,4,7,7a-hexahydro-1*H*-4,7-epoxyisoindol-5yl)acetamide (20 mg, 0.056 mmol) in dichloromethane (565 μ L, 0.1 M) was added 3-chloroperbenzoic acid 50-55% (24 mg, 0.068 mmol). The reaction mixture was stirred overnight at 40°C. The reaction mixture was cooled down to 0°C to precipitate the m-CPBA/3-chlorobenzoic acid. The crude mixture was washed with a saturated solution of Na₂S₂O₃ and extracted with dichloromethane (5x5 mL) and then washed with a saturated solution of NaHCO₃. The combined organic layers were dried with anhydrous Mg₂SO₄, filtered, and concentrated under reduced pressure affording 5-acetamido-7-acetyl2-benzyl-6-hydroxy-1,3-dioxooctahydro-1*H*-4,7-epoxyisoindol-5-yl 3-methylbenzoate with 58% yield (16.5 mg) as a pale yellow hygroscopic solid.

¹H NMR (400 MHz, (CD₃)₂CO) δ 8.03 (br, 1H), 7.92-7.89 (m, 2H), 7.70-7.68 (m, 1H), 7.55 (t, *J* = 7.78 Hz, 1H), 7.34-7.25 (m, 5H), 5.39 (s, 1H), 5.30 (s, 1H), 4.68-4.59 (m, 2H), 3.77 (d, *J* = 6.94 Hz, 1H), 3.52 (d, *J* = 6.96 Hz, 1H), 2.21 (s, 3H), 2.01 (s, 3H) ppm. ¹³C NMR (100 MHz, (CD₃)₂CO) δ 200.6, 176.2, 174.6, 171.6, 165.1, 136.5, 134.8, 134.2, 131.7, 131.3, 129.9, 129.2, 128.8, 128.3, 128.2, 93.4, 88.2, 87.1, 82.8, 49.6, 46.5, 42.9, 28.1, 23.1 ppm. HRMS (ESI-MS) *m*/*z* calculated for C₂₆H₂₄ClN₂O₈ [M+H⁺] 527.12157, found 527.12225.

N-(7-acetyl-1,3-dioxo-2-phenyloctahydro-1H-4,7-epoxyisoindol-5-yl)acetamide (5)

To a solution of *N*-(7-acetyl-1,3-dioxo-2-phenyl-2,3,3a,4,7,7a-hexahydro-1*H*-4,7-epoxyisoindol-5yl)acetamide (20 mg, 0.059 mmol) in methanol (0.1 M) was added palladium on carbon (6.25 mg, Pd/C 10% w/w). The reaction was stirred overnight at 8 bar of H₂ after which the crude mixture was filtered through celite. The solvent was evaporated under reduced pressure. The product was isolated by flash chromatography using EtOAc:MeOH (4%) affording *N*-(7-acetyl-1,3-dioxo-2-phenyloctahydro-1*H*-4,7epoxyisoindol-5-yl)acetamide in 80% yield (16 mg) as an orange hygroscopic solid.

¹H NMR (300 MHz, (CD₃)₂CO) δ 7.51-7.38 (m, 3H), 7.26-7.23 (m, 2H),5.03 (d, *J* = 4.84 Hz, 1H), 4.31-4.22 (m, 1H),3.69 (d, *J* = 7.19 Hz, 1H), 3.63 (d, *J* = 7.19 Hz, 1H), 2.31 (dd, *J* = 13.08 Hz, *J* = 11.44 Hz, 1H), 2.23 (s, 3H), 1.96-1.90 (m, 4H) ppm. ¹³C NMR (75 MHz, (CD₃)₂CO) δ 204.0, 177.1, 175.1, 170.9, 133.4, 129.8, 129.3, 127.6, 93.4, 82.4, 53.4, 51.4, 45.6, 37.9, 27.4, 22.7 ppm. HRMS (ESI-MS) *m/z* calculated for C₁₈H₁₉N₂O₅ [M+H⁺] 343.12885, found 343.12890.

Diels-Alder reaction of the 3A5AF alcohol.

N-(7-(1-hydroxyethyl)-1,3-dioxo-2-phenyl-2,3,3a,4,7,7a-hexahydro-1H-4,7-epoxyisoindol-5yl)acetamide (8)

To a solution of *N*-(5-(1-hydroxyethyl)furan-3-yl)acetamide (20 mg, 0.12 mmol) in a mixture of water: acetonitrile 8:2 (1.2 mL) was added N-phenyl-maleimide (24 mg, 0.14 mmol, 1.2 eq). The reaction was stirred at room temperature for 5 minutes. 2-mercaptopropanoic acid (0.14 mmol) was added and the mixture was further stirred for 15 minutes. The reaction mixture was extracted with ethyl acetate:NaHCO₃ saturated solution (3 x 3 mL). The combined organic layers were dried with anhydrous Mg₂SO₄, filtered, and concentrated under reduced pressure, yielding N-(7-(1-hydroxyethyl)-1,3-dioxo-2-phenyl-2,3,3a,4,7,7a-hexahydro-1H-4,7-epoxyisoindol-5-yl)acetamide as a white powder in 99% yield (40 mg). The product was characterized a mixture of 4 diastereoisomers (*endo*-(R), *endo*-(S), *exo*-(R), *exo*-(S)).

¹H NMR (300 MHz, (CD₃)₂CO) δ 9.39 (s, 1H), 7.50 – 7.36 (m, 3H), 7.28 – 7.24 (m, 1H), 7.09 – 7.07 (m, 1H), 6.29 – 6.20 (s, 1H), 5.30 – 5.26 (s, 1H), 4.31 – 4.17 (m, 1H), 3.90 – 3.76 (m, 1H), 3.43 – 3.36 (m, 1H), 1.97 – 1.95 and 1.37 – 1.51 (m, 3H), 1.09 – 1.36 (3H) ppm.¹³C NMR (75 MHz, (CD₃)₂CO) δ 175.1, 175.0, 174.9 (× 2), 174.5 173.9, 173.3, 173.1, 168.1 (× 4), 144.5, 144.3, 141.9, 141.5, 132.8, 132.7 (× 2), 132.6, 128.8, 128.7, 128.7, 128.4, 128.3, 128.2, 127.3, 127.3, 126.8, 111.4, 111.3, 109.8, 109.2, 96.8, 95.9(× 2), 95.8, 80.9, 80.7, 79.0, 78.9, 66.9, 65.9, 65.6, 65.1, 51.2, 50.7, 50.5, 484.9, 48.8, 48.7, 47.7, 22.6, 22.5, 18.7, 18.5, 17.8, 14.7, 13.6, 13.1 ppm. HRMS (ESI-MS) *m/z* calculated for C₁₈H₁₈N₂O₅ [M+H⁺] 343.12885, found 343.12855.

Competitive reaction of 3A5AF and acetylfuran (AF)

Figure S2. Competitive reaction of 3A5AF and AF. No 7-ONB derived from AF was detected, highlighting the remarkable effect of the 3-amido group.

Figure S3. ¹H-NMR of the crude reaction mixture for the preparation of 2a.

Figure S4. ¹H-NMR of the crude reaction mixture for the competitive assay of 3A5AF and AF.

General procedure for the retro-Diels-Alder studies of 7-ONBs

A solution of *N*-(7-acetyl-2-benzyl-5-hydroxy-1,3-dioxooctahydro-1*H*-4,7-epoxyisoindol-5-yl)acetamide in DMSO-d6 (45 mM) was stirred overnight at 80°C or 150°C. The conversion to 3A5AF was analyzed at different times (5 min – 20 h) by HPLC.

Each HPLC sample was diluted to final concentration of 1mM. The injection volume was 20 μ L and the flow rate was set to 1 mL/min.

Examples of HPLC chromatograms

3A5AF

Injection Details			
Injection Name:	3A5AF_1mM	Run Time (min):	27.00
Vial Number:	GC1	Injection Volume:	20.00
Injection Type:	Unknown	Channel:	UV_VIS_4
Calibration Level:		Wavelength:	220
Instrument Method:	TCOS_95H2O5ACN	Bandwidth:	4
Processing Method:	JMR_Process	Dilution Factor:	1.0000
Injection Date/Time:	09/Apr/21 12:48	Sample Weight:	1.0000

N-(7	'-acet	vl-2-benz	vI-5-h	vdroxv-	1.3-diox	octahydro	-1H-4,7-6	epoxy	isoindol-5/	-vl)acetamide
					,		,			, ,

Injection Details			
Injection Name:	JP722_Padrao_1mM_29112021	Run Time (min):	27.00
Vial Number:	RD4	Injection Volume:	20.00
Injection Type:	Unknown	Channel:	UV_VIS_4
Calibration Level:		Wavelength:	220
Instrument Method:	TCOS_95H2O5ACN	Bandwidth:	4
Processing Method:	FBBA	Dilution Factor:	1.0000
Injection Date/Time:	29/Nov/21 17:41	Sample Weight:	1.0000

N-benzyl-maleimide

Injection Details			
Injection Name:	Maleimide - Bz_29112021	Run Time (min):	27.00
Vial Number:	RD5	Injection Volume:	20.00
Injection Type:	Unknown	Channel:	UV_VIS_4
Calibration Level:		Wavelength:	220
Instrument Method:	TCOS_95H2O5ACN	Bandwidth:	4
Processing Method:	FBBA	Dilution Factor:	1.0000
Injection Date/Time:	29/Nov/21 18:09	Sample Weight:	1.0000

150°C – 5 min

Computational studies

Geometry optimizations and frequency calculations were carried out using Gaussian 09 software, Revision D.01. Vibrational frequencies and intensities were calculated at the M06L/6- 31G(d) level of theory, since such functional/basis-set combination was reported to provide a good energetics accuracy cycloadditions. All the geometry optimizations were carried out at the M06L level of theory with the 6-31G(d) basis set. All of the optimized geometries were verified by frequency computations as minima (zero imaginary frequencies) or transition states (a single imaginary frequency corresponding to the desired reaction coordinate). Single-point energy calculations on the optimized geometries were then evaluated using the same functional (M06L) and the 6-311+G(d,p) basis set . Solvent effects in water were evaluated at the M06L/6-311+G(d,p) level with a self-consistent reaction field (SCRF) using the CPCM model on the gas-phase-optimized structures. Graphical representation of the optimized geometries was generated by using CYLView.

Table S 1- Summary of the calculations performed at M06L/6-311+G(d,p)/SMD(water)// M06L/6-31G(d)
level of theory for pre-complexes, TS and products

	M06L/6-311+G(d,p)/S	GMD(water)// M06L/6-31G(d)
	ΔG (H)	ΔG _{rel} (kcal/mol)
Pre-complex HMF endo	-817.130151221	0.0
TS HMF endo	-817.094824575	22.2
Product HMF endo	-817.132685973	-1.6
Pre-complex HMF exo	-817.127813393	0.0
TS HMF exo	-817.092804827	22.0
Product HMF exo	-817.134039245	-3.9
	· · · · · ·	
Pre-complex ketone endo	-741.917097284	0.0
TS ketone endo	-741.883791001	20.9
Product ketone endo	-741.921057098	-2.5
	rr	
Pre-complex ketone exo	-741.882658850	0.0
TS ketone exo	-741.916211304	21.1
Product ketone exo	-741.925767059	-6.0
Pre-complex 1 endo	-949.874802400	0.0
TS 1 endo	-949.845996720	18.1
Product 1 endo	-949.884813582	-6.3
Pre-complex VI	-949.876308590	0.0
TS VI	-949.846201949	18.9
Product VI	-949.889029967	-8.0

Cartesian coordinates

HMF R endo

SCF energy = -817.271491448 Hartree

Free	energy correction	on= 0.141340227	' Hartree
6	-1.301979000	-0.494729000	1.288827000
6	0.059287000	-0.888883000	1.409204000
6	-1.739617000	-0.999105000	0.094919000
6	0.352338000	-1.599425000	0.277825000
8	-0.731098000	-1.677831000	-0.523612000
6	-3.014098000	-0.909720000	-0.609525000
8	-3.955939000	-0.271222000	-0.195297000
1	-3.054273000	-1.467196000	-1.565958000
6	1.606273000	-2.290856000	-0.171861000
8	2.690934000	-1.938388000	0.643278000
1	-1.897073000	0.092671000	1.973818000
1	0.746764000	-0.693929000	2.218625000
1	1.470341000	-3.375593000	-0.092563000
1	1.785051000	-2.061252000	-1.232005000
1	3.032595000	-1.092309000	0.309721000
6	0.484395000	0.989768000	-1.528545000
6	-0.497057000	1.704160000	-0.978428000
6	1.697576000	1.081732000	-0.650341000
6	0.015926000	2.329813000	0.291365000
7	1.360578000	1.948239000	0.371938000
8	2.757227000	0.507235000	-0.784753000
8	-0.573964000	3.008802000	1.087845000
1	0.480213000	0.394918000	-2.432395000
1	-1.516664000	1.854436000	-1.309515000
1	1.953460000	2.145282000	1.166378000

HMF TS endo

SCF energy = -817.239079386 Hartree Free energy correction= 0.144254811 Hartree Imaginary Frequency= -508.2679 icm⁻¹

6 0.820829000 -0.344818000 1.30626600 6 -0.697312000 -1.361194000 0.04680100 6 1.304552000 -0.590576000 -0.01678400 8 0.493199000 -1.533109000 -0.58826000 6 -1.835886000 -2.189533000 -0.40030400 8 -2.859784000 -2.270696000 0.23025200 1 -1.683846000 -2.704884000 -1.36869400 6 2.734114000 -0.541365000 -0.45213500 8 3.477984000 -1.420904000 0.36350100 1 -1.211482000 -0.729261000 2.11157000 1 1.350281000 0.22888000 2.05480200 1 2.783626000 -0.818921000 -1.51464100 1 3.065828000 0.501737000 -0.34620700 1 4.413866000 -1.317063000 0.14237700 6 0.378341000 0.906182000 -1.06195400	
6 -0.697312000 -1.361194000 0.04680100 6 1.304552000 -0.590576000 -0.01678400 8 0.493199000 -1.533109000 -0.58826000 6 -1.835886000 -2.189533000 -0.40030400 8 -2.859784000 -2.270696000 0.23025200 1 -1.683846000 -2.704884000 -1.36869400 6 2.734114000 -0.541365000 -0.45213500 8 3.477984000 -1.420904000 0.36350100 1 -1.211482000 -0.729261000 2.11157000 1 1.350281000 0.22888000 2.05480200 1 2.783626000 -0.818921000 -1.51464100 1 3.065828000 0.501737000 -0.34620700 1 4.413866000 -1.317063000 0.14237700 6 0.378341000 0.906182000 -1.06195400	
6 1.304552000 -0.590576000 -0.01678400 8 0.493199000 -1.533109000 -0.58826000 6 -1.835886000 -2.189533000 -0.40030400 8 -2.859784000 -2.270696000 0.23025200 1 -1.683846000 -2.704884000 -1.36869400 6 2.734114000 -0.541365000 -0.45213500 8 3.477984000 -1.420904000 0.36350100 1 -1.211482000 -0.729261000 2.11157000 1 1.350281000 0.228880000 2.05480200 1 2.783626000 -0.818921000 -1.51464100 1 3.065828000 0.501737000 -0.34620700 1 4.413866000 -1.317063000 0.14237700 6 0.378341000 0.906182000 -1.06195400	
8 0.493199000 -1.533109000 -0.58826000 6 -1.835886000 -2.189533000 -0.40030400 8 -2.859784000 -2.270696000 0.23025200 1 -1.683846000 -2.704884000 -1.36869400 6 2.734114000 -0.541365000 -0.45213500 8 3.477984000 -1.420904000 0.36350100 1 -1.211482000 -0.729261000 2.11157000 1 1.350281000 0.228880000 2.05480200 1 2.783626000 -0.818921000 -1.51464100 1 3.065828000 0.501737000 -0.34620700 1 4.413866000 -1.317063000 0.14237700 6 0.378341000 0.906182000 -1.06195400	
6 -1.835886000 -2.189533000 -0.40030400 8 -2.859784000 -2.270696000 0.23025200 1 -1.683846000 -2.704884000 -1.36869400 6 2.734114000 -0.541365000 -0.45213500 8 3.477984000 -1.420904000 0.36350100 1 -1.211482000 -0.729261000 2.11157000 1 1.350281000 0.228880000 2.05480200 1 2.783626000 -0.818921000 -1.51464100 1 3.065828000 0.501737000 -0.34620700 1 4.413866000 -1.317063000 0.14237700 6 0.378341000 0.906182000 -1.06195400	
8 -2.859784000 -2.270696000 0.23025200 1 -1.683846000 -2.704884000 -1.36869400 6 2.734114000 -0.541365000 0.45213500 8 3.477984000 -1.420904000 0.36350100 1 -1.211482000 -0.729261000 2.11157000 1 1.350281000 0.228880000 2.05480200 1 2.783626000 -0.818921000 -1.51464100 1 3.065828000 0.501737000 -0.34620700 1 4.413866000 -1.317063000 0.14237700 6 0.378341000 0.906182000 -1.06195400	
1 -1.683846000 -2.704884000 -1.36869400 6 2.734114000 -0.541365000 -0.45213500 8 3.477984000 -1.420904000 0.36350100 1 -1.211482000 -0.729261000 2.11157000 1 1.350281000 0.228880000 2.05480200 1 2.783626000 -0.818921000 -1.51464100 1 3.065828000 0.501737000 -0.34620700 1 4.413866000 -1.317063000 0.14237700 6 0.378341000 0.906182000 -1.06195400	
6 2.734114000 -0.541365000 -0.45213500 8 3.477984000 -1.420904000 0.36350100 1 -1.211482000 -0.729261000 2.11157000 1 1.350281000 0.228880000 2.05480200 1 2.783626000 -0.818921000 -1.51464100 1 3.065828000 0.501737000 -0.34620700 1 4.413866000 -1.317063000 0.14237700 6 0.378341000 0.906182000 -1.06195400	000000000000000000000000000000000000000
8 3.477984000 -1.420904000 0.36350100 1 -1.211482000 -0.729261000 2.11157000 1 1.350281000 0.228880000 2.05480200 1 2.783626000 -0.818921000 -1.51464100 1 3.065828000 0.501737000 -0.34620700 1 4.413866000 -1.317063000 0.14237700 6 0.378341000 0.906182000 -1.06195400	0
1 -1.211482000 -0.729261000 2.11157000 1 1.350281000 0.228880000 2.05480200 1 2.783626000 -0.818921000 -1.51464100 1 3.065828000 0.501737000 -0.34620700 1 4.413866000 -1.317063000 0.14237700 6 0.378341000 0.906182000 -1.06195400	0
1 1.350281000 0.228880000 2.05480200 1 2.783626000 -0.818921000 -1.51464100 1 3.065828000 0.501737000 -0.34620700 1 4.413866000 -1.317063000 0.14237700 6 0.378341000 0.906182000 -1.06195400	0
1 2.783626000 -0.818921000 -1.51464100 1 3.065828000 0.501737000 -0.34620700 1 4.413866000 -1.317063000 0.14237700 6 0.378341000 0.906182000 -1.06195400	-
1 3.065828000 0.501737000 -0.34620700 1 4.413866000 -1.317063000 0.14237700 6 0.378341000 0.906182000 -1.06195400	0
1 4.413866000 -1.317063000 0.14237700 6 0.378341000 0.906182000 -1.06195400	0
6 0 378341000 0 906182000 -1 06195400	0
0 0.0700 0.000002000 1.00100400	0
6 -0.964304000 0.496949000 -1.06199600	0
6 0.500736000 2.081267000 -0.14107200	0
6 -1.718966000 1.383799000 -0.12682200	0
7 -0.758219000 2.244442000 0.42416800	0
8 1.487311000 2.732755000 0.11203500	0
8 -2.893876000 1.388993000 0.13967700	0
1 1.032147000 0.853368000 -1.92537200	0
1 -1.483850000 0.042988000 -1.89637700	0
1 -0.972753000 2.942223000 1.12396300	

HMF P endo

SCF energy = -817.281099159 Hartree

Free energy correction - 0 1/8/13186 Hartree				
rie	e energy correcti	011-0.14041318		
6	-0.436608000	-0.799033000	1.323048000	
6	0.827177000	-0.380540000	1.312728000	
6	-0.760382000	-1.099316000	-0.128055000	
6	1.261852000	-0.416528000	-0.147668000	
8	0.494313000	-1.510826000	-0.659672000	
6	-1.848357000	-2.098305000	-0.426108000	
8	-2.747499000	-2.328989000	0.337482000	
1	-1.764595000	-2.592059000	-1.415227000	
6	2.733153000	-0.522714000	-0.440871000	
8	3.276117000	-1.518875000	0.392288000	
1	-1.152828000	-0.863703000	2.131793000	
1	1.436010000	-0.007004000	2.126276000	
1	2.857381000	-0.758048000	-1.508410000	
1	3.174641000	0.467534000	-0.249946000	
1	4.224590000	-1.580033000	0.218143000	
6	0.533685000	0.768130000	-0.883459000	
6	-0.921955000	0.282838000	-0.885074000	
6	0.526007000	2.072115000	-0.107649000	
6	-1.705170000	1.342651000	-0.128271000	
7	-0.791426000	2.325741000	0.250286000	
8	1.477666000	2.755993000	0.177494000	
8	-2.881816000	1.352664000	0.120672000	
1	0.961957000	0.913925000	-1.878440000	
1	-1.347473000	0.126545000	-1.879322000	
1	-1.056354000	3.117130000	0.825286000	

HMF R exo

SCF energy = -817.271629120 Hartree Free energy correction= 0.143815727 Hartree

ree	energy	correction-	0.145615727	паннее

6	-1.019611000	-1.936954000	0.914248000
6	0.385647000	-2.087718000	0.778980000
6	-1.429367000	-1.182467000	-0.149705000
6	0.732452000	-1.423588000	-0.367375000
8	-0.357707000	-0.871168000	-0.938737000
6	-2.739208000	-0.659899000	-0.540101000
8	-3.730109000	-0.836539000	0.133905000
1	-2.758279000	-0.085145000	-1.484046000
6	2.046943000	-1.291303000	-1.081133000
8	3.120956000	-1.438484000	-0.192243000
1	-1.666788000	-2.318339000	1.691015000
1	1.072034000	-2.625679000	1.415845000
1	2.133769000	-2.089582000	-1.826712000
1	2.069324000	-0.335464000	-1.623515000
1	3.224279000	-0.589134000	0.269395000
6	-0.734620000	1.429856000	1.183729000
6	0.512790000	1.121108000	1.539480000
6	-0.707822000	2.021568000	-0.199230000
6	1.439422000	1.493341000	0.420451000
7	0.644761000	2.072187000	-0.552837000
8	-1.632485000	2.370307000	-0.885058000
8	2.636639000	1.315125000	0.346973000
1	-1.661999000	1.295121000	1.725166000
1	0.876878000	0.663551000	2.449515000
1	0.979340000	2.361770000	-1.461593000

HMF TS exo

SCF energy = -817.240251646 Hartree

Free energy correction= 0.147446819 Hartree Imaginary Frequency= -507.6318 icm⁻¹

	0 1 1		
6	-0.966722000	-2.014179000	0.698288000
6	0.389204000	-2.163501000	0.633906000
6	-1.277894000	-0.933790000	-0.178827000
6	0.855931000	-1.187784000	-0.298716000
8	-0.207554000	-0.733412000	-1.009945000
6	-2.625505000	-0.572394000	-0.683680000
8	-3.618461000	-0.894983000	-0.079590000
1	-2.652094000	0.015816000	-1.617610000
6	2.215623000	-1.123617000	-0.948251000
8	3.219793000	-1.046315000	0.027461000
1	-1.685748000	-2.497067000	1.345082000
1	1.038104000	-2.795152000	1.224979000
1	2.377182000	-2.042176000	-1.522833000
1	2.236007000	-0.280113000	-1.649392000
1	3.305191000	-0.100840000	0.252794000
6	-0.689166000	0.641333000	1.070692000
6	0.702578000	0.441606000	1.097037000
6	-0.956370000	1.808091000	0.160330000
6	1.329690000	1.489781000	0.248252000
7	0.293170000	2.218737000	-0.310342000
8	-2.012927000	2.299038000	-0.150354000
8	2.512571000	1.676902000	0.029672000
1	-1.376441000	0.466302000	1.888290000
1	1.271403000	0.034425000	1.921571000
1	0.422619000	2.944535000	-1.002631000

HMF P exo

SCF energy = -817.284816801 Hartree

Free	Free energy correction= 0.150777556 Hartree			
6	0.998653000	-2.010977000	-0.682136000	
6	-0.317957000	-2.191175000	-0.614132000	
6	1.257699000	-0.713372000	0.065728000	
6	-0.858590000	-1.004458000	0.170670000	
8	0.227174000	-0.696727000	1.048795000	
6	2.633370000	-0.517985000	0.660850000	
8	3.619252000	-0.908562000	0.091837000	
1	2.668226000	0.001839000	1.635401000	
6	-2.178318000	-1.153006000	0.905485000	
8	-3.246818000	-1.103393000	-0.008530000	
1	1.764301000	-2.576257000	-1.197322000	
1	-0.939640000	-2.949370000	-1.074361000	
1	-2.206095000	-2.124366000	1.407109000	
1	-2.246749000	-0.371597000	1.673411000	
1	-3.415969000	-0.160348000	-0.180091000	
6	0.752894000	0.449646000	-0.867589000	
6	-0.767323000	0.207911000	-0.837599000	
6	0.945230000	1.794728000	-0.176539000	
6	-1.359093000	1.466980000	-0.232665000	
7	-0.318482000	2.312809000	0.093127000	
8	1.987855000	2.316851000	0.121867000	
8	-2.533141000	1.692344000	-0.031787000	
1	1.233706000	0.447588000	-1.846684000	
1	-1.247145000	-0.016124000	-1.790520000	
1	-0.455219000	3.185119000	0.591268000	

Ketone R endo

SCF energy = -742.052661389 Hartree			
Free energy correction= 0.135564105 Hartree			
6	-0.835826000	0.240501000	1.580238000
6	0.133995000	-0.762061000	1.868246000

6	-1.591504000	-0.249209000	0.552590000
6	-0.103764000	-1.779550000	0.991898000
8	-1.151680000	-1.485530000	0.194773000
6	-2.710686000	0.336848000	-0.207125000
8	-3.103549000	1.453990000	0.058268000
1	0.371097000	-2.734115000	0.820423000
1	-0.962696000	1.207584000	2.045145000
6	1.158370000	-0.301296000	-1.466275000
6	0.752103000	0.933456000	-1.172625000
6	2.359901000	-0.632290000	-0.625572000
6	1.662553000	1.504930000	-0.117712000
7	2.623413000	0.520373000	0.109383000
8	2.973214000	-1.668727000	-0.574664000
8	1.594686000	2.574224000	0.430757000
1	0.743054000	-1.015556000	-2.165353000
1	-0.079342000	1.502872000	-1.568288000
1	3.343615000	0.588678000	0.814310000
1	0.909083000	-0.734348000	2.619744000
6	-3.302877000	-0.506518000	-1.312500000
1	-3.664619000	-1.459657000	-0.915079000
1	-4.121192000	0.043475000	-1.776671000
1	-2.537838000	-0.742070000	-2.059960000

Ketone TS endo

SCF energy = -742.024317008 Hartree Free energy correction= 0.140526007 Hartree Imaginary Frequency= -535.7655 icm⁻¹

6	-0.381560000	-0.398986000	1.538153000
6	0.587138000	-1.359242000	1.412416000
6	-1.150213000	-0.467145000	0.346235000
6	0.381906000	-1.950985000	0.132316000
8	-0.883660000	-1.649275000	-0.280248000
6	-2.459752000	0.193395000	0.085511000
8	-2.790288000	1.134320000	0.769646000
1	0.776808000	-2.891168000	-0.229678000
1	-0.510918000	0.355570000	2.301592000
6	1.190650000	-0.510578000	-1.094759000
6	0.227633000	0.507589000	-1.010355000
6	2.412101000	-0.043715000	-0.358468000
6	0.801639000	1.629581000	-0.208909000
7	2.061649000	1.179711000	0.205250000
8	3.473961000	-0.603724000	-0.231242000
8	0.317787000	2.700476000	0.058249000
1	1.318654000	-1.166196000	-1.947571000
1	-0.520874000	0.727953000	-1.761392000
1	2.686344000	1.729324000	0.779712000
1	1.436844000	-1.546261000	2.054266000
6	-3.290951000	-0.364288000	-1.043179000
1	-3.568187000	-1.399887000	-0.821002000
1	-4.185759000	0.246336000	-1.161698000
1	-2.718412000	-0.381785000	-1.975985000

Ketone P endo

SCF energy = -742.066290631 Hartree **Free energy correction=** 0.145233533 Hartree 6 -0.357030000 -0.391464000 -1.540213000

6	-0.357030000	-0.391464000	1.540213000
6	0.585883000	-1.328401000	1.450896000
6	-0.989941000	-0.329832000	0.161956000
6	0.530108000	-1.819710000	0.011679000
8	-0.852789000	-1.669413000	-0.307611000
6	-2.409541000	0.193236000	0.065417000
8	-2.780003000	1.048383000	0.833050000

1	0.879101000	-2.826971000	-0.204736000
1	-0.612232000	0.277839000	2.351519000
6	1.138397000	-0.687293000	-0.893170000
6	0.043579000	0.387115000	-0.801100000
6	2.391156000	-0.032852000	-0.332796000
6	0.721540000	1.617147000	-0.221240000
7	2.054884000	1.275180000	-0.004899000
8	3.473517000	-0.537281000	-0.171655000
8	0.228512000	2.687812000	0.019024000
1	1.317967000	-1.058045000	-1.903629000
1	-0.432920000	0.628960000	-1.753899000
1	2.713119000	1.911817000	0.429070000
1	1.322747000	-1.626832000	2.185756000
6	-3.271479000	-0.403768000	-1.016637000
1	-3.428297000	-1.465727000	-0.802413000
1	-4.225431000	0.121950000	-1.053653000
1	-2.768179000	-0.350321000	-1.987508000

Ketone R exo

SCF energy = -742.053088423 Hartree Free energy correction= 0.136877119 Hartr

⊦re	e energy correcti	on= 0.1368//11	19 Hartree
6	-1.086821000	2.003225000	-0.551709000
6	0.063969000	2.644994000	-0.179241000
6	-1.057680000	0.740886000	0.099156000
6	0.762439000	1.729742000	0.658983000
8	-0.118044000	0.782653000	1.084736000
6	-2.200595000	-0.212482000	0.221335000
8	-3.054844000	-0.188499000	-0.635617000
1	1.598390000	1.918081000	1.321286000
1	-1.842383000	2.299148000	-1.265447000
6	0.381796000	-0.186679000	-1.246734000
6	1.530190000	0.503369000	-0.829052000
6	0.414381000	-1.547396000	-0.625552000
6	2.312468000	-0.411708000	0.069929000
7	1.552519000	-1.572131000	0.180603000
8	-0.374260000	-2.455096000	-0.744803000
8	3.363129000	-0.200408000	0.625423000
1	-0.157061000	-0.050975000	-2.174556000
1	2.076021000	1.231563000	-1.414243000
1	1.804308000	-2.353598000	0.770658000
1	0.458374000	3.584293000	-0.541036000
6	-2.225982000	-1.119517000	1.422192000
1	-2.412653000	-0.521301000	2.321055000
1	-3.020044000	-1.854268000	1.291318000
1	-1.265435000	-1.623832000	1.552997000

Ketone TS exo

SCF energy = -742.023957913 Hartree Free energy correction= 0.141299063 Hartree Imaginary Frequency= -519.4815 icm⁻¹

6	1.241815000	1.941913000	0.663023000
6	0.126703000	2.662998000	0.153275000
6	1.354821000	0.817613000	-0.104405000
6	-0.358159000	1.920485000	-0.883861000
8	0.383076000	0.807442000	-1.059351000
6	2.338523000	-0.286699000	-0.060899000
8	3.080525000	-0.370316000	0.895793000
1	-1.192393000	2.044493000	-1.558737000
1	1.892223000	2.200317000	1.485738000
6	-0.806616000	-0.628303000	1.484982000
6	-1.817516000	0.202709000	1.230661000
6	-0.731161000	-1.646634000	0.382085000

6	-2.471103000	-0.206163000	-0.060481000
7	-1.791259000	-1.350427000	-0.470812000
8	0.075659000	-2.531014000	0.235877000
8	-3.377471000	0.332556000	-0.645408000
1	-0.103025000	-0.633223000	2.307216000
1	-2.161490000	1.059187000	1.794273000
1	-1.956678000	-1.819827000	-1.349887000
1	-0.268743000	3.605142000	0.503092000
6	2.408410000	-1.213853000	-1.248818000
1	3.007005000	-0.731409000	-2.030360000
1	2.893376000	-2.141193000	-0.944351000
1	1.419924000	-1.424232000	-1.659957000

Ketone P exo

SCF energy = -742.070111942 Hartree

Free energy correction= 0.144	344883 Hartree
-------------------------------	----------------

6	-1.131692000	1.955395000	-0.572075000
6	-0.053914000	2.633320000	-0.185498000
6	-0.925829000	0.538613000	-0.054529000
6	0.816719000	1.618586000	0.539340000
8	-0.150215000	0.745315000	1.124430000
6	-2.191916000	-0.277430000	0.153146000
8	-3.010750000	-0.280281000	-0.736077000
1	1.534078000	1.967618000	1.280643000
1	-1.971661000	2.254865000	-1.184995000
6	0.163195000	-0.112374000	-0.987374000
6	1.412942000	0.688840000	-0.572652000
6	0.453650000	-1.542776000	-0.546642000
6	2.359811000	-0.329832000	0.043906000
7	1.734189000	-1.568203000	-0.016037000
8	-0.294543000	-2.486628000	-0.607954000
8	3.442413000	-0.115895000	0.525756000
1	-0.119932000	-0.084723000	-2.040049000
1	1.917594000	1.245206000	-1.363292000
1	2.134318000	-2.402272000	0.397784000
1	0.227045000	3.654522000	-0.409159000
6	-2.344976000	-1.006256000	1.458091000
1	-2.217824000	-0.307865000	2.290607000
1	-3.325334000	-1.481257000	1.493290000
1	-1.560789000	-1.765275000	1.543919000

5AF Ketone R endo

SCF energy = -950.061971248 Hartree

	07		
Free	energy correction	on= 0.18716884	8 Hartree
6	0.235204000	-1.049371000	-1.123927000
6	-0.934529000	-1.277011000	-0.344048000
6	1.292739000	-1.280234000	-0.294093000
6	-0.500041000	-1.659967000	0.898955000
8	0.850196000	-1.657617000	0.933373000
6	2.739940000	-1.126599000	-0.546556000
8	3.111654000	-0.856179000	-1.669974000
1	-1.019137000	-1.916714000	1.805680000
1	0.303594000	-0.725614000	-2.153169000
6	-0.521721000	1.395759000	1.192332000
6	0.768539000	1.418334000	1.527791000
6	-0.650184000	1.833701000	-0.241888000
6	1.569994000	1.883628000	0.348394000
7	0.632822000	2.181405000	-0.644500000
8	-1.646602000	1.861106000	-0.927457000
8	2.767153000	1.979017000	0.246818000
1	-1.386328000	1.087764000	1.767431000
1	1.238933000	1.143437000	2.462738000

1	0.886809000	2.400030000	-1.598043000
7	-2.244740000	-1.050095000	-0.772453000
1	-2.340006000	-0.744451000	-1.731978000
6	-3.222808000	-0.629473000	0.104763000
8	-3.088570000	-0.735152000	1.310164000
6	-4.432756000	-0.012778000	-0.552226000
1	-5.268314000	-0.038003000	0.146281000
1	-4.190674000	1.027995000	-0.792093000
1	-4.704221000	-0.530663000	-1.475857000
6	3.673400000	-1.256224000	0.629568000
1	3.367171000	-2.058137000	1.305376000
1	4.685965000	-1.422903000	0.261672000
1	3.652321000	-0.309900000	1.182848000

5AF Ketone TS endo

 SCF energy =
 -950.037009033 Hartree

 Free energy correction=
 0.191012313 Hartree

 Imaginary Frequency=
 -505.4221 icm⁻¹

 6
 -0.547120000
 -0.682940000
 1.201408000

 6
 0.646871000
 -0.952218000
 0.570794000

О	0.0408/1000	-0.952218000	0.570794000
6	-1.540214000	-0.833021000	0.209070000
6	0.313495000	-1.248144000	-0.796810000
8	-1.020081000	-1.526572000	-0.841558000
6	-3.013170000	-0.842528000	0.419493000
8	-3.462010000	-0.373462000	1.440494000
1	0.933484000	-1.763721000	-1.512648000
1	-0.725751000	-0.294176000	2.194380000
6	0.057492000	0.655836000	-1.487397000
6	-1.211620000	0.997010000	-0.984549000
6	1.066861000	1.500674000	-0.757276000
6	-1.042569000	2.027271000	0.069399000
7	0.350136000	2.171511000	0.225410000
8	2.262291000	1.577911000	-0.928631000
8	-1.871576000	2.635199000	0.698536000
1	0.260440000	0.402532000	-2.521172000
1	-2.142207000	0.945085000	-1.534804000
1	0.761397000	2.870924000	0.829034000
7	1.919996000	-0.732850000	1.065095000
1	1.989046000	-0.161515000	1.896547000
6	3.077080000	-0.958261000	0.329905000
8	3.059577000	-1.576903000	-0.711051000
6	4.315362000	-0.326968000	0.914397000
1	5.192106000	-0.834995000	0.514596000
1	4.332625000	0.720048000	0.593580000
1	4.328243000	-0.365236000	2.007020000
6	-3.855888000	-1.446455000	-0.676013000
1	-3.670420000	-2.525002000	-0.723865000
1	-4.907883000	-1.261399000	-0.460138000
1	-3.587093000	-1.034089000	-1.652912000

5AF Ketone P endo

SCF energy = -950.079060610 Hartree

Free	Free energy correction= 0.194247028 Hartree					
6	-0.496769000	-0.657167000	1.158689000			
6	0.672482000	-0.874852000	0.541110000			
6	-1.515270000	-0.595028000	0.043420000			
6	0.342102000	-0.951183000	-0.951612000			
8	-0.975754000	-1.481500000	-0.933648000			
6	-2.956444000	-0.904491000	0.398083000			
8	-3.376864000	-0.606832000	1.490295000			
1	1.006032000	-1.520258000	-1.590309000			
1	-0.713304000	-0.422614000	2.192392000			

6	0.051778000	0.531361000	-1.389016000
6	-1.317443000	0.776999000	-0.731787000
6	0.982153000	1.566766000	-0.769245000
6	-1.135868000	1.989250000	0.161875000
7	0.206519000	2.357717000	0.068912000
8	2.172501000	1.685477000	-0.926084000
8	-1.960693000	2.542991000	0.840077000
1	0.051084000	0.619545000	-2.476725000
1	-2.136662000	0.938785000	-1.436216000
1	0.597526000	3.118698000	0.611748000
7	1.955894000	-0.777727000	1.051927000
1	2.043882000	-0.392839000	1.982891000
6	3.121617000	-0.966189000	0.321419000
8	3.126714000	-1.448851000	-0.788792000
6	4.366871000	-0.464935000	1.014047000
1	5.231858000	-0.975613000	0.592610000
1	4.455910000	0.607138000	0.809311000
1	4.337076000	-0.615507000	2.096533000
6	-3.780639000	-1.570677000	-0.673093000
1	-3.378510000	-2.571554000	-0.860039000
1	-4.819177000	-1.633057000	-0.348562000
1	-3.707257000	-1.022077000	-1.617644000

5AF Ketone R exo				
SC	F energy = -950.00	62245173 Hartre	e	
Fre	e energy correcti	on = 0.18593658	3 Hartree	
6	0.387540000	-1.840883000	0.340170000	
6	1.445211000	-1.018224000	-0.136023000	
6	-0.732835000	-1.437845000	-0.327709000	
6	0.894132000	-0.169580000	-1.063934000	
8	-0.428700000	-0.433883000	-1.185322000	
6	-2.117323000	-1.953396000	-0.259742000	
8	-2.377066000	-2.828603000	0.538916000	
1	1.295345000	0.636361000	-1.654871000	
1	0.425894000	-2.628739000	1.079296000	
6	-0.933686000	1.009506000	1.621100000	
6	-0.043472000	1.771403000	0.984076000	
6	-2.256711000	1.114318000	0.915391000	
6	-0.720939000	2.429933000	-0.188243000	
7	-2.050897000	2.017402000	-0.123283000	
8	-3.286634000	0.536142000	1.161702000	
8	-0.240577000	3.152603000	-1.022769000	
1	-0.808354000	0.380236000	2.491970000	
1	1.007641000	1.931988000	1.186581000	
1	-2.749635000	2.257587000	-0.812213000	
7	2.766439000	-1.079514000	0.312783000	
1	3.018279000	-1.858887000	0.902720000	
6	3.713525000	-0.133478000	0.009295000	
8	3.454078000	0.833067000	-0.681411000	
6	5.094327000	-0.403683000	0.565814000	
1	5.693624000	-0.908567000	-0.197775000	
1	5.567880000	0.552374000	0.789871000	
1	5.078853000	-1.025315000	1.464458000	
6	-3.127235000	-1.394225000	-1.231990000	
1	-3.088357000	-1.984845000	-2.154393000	
1	-4.120675000	-1.480110000	-0.791965000	
1	-2.913315000	-0.354981000	-1.488337000	

5AF Ketone TS exo

SCF energy = -950.036225936 Hartree Free energy correction= 0.190023987 Hartree Imaginary Frequency= -492.7112 icm⁻¹

6	-0.323431000	-1.814317000	-0.262049000
6	-1.359582000	-0.982808000	0.095925000
6	0.839592000	-1.218922000	0.267990000
6	-0.766458000	0.106933000	0.818792000
8	0.484783000	-0.291054000	1.190632000
6	2.210396000	-1.801059000	0.291137000
8	2.460995000	-2.698704000	-0.482708000
1	-1.260447000	0.815764000	1.466674000
1	-0.326970000	-2.672892000	-0.919067000
6	0.957690000	0.437516000	-1.272071000
6	-0.111489000	1.191995000	-0.768004000
6	2.229094000	1.061967000	-0.820360000
6	0.481363000	2.342095000	0.010104000
7	1.857276000	2.143101000	-0.014517000
8	3.368761000	0.728633000	-1.051468000
8	-0.094125000	3.240460000	0.572077000
1	0.959665000	-0.194152000	-2.149060000
1	-1.061353000	1.355808000	-1.264578000
1	2.518133000	2.739534000	0.464427000
7	-2.671782000	-1.064365000	-0.346699000
1	-2.895310000	-1.826789000	-0.971160000
6	-3.684729000	-0.207532000	0.041264000
8	-3.479510000	0.735459000	0.775148000
6	-5.050601000	-0.559775000	-0.503551000
1	-5.534706000	-1.271824000	0.172098000
1	-5.652836000	0.347590000	-0.536697000
1	-5.001670000	-1.006354000	-1.499930000
6	3.196598000	-1.249364000	1.287370000
1	3.156794000	-1.867893000	2.191331000
1	4.197055000	-1.308323000	0.858007000
1	2.965302000	-0.220363000	1.567740000

5AF Ketone P exo

SCF energy = -950.082330551 Hartree Free energy correction= 0.193300584 Hartree

6	-0.329080000	-1.751279000	-0.389584000
6	-1.344924000	-0.993683000	0.032105000
6	0.916484000	-0.979697000	0.009483000
6	-0.708454000	0.237915000	0.679391000
8	0.505306000	-0.307939000	1.198751000
6	2.174782000	-1.819403000	0.164490000
8	2.419063000	-2.634819000	-0.694321000
1	-1.270146000	0.776140000	1.436720000
1	-0.318891000	-2.667691000	-0.963926000
6	1.024459000	0.244642000	-0.977849000
6	-0.161721000	1.106883000	-0.494400000
6	2.265102000	1.075648000	-0.677204000
6	0.468756000	2.382885000	0.048588000
7	1.843824000	2.278579000	-0.137337000
8	3.415142000	0.747058000	-0.839414000
8	-0.090881000	3.311774000	0.569079000
1	1.018578000	-0.069349000	-2.021901000
1	-0.933743000	1.347675000	-1.225593000
1	2.491546000	2.980568000	0.200859000
7	-2.712592000	-1.197319000	-0.110909000
1	-3.010859000	-2.118529000	-0.402564000
6	-3.653838000	-0.188964000	-0.041882000
8	-3.342023000	0.968967000	0.145842000
6	-5.083993000	-0.657292000	-0.193685000
1	-5.402770000	-1.174086000	0.716879000
1	-5.718031000	0.214376000	-0.348719000
1	-5.195878000	-1.347423000	-1.034912000
6	3.017847000	-1.593317000	1.387989000

1	2.401460000	-1.691945000	2.286538000
1	3.838199000	-2.310959000	1.396927000
1	3.416552000	-0.573943000	1.373266000

Copies of NMR spectra:

¹H and ¹³C NMR of product 1a

¹H and ¹³C NMR of product 1b

S28

¹H and ¹³C NMR of product 1c

 $f1_{\,(}\text{ppm}_{\,)}$

¹H and ¹³C NMR of product 1d

¹H and ¹³C NMR of product 1e

S31

¹H and ¹³C NMR of product 1f

Note: Peaks from the corresponding hemi-acylaminal **2f** are present on the ¹³C due to partial hydrolysis on the NMR tube.

¹H and ¹³C NMR of product 1g

S33

20 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl_(ppm)

HSQC and HMBC of product 2b

COSY of product 2b

 $\begin{array}{r} 3.44\\ \hline 3.42\\ \hline 3.26\\ \hline 3.24 \end{array}$

 $\int_{-1.65}^{-2.32} 2.32$

S40

¹H and ¹³C NMR of product 2f

HSQC and HMBC of product 2f

¹H and ¹³C NMR of product 2g

HSQC and HMBC of product 2g

S45

¹H and ¹³C NMR of product 2h

¹H and ¹³C NMR of product 3

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1(ppm)

 $f1_{(}\text{ppm}_{)}$

HSQC and HMBC of product 4

NOESY and attributed correlations of product 4

¹H and ¹³C NMR of product 5

¹H and ¹³C NMR of product 8

 $f1_{\,(}\text{ppm}_{\,)}$

¹H and ¹³C NMR of 1-(2-methoxyethyl)-1H-pyrrole-2,5-dione

References

- 1. Padovan, Daniele; Kobayashi, Hirokazu and Fukuoka, A. Facile Preparation of 3-Acetamido-5acetylfuran from N-Acetyl-d-glucosamine by using Commercially Available Aluminum Salts. *ChemSusChem* **13**, 3594–3598 (2020).
- Pham, Thuy; Lindsay, Ashley; Kim, Shi-Wei; Persello, Laly; Chen, Xi; Yan, Ning; Sperry, Jonathan; Two-Step Preparation of Diverse 3-Amidofurans from Chitin. *ChemistrySelect*, 4, 10097, (2019)
- 3. Zhu, Qiwen; Bao, Bin; Zhang, Qiumeng; Yu, Jiahui; Lu, Wei; Maleimidation of dextran and the application in designing a dextran–camptothecin conjugate. *RSC Adv.*, **8**, 2818, (2018)