Supporting Information

Stoichiometric couplings of methylarenes through visible-light-induced bromo radical formation from aryl halides

Qiao-Lin Wang,^a Zhaozhao Sun,^a Huawen Huang,^{*a} Guojiang Mao^b and Guo-Jun Deng^{*a,b}

^{*a*} Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key

Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education,

College of Chemistry, Xiangtan University, Xiangtan 411105, China.

^b School of Chemistry and Chemical Engineering, Henan Normal University. Xinxiang. E-mail: hwhuang@xtu.edu.cn; gjdeng@xtu.edu.cn.

List of Contents

1.	General Information	S2
2.	Experimental Section	S 3
	2.1 Typical experimental procedure for the arylation	S 3
	2.2 Optimization of reaction conditions	S 3
	2.3 Scale-up experiment	S6
3.	Mechanistic studies	S7
	3.1 Radical trapping experiments	S7
	3.2 Benzyl Radical trapping experiments	S7
	3.3 Kinetic isotope effect	S8
	3.4 Time course reaction	S9
	3.5 Stern–Volmer quenching	S10
	3.6 UV-Vis spectra	S13
	3.7 Light on/off experiment	S13
4.	Analytical data	S14
5.	Reference	S 29
6.	Copies of NMR spectra	S30

1. General Information

All reactions were carried out with magnetic stirring and in dried glassware. Standard syringe techniques were applied for transfer of dry solvents. All reagents and solvents were commercially available and used without any further purification unless specified. The reactions via general procedure was carried out under an atmosphere of argon unless otherwise noted. Column chromatography was performed using silica gel (200-300 mesh) or thin layer chromatography was performed using silica gel (GF254). ¹H NMR and ¹³C NMR spectra were recorded on Bruker-AV (400 and 100 MHz, respectively) instrument using CDCl₃ as solvent. Mass spectra were measured on Agilent 5975 GC-MS instrument (EI). High-resolution mass spectra (ESI) were obtained with the Thermo Scientific LTQ Orbitrap XL mass spectrometer. The structures of known compounds were further corroborated by comparing their ¹H NMR, ¹³C NMR data and HRMS data with those in literature. Melting points were measured with a YUHUA X-5 melting point instrument and were uncorrected.

2. Experiment Section

2.1 Typical experimental procedure for the arylation

To an overdried Schlenk tube with a stir bar was added **1** (0.2 mmol), **2** (0.4 mmol, 2.0 eqiuv), **PC1** (0.004 mmol, 2 mol%), Ni(acac)₂ (0.004 mmol, 2 mol%), L**1** (0.004 mmol, 2 mol%), K₂HPO₄ (0.4 mmol, 2.0 equiv), acetone (3 mL). Then the mixture was stirred at room temperature in argon atmosphere (1 atm) under 35 W blue LED light for 24 h until complete consumption of starting material as monitored by TLC and GC-MS analysis. After the reaction was finished, the reaction mixture was washed with brine. The aqueous phase was re-extracted with EtOAc (3×10 mL). The combined organic extracts were dried over Na₂SO₄ and concentrated in vacuum. The residue was purified by silica gel flash column chromatography (hexane/ethyl acetate = 15 : 1 to 5 : 1) to afford the desired products **3**, **4** or **5**.

2.2 Optimization of reaction conditions

Table S1. Screening of amount 2a^{*a*}

NC 1a	.Br + ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	Ja Of
Entry	Variation from standard conditions	Yield (%) ^b
1	10 equiv	92
2	2 equiv	88

^{*a*} Reaction conditions: **1a** (0.2 mmol), **2a**, **PC1** (0.004 mmol, 2 mol%), NH₄Br (0.1 mmol, 50 mol%), Ni(acac)₂ (0.004 mmol, 2 mol%), **L1** (0.004 mmol, 2 mol%), K₂HPO₄ (0.4 mmol, 2.0 equiv), acetone (3 mL). Then the mixture was stirred at room temperature in Ar atmosphere (1 atm) under 35 W blue LED light for 24 h at room temperature. ^{*b*} Isolated yields.

Table S2. Control experiments ^a

NC 1a	Br + PC1, NH₄Br Ni(acac)₂, L1, K₂HPO₄ 2a Acetone, Ar blue LED, rt NC	Ja Ja
Entry	Variation from standard conditions	Yield (%) b
1	none	88
2	No PC1	0
3	No light	0
4	No Ni(acac) ₂	0
5	No L1	0

6	No K ₂ HPO ₄	0
7	No NH ₄ Br	87

^a Reaction conditions: 1a (0.2 mmol), 2a (0.4 mmol, 2 eqiuv), PC1 (0.004 mmol, 2 mol%), NH₄Br (0.1 mmol, 50 mol%), Ni(acac)2 (0.004 mmol, 2 mol%), L1 (0.004 mmol, 2 mol%), K2HPO4 (0.4 mmol, 2.0 equiv), acetone (3 mL). Then the mixture was stirred at room temperature in Ar atmosphere (1 atm) under 35 W blue LED light for 24 h at room temperature. ^b Isolated yields.

NC 1a	+ cat., K2HPO4 Ni(acac)2, L1 Acetone, Ar blue LED, rt	NC 3a
Entry	Photocatalyst	Yield (%) ^b
1	PC1	87
2	PC2	0
3	PC3	0
4	PC4	0
5	PC5	0
6	PC6	58
7	PC1 ^c	70
	[*] PF ₆ [*] Bu [*] Bu	
PC1: Ir(dF(CF ₃)ppy) ₂ (dtbpy)]PF ₆ PC2 : Ru(bpy) ₃ Cl ₂	PC3: fac-lr(ppy) ₃
	H CO ₂ Na ONa NaO Br Br Br Br	
PU4: Rose Benga	I PUD: EOSIN Y	PLO: 40ZIPN

Table S3. Screening of phototcatalyst ^a

^a Reaction conditions: 1a (0.2 mmol), 2a (0.4 mmol, 2 eqiuv), photocatalyst (0.004 mmol, 2 mol%), Ni(acac)₂ (0.004 mmol, 2 mol%), L1 (0.004 mmol, 2 mol%), K₂HPO₄ (0.4 mmol, 2.0 equiv), acetone (3 mL). Then the mixture was stirred at room temperature in Ar atmosphere (1 atm) under 35 W blue LED light for 24 h at room temperature. ^b Isolated yields. ^c PC1 (0.002 mmol, 1 mol%).

Table S4. Screening of "Ni" catalyst ^a

NC 1a	+ PC1, K ₂ HPO ₄ "Ni", L1 Acetone, Ar blue LED, rt	NC 3a
Entry	"Ni" catalyst	Yield $(\%)^b$
1	Ni(acac) ₂	87

2	NiF_2	68
3	NiCl ₂	83
4	NiBr ₂	72
5	NiI_2	0
6	Ni(OTf) ₂	58
7	Ni(PPh ₃) ₃ Cl ₂	86
8	Ni(OAc) ₂	61
9	Ni(COD) ₂	63

^{*a*} Reaction conditions: **1a** (0.2 mmol), **2a** (0.4 mmol, 2.0 eqiuv), **PC1** (0.004 mmol, 2 mol%), "Ni" catalyst (0.004 mmol, 2 mol%), **L1** (0.004 mmol, 2 mol%), K₂HPO₄ (0.4 mmol, 2.0 equiv), acetone (3 mL). Then the mixture was stirred at room temperature in Ar atmosphere (1 atm) under 35 W blue LED light for 24 h at room temperature. ^{*b*} Isolated yields.

Table S5. Screening of ligand ^a

NC 1a Fr +	PC1, K ₂ HP Ni(acac) ₂ , Acetone, <i>A</i> blue LED,	O ₄ L Ar rt NC 3a	
Entry	ligand	Yield (%)) ^b
1	L1	87	
2	L2	77	
3	L3	80	
4	L4	67	
'Bu			
L1	L2	L3 L	_4

^{*a*} Reaction conditions: **1a** (0.2 mmol), **2a** (0.4 mmol, 2.0 eqiuv), **PC1** (0.004 mmol, 2 mol%), Ni(acac)₂ (0.004 mmol, 2 mol%), **L** (0.004 mmol, 2 mol%), K₂HPO₄ (0.4 mmol, 2.0 equiv), acetone (3 mL). Then the mixture was stirred at room temperature in Ar atmosphere (1 atm) under 35 W blue LED light for 24 h at room temperature. ^{*b*} Isolated yields.

Table S6. Screening of base ^a

NC [~]	Br 1a	+ 2a	PC1, base Ni(acac) ₂ , L1 Acetone, Ar blue LED, rt	NC 3a
E	Entry	ba	ise	Yield (%) ^b
	1	K ₂ H	IPO ₄	87
	2	Cs_2CO_3		trace
	3	KH_2PO_4		59
	4	'BuONa		0
	5	pyridine		42
	6	Et ₃ N		0
	7	K_2CO_3		36

^{*a*} Reaction conditions: **1a** (0.2 mmol), **2a** (0.4 mmol, 2.0 eqiuv), **PC1** (0.004 mmol, 2 mol%), Ni(acac)₂ (0.004 mmol, 2 mol%), **L1** (0.004 mmol, 2 mol%), base (0.4 mmol, 2.0 equiv), acetone (3 mL). Then the mixture was stirred at room temperature in Ar atmosphere (1 atm) under 35 W blue LED light for 24 h at room temperature. ^{*b*} Isolated yields.

NC 1a	+ PC1, K ₂ HPO ₄ Ni(acac) ₂ , L1 Solvent, Ar blue LED, rt	NC 3a
Entry	solvent	Yield (%) ^b
1	acetone	87
2	CH ₃ CN	52
3	DMA	12
4	DMF	trace
5	1,4-dioxane	35
б	DCM	trace

 Table S7. Screening of solvent^a

^{*a*} Reaction conditions: **1a** (0.2 mmol), **2a** (0.4 mmol, 2.0 eqiuv), **PC1** (0.004 mmol, 2 mol%), Ni(acac)₂ (0.004 mmol, 2 mol%), **L1** (0.004 mmol, 2 mol%), K₂HPO₄ (0.4 mmol, 2.0 equiv), solvent (3 mL). Then the mixture was stirred at room temperature in Ar atmosphere (1 atm) under 35 W blue LED light for 24 h at room temperature. ^{*b*} Isolated yields.

2.3 Scale-up experiment

A 50 mL Schlenk tube was added **1a** (2.0 mmol), **2a** (4 mmol, 2.0 eqiuv), **PC1** (0.04 mmol, 2 mol%), Ni(acac)₂ (0.04 mmol, 2 mol%), **L1** (0.04 mmol, 2 mol%), K₂HPO₄ (4 mmol, 2.0 equiv), acetone (30 mL). Then the mixture was stirred at room temperature in argon atmosphere (1 atm) under 35 W blue LED light for 30 h. After the reaction was finished, the reaction mixture was washed with brine. The aqueous phase was re-extracted with EtOAc (3×10 mL). The combined organic extracts were dried over Na₂SO₄ and concentrated in vacuum. The residue was purified by silica gel flash column chromatography (hexane/ethyl acetate = 10 : 1) to afford the desired products **3a** in 71% yield.

3. Mechanistic studies

3.1 Radical trapping experiments

Three reactions of radical trapping experiments were performed. To an overdried Schlenk tube with a stir bar was added TEMPO (3.0 equiv, 0.6 mmol), BHT (3 equiv, 0.6 mmol) or 1,1-diphenylethene (3 equiv, 0.6 mmol), **1a** (0.2 mmol), **2a** (0.4 mmol, 2.0 equiv), **PC1** (0.004 mmol, 2 mol%), Ni(acac)₂ (0.004 mmol, 2 mol%), **L1** (0.004 mmol, 2 mol%), K₂HPO₄ (0.4 mmol, 2.0 equiv), acetone (3 mL). Then the mixture was stirred at room temperature in argon atmosphere (1 atm) under 35 W blue LED light for 24 h. The benzylation were completely quenched and no benzylation products were detected.

3.2 Benzyl radical trapping experiments

To a Schlenk tube was added **1a** (0.2 mmol), **6** (0.2 mmol, 1.0 eqiuv), **PC1** (0.004 mmol, 2 mol%), Ni(acac)₂ (0.004 mmol, 2 mol%), **L1** (0.004 mmol, 2 mol%), K₂HPO₄ (0.4 mmol, 2.0 equiv), NH₄Br (0.1 mmol, 0.5 equiv), acetone (3 mL). Then the mixture was stirred at room temperature in argon atmosphere (1 atm) under 35 W blue LED light for 24 h. Phenyl 4-(4-methoxyphenyl)butanoate (7) could be detected by GC-MS.

3.3 Kinetic isotope effect

To a Schlenk tube was added toluene (**2i**, 1 equiv), and toluene-d₈ (**2i-d**₈, 1.0 equiv), **1a** (0.2 mmol), **PC1** (0.004 mmol, 2 mol%), Ni(acac)₂ (0.004 mmol, 2 mol%), **L1** (0.004 mmol, 2 mol%), K₂HPO₄ (0.4 mmol, 2.0 equiv), acetone (3 mL). Then the mixture was stirred at room temperature in Ar atmosphere (1 atm) under 35 W blue LED light for 4 h. The aqueous phase was re-extracted with EtOAc (3×10 mL). The combined organic extracts were dried over Na₂SO₄ and concentrated in vacuum. The residue was purified by silica gel flash column chromatography (hexane/ethyl acetate = 10 : 1) to afford product **4i and 4i-d**₇ in 18% yield.

3.4 Time course reaction

.582

To an overdried Schlenk tube with a stir bar was added 1a (0.2 mmol), 2a (0.4 mmol, 2.0 eqiuv), PC1 (0.004 mmol, 2 mol%), Ni(acac)₂ (0.004 mmol, 2 mol%), L1 (0.004 mmol, 2 mol%), K₂HPO₄ (0.4 mmol, 2.0 equiv), acetone (3 mL). Dodecane (46 µL, 0.2 mmol, 1.0 equiv.) was added as an internal standard. Then the mixture was stirred at room temperature in argon atmosphere (1 atm) under 35 W blue LED light for 24 h. 100 µL of the reaction mixture was taken out at 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 18, 21, 24 h. The yield of 3a was determined by GC-MS with dodecane as an internal standard.

3.5 Stern–Volmer Quenching¹

Formulation solution: 4-Bromobenzonitrile (**1a**, 452.3 mg) was dissolved in acetone in a 25 mL volumetric flask to set the concentration to be 0.1 M. 1-methoxy-4-methylbenzene (**2a**, 315 μ L) was dissolved in acetone in a 25 mL volumetric flask to set the concentration to be 0.5 M. Ni(acac)₂ (6.4 mg) was dissolved in acetone in a 5 mL volumetric flask to set the concentration to be 0.05 M. L1 (6.7 mg) was dissolved in acetone in a 5 mL volumetric flask to set the concentration to be 0.05 M. Photocatalyst Ir[dF(CF₃)ppy]₂(dtbbpy)PF₆ (2.8 mg) was dissolved in acetone (25.0 mL) to set the concentration to be 0.1 mM.

Experimental procedure: The resulting 0.1 M solution (50 μ L) was added to cuvette to obtain different concentrations of catalyst solution. This solution was then diluted to a volume of 2.0 mL by adding further solvent (acetone) to prepare a 2.5 μ M solution. The resulting mixture was sparged with nitrogen for 3 minutes and then irradiated at 425 nm. Fluorescence emission spectra were recorded (3 trials per sample). Into this solution, 20.0 μ L of a 4-bromobenzonitrile solution was successively added and uniformly stirred, and the resulting mixture was bubbled with nitrogen for 3 minutes and irradiated at 375 nm. Fluorescence emission spectra of 0 μ L, 20.0 μ L, 60.0 μ L, 80.0 μ L, 100.0 μ L, fluorescence intensity. Follow this method and make changes to the amount to obtain the Stern–Volmer relationship in turn.

(a) $Ir[dF(CF_3)ppy]_2(dtbbpy)PF_6$ quenched by **1a** in acetone. Linear quenching is not observed.

(b) $Ir[dF(CF_3)ppy]_2(dtbbpy)PF_6$ quenched by **2a** in acetone. Linear quenching is not observed.

(d) Ir[dF(CF₃)ppy]₂(dtbbpy)PF₆ quenched by Ni(acac)₂ in acetone

The emission intensity of the $Ir[dF(CF_3)ppy]_2(dtbbpy)PF_6$ catalyst solution strongly affected by the gradual increase of the amount of **Ni(acac)**₂.

(e) Ir[dF(CF₃)ppy]₂(dtbbpy)PF₆ quenched by Ni(acac)₂•dtbbpy in acetone

The emission intensity of the $Ir[dF(CF_3)ppy]_2(dtbbpy)PF_6$ catalyst solution strongly affected by the gradual increase of the amount of **Ni(acac)_2•dtbbpy**.

(f) Ir[dF(CF₃)ppy]₂(dtbbpy)PF₆ quenched by **1a+Ni(acac)₂•dtbbpy** in acetone

The emission intensity of the $Ir[dF(CF_3)ppy]_2(dtbbpy)PF_6$ catalyst solution strongly affected by the gradual increase of the amount of $1a+Ni(acac)_2 + dtbbpy$.

(g) $Ir[dF(CF_3)ppy]_2(dtbbpy)PF_6$ quenched by NH₄Br in acetone

The emission intensity of the $Ir[dF(CF_3)ppy]_2(dtbbpy)PF_6$ catalyst solution strongly affected by the gradual increase of the amount of **NH4Br**. This result proved that this SET process could generate an active bromine radical via cleavage of Ni-Br bond.

3.6 UV-Vis spectra

30

20 10

Light

off

Light

off

4. Analytical data

4-(4-Methoxybenzyl)benzonitrile (3a)

Yield: 38.8 mg, 87%; colorless oil; ¹H NMR (400 MHz, CDCl₃) δ : 7.55 (d, *J* = 8.3 Hz, 2H), 7.26 (d, *J* = 8.0 Hz, 2H), 7.07 (d, *J* = 8.6 Hz, 2H), 6.84 (d, *J* = 8.6 Hz, 2H), 3.96 (s, 2H), 3.78 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 158.2, 147.2, 132.2, 131.3, 129.9, 129.4, 119.0, 114.0, 109.8, 55.2, 41.0.

These spectroscopic data correspond to reported data.^[2]

Methyl 4-(4-methoxybenzyl)benzoate (3b)

Yield: 44.1 mg, 86%; colorless oil; ¹H NMR (400 MHz, CDCl₃) δ : 1H NMR (400 MHz, Chloroform-d) δ 7.95 (d, *J* = 8.3 Hz, 2H), 7.24 (d, *J* = 8.1 Hz, 2H), 7.09 (d, *J* = 8.6 Hz, 2H), 6.84 (d, *J* = 8.6 Hz, 2H), 3.97 (s, 2H), 3.89 (s, 3H), 3.78 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 167.1, 158.1, 147.0, 132.2, 129.9, 129.8, 128.8, 128.0, 114.0, 55.2, 52.0, 41.00.

These spectroscopic data correspond to reported data.^[2]

4-(4-Methoxybenzyl)benzaldehyde (3c)

Yield: 37.5 mg, 83%; white solid; mp 77-78 °C (uncorrected); ¹H NMR (400 MHz, CDCl₃) δ : 9.96 (s, 1H), 7.79 (d, J = 8.1 Hz, 2H), 7.33 (d, J = 7.9 Hz, 2H), 7.10 (d, J = 8.6 Hz, 2H), 6.85 (d, J = 8.6 Hz, 2H), 3.99 (s, 2H), 3.78 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ : 192.0, 158.2, 148.9, 134.5, 131.8, 130.0, 129.9, 129.4, 114.0, 55.2, 41.2. HRMS (ESI) m/z calcd for C₁₅H₁₄O₂Na⁺ (M+Na)⁺ 249.0886, found 249.0904.

1-Methoxy-4-(4-(methylsulfonyl)benzyl)benzene (3d)

Yield: 43.1 mg, 78%; white solid; mp 85-88 °C (uncorrected); ¹H NMR (400 MHz, CDCl₃) δ : 7.84 (d, *J* = 8.3 Hz, 2H), 7.36 (d, *J* = 8.2 Hz, 2H), 7.09 (d, *J* = 8.6 Hz, 2H), 6.85 (d, *J* = 8.6 Hz, 2H), 4.00 (s, 2H),

3.79 (s, 3H), 3.03 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ: 158.3, 148.2, 138.2, 131.4, 129.9, 129.6, 127.6,

114.1, 55.3, 44.6, 40.9.

These spectroscopic data correspond to reported data.^[3]

(4-(4-Methoxybenzyl)phenyl)(phenyl)methanone (3e)

Yield: 56.8 mg, 94%; white solid; mp 63-65 °C (uncorrected); ¹H NMR (400 MHz, CDCl₃) δ : 7.77 (d, *J* = 7.2 Hz, 2H), 7.73 (d, *J* = 8.1 Hz, 2H), 7.56 (t, *J* = 7.4 Hz, 1H), 7.45 (t, *J* = 7.6 Hz, 2H), 7.27 (d, *J* = 8.1 Hz, 2H), 7.12 (d, *J* = 8.5 Hz, 2H), 6.85 (d, *J* = 8.6 Hz, 2H), 3.99 (s, 2H), 3.77 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 196.4, 158.1, 146.6, 137.7, 135.3, 132.2, 132.1, 130.4, 129.9, 129.9, 128.6, 128.1, 113.9, 55.2, 41.0. HRMS (ESI) m/z calcd for C₂₁H₁₈O₂Na⁺ (M+Na)⁺ 325.1199, found 325.1220.

1-(4-(4-Methoxybenzyl)phenyl)ethan-1-one (3f)

Yield: 43.7 mg, 91%; white solid; mp 88-91 °C (uncorrected); ¹H NMR (400 MHz, CDCl₃) δ: 7.87 (d, *J* = 8.3 Hz, 2H), 7.25 (d, *J* = 8.3 Hz, 2H), 7.08 (d, *J* = 8.6 Hz, 2H), 6.83 (d, *J* = 8.6 Hz, 2H), 3.96 (s, 2H), 3.77 (s, 3H), 2.56 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ: 197.8, 158.1, 147.2, 135.1, 132.0, 129.8, 128.9, 128.6, 114.0, 55.2, 40.9, 26.5.

These spectroscopic data correspond to reported data.^[2]

3-Chloro-4-(4-methoxybenzyl)benzonitrile (3g)

Yield: 36.0 mg, 70%; coloress oil; ¹H NMR (400 MHz, CDCl₃) δ : 7.54 (d, *J* = 8.0 Hz, 1H), 7.29 (s, 1H), 7.16 (d, *J* = 7.4 Hz, 1H), 7.07 (d, *J* = 8.6 Hz, 2H), 6.85 (d, *J* = 8.6 Hz, 2H), 3.94 (s, 2H), 3.78 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 158.4, 148.9, 136.7, 133.8, 130.4, 130.0, 129.9, 127.5, 116.1, 114.2, 110.7, 55.2, 40.7. HRMS (ESI) m/z calcd for C₁₅H₁₂ONClNa⁺ (M+Na)⁺ 280.0500, found 280.0506.

2-(4-Methoxybenzyl)benzonitrile (3h)

Yield: 27.7 mg, 62%; colorless oil; ¹H NMR (400 MHz, CDCl₃) δ: 7.61 (d, *J* = 7.7 Hz, 1H), 7.48 (t, *J* = 7.7 Hz, 1H), 7.30-7.25 (m, 2H), 7.15 (d, *J* = 8.6 Hz, 2H), 6.84 (d, *J* = 8.6 Hz, 2H), 4.14 (s, 2H), 3.77 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ: 163.1, 158.3, 150.1, 144.4, 130.6, 130.1, 126.2, 124.6, 123.2, 121.6, 114.1, 55.2, 43.5.

These spectroscopic data correspond to reported data.^[2]

4-(4-Methoxybenzyl)-1,1'-biphenyl (3i)

Yield: 33.4 mg, 61%; white solid; mp 74-75 °C (uncorrected); ¹H NMR (400 MHz, CDCl₃) δ: 7.56 (d, *J* = 7.4 Hz, 2H), 7.50 (d, *J* = 8.0 Hz, 2H), 7.41 (t, *J* = 7.7 Hz, 2H), 7.31 (t, *J* = 7.3 Hz, 1H), 7.24 (d, *J* = 8.0 Hz, 2H), 7.14 (d, *J* = 8.5 Hz, 2H), 6.84 (d, *J* = 8.5 Hz, 2H), 3.96 (s, 2H), 3.78 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ: 157.9, 141.0, 140.7, 138.9, 133.1, 129.9, 129.2, 128.7, 127.2, 127.0, 113.9, 113.6, 55.2, 40.6.

These spectroscopic data correspond to reported data.^[2]

1-Methoxy-4-(4-methylbenzyl)benzene (3j)

Yield: 10.1 mg, 24%; coloress oil; ¹H NMR (400 MHz, CDCl₃) δ: 7.14-7.01 (m, 6H), 6.82 (d, *J* = 8.5 Hz, 2H), 3.88 (s, 2H), 3.77 (s, 3H), 2.30 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ: 157.8, 138.5, 135.4, 133.5, 129.7, 129.1, 128.6, 113.8, 55.2, 40.6, 21.0.

These spectroscopic data correspond to reported data.^[4]

1-Methoxy-4-(4-phenoxybenzyl)benzene (3k)

Yield: 31.3 mg, 54%; colorless oil; ¹H NMR (400 MHz, CDCl₃) δ : 7.30 (t, J = 8.0 Hz, 2H), 7.11 (t, J = 8.

7.9 Hz, 4H), 7.06 (t, J = 7.4 Hz, 1H), 6.98 (d, J = 7.7 Hz, 2H), 6.92 (d, J = 8.5 Hz, 2H), 6.84 (d, J = 8.6 Hz, 2H), 3.89 (s, 2H), 3.78 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 158.0, 157.5, 155.3, 136.6, 133.3, 130.0, 129.8, 129.6, 122.9, 119.0, 118.6, 113.9, 55.2, 40.3. HRMS (ESI) m/z calcd for C₂₀H₁₈O₂Na⁺ (M+Na)⁺ 313.1199, found 313.1202.

(4-(4-Methoxybenzyl)phenyl)(methyl)sulfane (3l)

Yield: 30.3 mg, 62%; white solid; mp 74-76 °C (uncorrected); ¹H NMR (400 MHz, CDCl₃) δ: 7.19 (d, *J* = 8.3 Hz, 2H), 7.10 (d, *J* = 8.0 Hz, 2H), 7.09 (d, *J* = 7.6 Hz, 2H), 6.83 (d, *J* = 8.6 Hz, 2H), 3.88 (s, 2H), 3.78 (s, 3H), 2.46 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ: 157.9, 138.7, 135.5, 133.1, 129.8, 129.3, 127.1, 113.9, 55.2, 40.4, 16.2.

These spectroscopic data correspond to reported data.^[4]

6-(4-Methoxybenzyl)-2,3-dihydro-1*H*-inden-1-one (3m)

Yield: 39.3 mg, 78%; coloress oil; ¹H NMR (400 MHz, CDCl₃) δ : 7.57 (s, 1H), 7.39 (q, J = 7.9 Hz, 2H), 7.08 (d, J = 8.6 Hz, 2H), 6.82 (d, J = 8.6 Hz, 2H), 3.95 (s, 2H), 3.6 (s, 3H), 3.13 – 3.03 (m, 2H), 2.72 – 2.63 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ : 207.1, 158.0, 153.1, 141.1, 137.3, 135.5, 132.5, 129.7, 126.6, 123.4, 113.9, 55.2, 40.6, 36.5, 25.4. HRMS (ESI) m/z calcd for C₁₇H₁₆ONa⁺ (M+Na)⁺ 275.1043, found 275.1048.

6-(4-Methoxybenzyl)isobenzofuran-1(3H)-one (3n)

Yield: 43.2 mg, 85%; white solid; mp 59-61 °C (uncorrected); ¹H NMR (400 MHz, CDCl₃) δ: 7.81 (d, *J* = 7.9 Hz, 1H), 7.36 (d, *J* = 7.9 Hz, 1H), 7.25 (s, 1H), 7.10 (d, *J* = 8.5 Hz, 2H), 6.86 (d, *J* = 8.6 Hz, 2H), 5.24 (s, 2H), 4.04 (s, 2H), 3.79 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ: 171.0, 158.3, 148.8, 147.1, 131.5, 129.9, 129.8, 125.6, 123.6, 122.0, 114.1, 69.4, 55.2, 41.2.

These spectroscopic data correspond to reported data.^[11]

2-(4-Methoxybenzyl)naphthalene (30)

Yield: 39.7 mg, 80%; white solid; mp 67-69 °C (uncorrected); ¹H NMR (400 MHz, CDCl₃) δ: 7.83-7.69 (m, 3H), 7.60 (s, 1H), 7.45-7.38 (m, 2H), 7.29 (d, *J* = 8.5 Hz, 1H), 7.13 (d, *J* = 8.2 Hz, 2H), 6.82 (d, *J* = 7.9 Hz, 2H), 4.06 (s, 2H), 3.75 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ: 158.0, 139.0, 133.6, 133.0, 132.0, 129.9, 128.0, 127.6, 127.5, 127.5, 126.9, 125.9, 125.2, 113.9, 55.2, 41.2.

These spectroscopic data correspond to reported data.^[5]

4,4'-bis(4-methoxybenzyl)-1,1'-biphenyl (3p)

Yield: 53.6 mg, 68%; white solid; mp 95-98 °C (uncorrected); ¹H NMR (400 MHz, CDCl₃) δ : 7.47 (d, *J* = 8.0 Hz, 4H), 7.22 (d, *J* = 7.9 Hz, 4H), 7.13 (d, *J* = 8.5 Hz, 4H), 6.84 (d, *J* = 8.6 Hz, 4H), 3.95 (s, 4H), 3.78 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ : 157.9, 140.5, 138.7, 133.1, 129.9, 129.1, 127.0, 113.9, 55.2, 40.6. HRMS (ESI) m/z calcd for C₂₈H₂₆O₂Na⁺ (M+Na)⁺ 417.1825, found 417.1829.

2,7-bis(4-methoxybenzyl)naphthalene (3q)

Yield: 53.8 mg, 73%; white solid; mp 101-103 °C (uncorrected); ¹H NMR (400 MHz, CDCl₃) δ : 7.69 (d, J = 8.4 Hz, 2H), 7.51 (d, J = 1.6 Hz, 2H), 7.23 (d, J = 8.4 Hz, 2H), 7.12 (d, J = 8.6 Hz, 4H), 6.82 (d, J = 8.6 Hz, 4H), 4.04 (s, 4H), 3.76 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ : 157.9, 139.2, 133.7, 133.1, 130.6, 129.9, 127.7, 127.0, 126.6, 113.8, 55.2, 41.2. HRMS (ESI) m/z calcd for C₂₆H₂₄O₂Na⁺ (M+Na)⁺ 391.1669, found 391.1674.

2-(4-methoxybenzyl)pyridine (3r)

Yield: 30.7 mg, 77%; coloress oil, ¹H NMR (400 MHz, CDCl₃) δ: 8.47 (d, *J* = 4.6 Hz, 1H), 7.50 (td, *J* = 7.7, 1.9 Hz, 1H), 7.12 (d, *J* = 8.6 Hz, 2H), 7.02 (d, *J* = 7.6 Hz, 2H), 6.78 (d, *J* = 8.6 Hz, 2H), 4.03 (s, 2H),

3.71 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ: 161.3, 158.1, 149.2, 136.5, 131.5, 130.0, 122.9, 121.1,

114.0, 55.2, 43.7.

These spectroscopic data correspond to reported data.^[3]

2-(4-Methoxybenzyl)-5-(trifluoromethyl)pyridine (3s)

Yield: 33.7 mg, 63%; yellow oil; ¹H NMR (400 MHz, CDCl₃) δ : 8.81 (s, 1H), 7.80 (d, J = 8.4 Hz, 1H), 7.22 (d, J = 8.2 Hz, 1H), 7.18 (d, J = 8.5 Hz, 2H), 6.86 (d, J = 8.6 Hz, 2H), 4.17 (s, 2H), 3.79 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 165.4, 158.4, 146.1 (q, J = 12.3 Hz, 1C), 133.6 (q, J = 10.4 Hz, 1C), 130.3, 130.1, 124.5, 123.3, 122.3, 114.2, 55.2, 43.7.

These spectroscopic data correspond to reported data.^[6]

4-chloro-2-(4-methoxybenzyl)pyridine (3t)

Yield: 31.7 mg, 68%; coloress oil; ¹H NMR (400 MHz, CDCl₃) δ : 8.53 (s, 1H), 7.67 (d, *J* = 8.5 Hz, 1H), 7.22 (d, *J* = 8.2 Hz, 1H), 7.20 (d, *J* = 8.6 Hz, 2H), 6.81 (d, *J* = 8.6 Hz, 2H), 4.16 (s, 2H), 3.79 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 161.3, 158.1, 149.2, 136.5, 131.5, 130.0, 122.9, 121.1, 114.0, 55.2, 43.7. These spectroscopic data correspond to reported data.^[6]

2-(4-Methoxybenzyl)-3-methylpyridine (3u)

Yield: 22.6 mg, 53%; coloress oil; ¹H NMR (400 MHz, CDCl₃) δ: 8.42 (d, *J* = 4.1 Hz, 1H), 7.41 (d, *J* = 8.6 Hz, 1H), 7.11 (d, *J* = 8.6 Hz, 2H), 7.08 (dd, *J* = 7.6, 4.9 Hz, 1H), 6.80 (d, *J* = 8.6 Hz, 2H), 4.13 (s, 2H), 3.76 (s, 3H), 2.24 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ: 159.0, 157.9, 146.6, 138.1, 131.7, 131.0, 129.6, 121.6, 113.8, 55.2, 41.2, 18.9.

These spectroscopic data correspond to reported data.^[9]

3-(4-Methoxybenzyl)pyridine (3v)

Yield: 29.9 mg, 75%; coloress oil, ¹H NMR (400 MHz, CDCl₃) δ: 8.48 (s, 1H), 8.43 (d, *J* = 4.5 Hz, 1H), 7.43 (d, *J* = 7.6 Hz, 1H), 7.17 (dd, *J* = 7.7, 4.9 Hz, 1H), 7.08 (d, *J* = 8.4 Hz, 2H), 6.83 (d, *J* = 8.6 Hz, 2H), 3.90 (s, 2H), 3.76 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ: 158.1, 149.9, 147.3, 136.8, 136.1, 131.7, 129.7, 123.3, 113.9, 55.1, 38.0.

These spectroscopic data correspond to reported data.^[9]

4-(4-Methoxybenzyl)pyridine (3w)

Yield: 26.7 mg, 67%; coloress oil, ¹H NMR (400 MHz, CDCl₃) δ: 8.48 (d, *J* = 5.9 Hz, 2H), 7.10 (s, 2H), 7.08 (d, *J* = 2.7 Hz, 2H), 6.86 (d, *J* = 8.7 Hz, 2H), 3.91 (s, 2H), 3.79 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ: 158.3, 150.6, 149.6, 130.8, 123.0, 124.1, 114.0, 55.2, 40.3.

These spectroscopic data correspond to reported data.^[8]

4-(4-Methoxybenzyl)-2,6-dimethylpyridine (3x)

Yield: 30.0 mg, 66%; coloress oil, ¹H NMR (400 MHz, CDCl₃) δ : 7.09 (d, J = 8.5 Hz, 2H), 6.85 (d, J = 8.6 Hz, 2H), 6.77 (s, 2H), 3.82 (s, 2H), 3.79 (s, 3H), 2.48 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ : 158.2, 157.5, 151.1, 131.3, 129.9, 120.7, 114.0, 55.2, 40.3, 24.2. HRMS (ESI) m/z calcd for C₁₅H₁₈ON (M+H)⁺ 228.1383, found 228.1391.

2-Chloro-5-(4-methoxybenzyl)pyrimidine (3y)

Yield: 27.6 mg, 59%; white solid; mp 73-75 °C (uncorrected); ¹H NMR (400 MHz, CDCl₃) δ: 8.44 (s,

2H), 7.08 (d, J = 8.6 Hz, 2H), 6.87 (d, J = 8.6 Hz, 2H), 3.90 (s, 2H), 3.80 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 159.5, 159.3, 158.6, 133.3, 129.7, 129.7, 114.4, 55.3, 34.8. HRMS (ESI) m/z calcd for C₁₂H₁₂ON₂Cl (M+H)⁺ 235.0633, found 235.0655.

6-(4-Methoxybenzyl)quinoline (3z)

Yield: 31.9 mg, 64%; yellow solid; mp 63-65 °C (uncorrected); ¹H NMR (400 MHz, CDCl₃) δ : 8.84 (d, J = 4.2 Hz, 1H), 8.03 (t, J = 9.9 Hz, 2H), 7.54 (d, J = 6.9 Hz, 2H), 7.33 (dd, J = 8.3, 4.2 Hz, 1H), 7.13 (d, J = 8.6 Hz, 2H), 6.84 (d, J = 8.6 Hz, 2H), 4.09 (s, 2H), 3.77 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 158.1, 149.7, 147.0, 140.0, 135.6, 132.4, 131.1, 129.9, 129.3, 128.2, 126.5, 121.0, 113.9, 55.2, 40.9. These spectroscopic data correspond to reported data.^[3]

6-(4-Methoxybenzyl)-2-methylbenzo[d]thiazole (3aa)

Yield: 27.4 mg, 51%; white solid; mp 68-71 °C (uncorrected); ¹H NMR (400 MHz, CDCl₃) δ : 7.75 (s, 1H), 7.70 (d, J = 8.2 Hz, 1H), 7.17 (d, J = 8.0 Hz, 1H), 7.13 (d, J = 8.6 Hz, 2H), 6.83 (d, J = 8.6 Hz, 2H), 4.05 (s, 2H), 3.77 (s, 3H), 2.81 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 167.2, 158.0, 153.8, 139.9, 133.2, 133.0, 129.9, 125.9, 122.3, 121.1, 113.9, 55.3, 40.9, 20.1. HRMS (ESI) m/z calcd for C₁₆H₁₆ONS (M+H)⁺ 270.0947, found 270.0952.

Methyl 2,6-bis(4-methoxybenzyl)isonicotinate (3ab)

Yield: 21.1 mg, 28%; white solid; mp 88-90 °C (uncorrected); ¹H NMR (400 MHz, CDCl₃) δ : 7.44 (s, 2H), 7.19 (d, *J* = 8.6 Hz, 4H), 6.85 (d, *J* = 8.6 Hz, 4H), 4.15 (s, 4H), 3.84 (s, 3H), 3.79 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ : 165.9, 162.0, 158.2, 138.4, 131.1, 130.5, 119.6, 114.0, 55.2, 52.4, 43.6. HRMS (ESI) m/z calcd for C₂₃H₂₃NO₄Na⁺ (M+Na)⁺ 400.1519, found 400.1528.

4-(4-Methylbenzyl)benzonitrile (4a)

Yield: 33.1 mg, 80%; coloress oil; ¹H NMR (400 MHz, CDCl₃) δ : 7.53 (d, *J* = 8.2 Hz, 2H), 7.26 (d, *J* = 8.0 Hz, 2H), 7.11 (d, *J* = 7.8 Hz, 2H), 7.04 (d, *J* = 7.9 Hz, 2H), 3.97 (s, 2H), 2.31 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 147.0, 136.2, 136.1, 132.1, 129.5, 129.3, 128.7, 119.0, 109.8, 41.4, 20.9.

These spectroscopic data correspond to reported data.^[7]

4-(4-(*tert*-Butyl)benzyl)benzonitrile (4c)

Yield: 41.9 mg, 84%; coloress oil; ¹H NMR (400 MHz, CDCl₃) δ : 7.56 (d, *J* = 8.2 Hz, 2H), 7.33 (d, *J* = 8.2 Hz, 2H), 7.29 (d, *J* = 8.1 Hz, 2H), 7.08 (d, *J* = 8.1 Hz, 2H), 3.99 (s, 2H), 1.30 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ : 149.5, 146.9, 136.2, 132.2, 129.6, 128.5, 125.6, 119.0, 109.8, 41.4, 34.4, 31.3. These spectroscopic data correspond to reported data.^[6]

4-(4-Isopropoxybenzyl)benzonitrile (4d)

Yield: 44.2 mg, 88%; coloress oil; ¹H NMR (400 MHz, CDCl₃) δ: 7.54 (d, *J* = 8.2 Hz, 2H), 7.26 (d, *J* = 8.3 Hz, 2H), 7.04 (d, *J* = 8.6 Hz, 2H), 6.82 (d, *J* = 8.6 Hz, 2H), 4.50 (p, *J* = 6.0 Hz, 1H), 3.95 (s, 2H), 1.32 (s, 3H), 1.31 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ: 156.6, 147.2, 132.2, 131.1, 129.9, 129.5, 119.0, 116.0, 109.8, 69.8, 41.0, 22.0.

These spectroscopic data correspond to reported data.^[9]

4-(4-(2-Chloroethoxy)benzyl)benzonitrile (4e)

Yield: 44.5 mg, 82%; coloress oil; ¹H NMR (400 MHz, CDCl₃) δ : 7.55 (d, *J* = 8.3 Hz, 2H), 7.26 (d, *J* = 8.0 Hz, 2H), 7.07 (d, *J* = 8.6 Hz, 2H), 6.86 (d, *J* = 8.6 Hz, 2H), 4.20 (t, *J* = 5.9 Hz, 2H), 3.97 (s, 2H), 3.79 (t, *J* = 5.9 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ : 156.9, 147.0, 132.2, 132.2, 130.0, 129.5, 118.9, 115.0, 109.9, 68.1, 41.9, 41.0. HRMS (ESI) m/z calcd for C₁₆H₁₄ONClNa⁺ (M+Na)⁺ 294.0656, found 294.0671.

4-(4-Fluorobenzyl)benzonitrile (4f)

Yield: 28.7 mg, 68%; white solid; mp 77-78 °C (uncorrected); ¹H NMR (400 MHz, CDCl₃) δ: 7.58 (d, *J* = 8.2 Hz, 2H), 7.26 (d, *J* = 8.1 Hz, 2H), 7.12 (dd, *J* = 8.5, 5.4 Hz, 2H), 7.00 (t, *J* = 8.7 Hz, 2H), 4.01 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ: 161.2 (d, *J* = 243.5 Hz), 146.5, 134.9 (d, *J* = 3.3 Hz), 132.3, 130.4 (d, *J* = 7.9 Hz), 129.5, 118.9, 115.6 (d, *J* = 21.2 Hz), 110.1, 41.1.

These spectroscopic data correspond to reported data.^[9]

4-(4-Chlorobenzyl)benzonitrile (4g)

Yield: 30.0 mg, 66%; white solid; mp 74-76 °C (uncorrected); ¹H NMR (400 MHz, CDCl₃) δ : 7.58 (d, *J* = 8.2 Hz, 2H), 7.27 (t, *J* = 7.6 Hz, 4H), 7.09 (d, *J* = 8.3 Hz, 2H), 4.00 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ : 146.1, 137.7, 132.5, 132.4, 130.2, 129.5, 128.8, 118.8, 110.2, 41.2.

These spectroscopic data correspond to reported data.^[7]

Methyl 4-(4-cyanobenzyl)benzoate (4h)

Yield: 23.1 mg, 46%; yellow solid; mp 63-65 °C (uncorrected); ¹H NMR (400 MHz, CDCl₃) δ: 7.98 (d, *J* = 8.2 Hz, 2H), 7.59 (d, *J* = 8.2 Hz, 2H), 7.28 (d, *J* = 8.6 Hz, 2H), 7.23 (d, *J* = 8.2 Hz, 2H), 4.09 (s, 2H), 3.91 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ: 166.8, 145.6, 144.5, 132.4, 130.1, 129.6, 129.0, 128.7, 118.8, 110.4, 52.1, 41.9.

These spectroscopic data correspond to reported data.^[3]

4-Benzylbenzonitrile (4i)

Yield: 20.9 mg, 54%; colorless oil; ¹H NMR (400 MHz, CDCl₃) δ: 7.57 (d, *J* = 8.3 Hz, 2H), 7.31 (d, *J* = 7.9 Hz, 3H), 7.26 (t, *J* = 6.7 Hz, 2H), 7.16 (d, *J* = 7.0 Hz, 2H), 4.03 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ: 146.7, 139.3, 132.3, 129.6, 128.9, 128.7, 126.7, 119.0, 110.0, 42.0.

These spectroscopic data correspond to reported data.^[7]

4-(3,5-Dimethylbenzyl)benzonitrile (4j)

Yield: 34.1 mg, 77%; colorless oil; ¹H NMR (400 MHz, CDCl₃) δ: 7.56 (d, *J* = 8.1 Hz, 2H), 7.28 (d, *J* = 8.1 Hz, 2H), 6.87 (s, 1H), 6.77 (s, 2H), 3.94 (s, 2H), 2.28 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ: 147.0, 139.2, 138.3, 132.2, 129.6, 128.2, 126.7, 119.0, 109.8, 41.8, 21.2.

These spectroscopic data correspond to reported data.^[7]

4-(2-Methylbenzyl)benzonitrile (4k)

Yield: 26.9 mg, 65%; colorless oil; ¹H NMR (400 MHz, CDCl₃) δ : 7.55 (d, *J* = 8.2 Hz, 2H), 7.24-7.15 (m, 5H), 7.10-7.07 (m, 1H), 4.04 (s, 2H), 2.19 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 146.1, 137.1, 136.5, 132.2, 130.5, 130.0, 129.3, 127.0, 126.2, 119.0, 109.8, 39.5, 19.6.

These spectroscopic data correspond to reported data.^[7]

4-(3-Methylbenzyl)benzonitrile (4l)

Yield: 30.2 mg, 73%; colorless oil; ¹H NMR (400 MHz, CDCl₃) δ: 7.55 (d, *J* = 8.2 Hz, 2H), 7.27 (d, *J* = 8.1 Hz, 2H), 7.20 (t, *J* = 7.5 Hz, 1H), 7.05 (d, *J* = 7.6 Hz, 1H), 6.95 (d, *J* = 8.2 Hz, 2H), 3.98 (s, 2H), 2.31 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ: 146.8, 139.2, 138.4, 132.2, 129.7, 129.6, 128.6, 127.3, 125.9, 119.0, 109.8, 41.8, 21.3.

These spectroscopic data correspond to reported data.^[7]

4-(Thiophen-2-ylmethyl)benzonitrile (4m)

Yield: 31.1 mg, 78%; colorless oil; ¹H NMR (400 MHz, CDCl₃) δ: 7.59 (d, *J* = 8.2 Hz, 2H), 7.34 (d, *J* = 8.1 Hz, 2H), 7.18 (d, *J* = 6.2 Hz, 1H), 6.95 (dd, *J* = 5.2, 3.4 Hz, 1H), 6.81 (dd, *J* = 3.4, 1.2 Hz, 1H), 4.21 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ: 145.8, 141.6, 132.3, 129.3, 127.0, 125.8, 124.6, 118.8, 110.4, 35.9.

These spectroscopic data correspond to reported data.^[10]

2-(4-(4-Cyanobenzyl)phenoxy)ethyl acetate (4n)

Yield: 41.3 mg, 70%; colorless oil; ¹H NMR (400 MHz, CDCl₃) δ : 7.56 (d, J = 8.2 Hz, 2H), 7.26 (d, J = 8.2 Hz, 2H), 7.08 (d, J = 8.6 Hz, 2H), 6.86 (d, J = 8.6 Hz, 2H), 4.41 (t, J = 8.8 Hz, 2H), 4.15 (t, J = 8.3 Hz, 2H), 3.97 (s, 2H), 2.09 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 170.9, 157.1, 147.0, 132.2, 131.9, 129.9, 129.4, 118.9, 114.8, 109.8, 65.9, 62.7, 41.0, 20.8. HRMS (ESI) m/z calcd for C₁₈H₁₇O₃NNa⁺ (M+Na)⁺ 318.1101, found 318.1108.

2-(4-(4-Cyanobenzyl)phenoxy)ethyl benzoate (40)

Yield: 52.1 mg, 73%; colorless oil; ¹H NMR (400 MHz, CDCl₃) δ : 8.05 (d, *J* = 7.1 Hz, 2H), 7.60-7.51 (m, 3H), 7.42 (t, *J* = 7.7 Hz, 2H), 7.25 (d, *J* = 8.3 Hz, 2H), 7.08 (d, *J* = 8.6 Hz, 2H), 6.89 (d, *J* = 8.6 Hz, 2H), 4.66 (t, *J* = 8.8 Hz, 2H), 4.29 (t, *J* = 8.8 Hz, 2H), 3.97 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ : 166.5, 157.3, 147.1, 133.1, 132.2, 131.9, 130.0, 129.8, 129.7, 129.5, 128.3, 118.9, 114.9, 109.9, 66.1, 63.2, 41.0. HRMS (ESI) m/z calcd for C₂₃H₁₉O₃NNa⁺ (M+Na)⁺ 380.1257, found 380.1261.

4-(4-Methoxybenzyl)phenyl (S)-2-(6-methoxynaphthalen-2-yl)propanoate (5a)

Yield: 55.4 mg, 65%; colorless oil; ¹H NMR (400 MHz, CDCl₃) δ : 7.75 (s, 1H), 7.74-7.67 (t, *J* = 8.0 Hz, 2H), 7.48 (d, *J* = 8.5 Hz, 1H), 7.16-7.11 (m, 2H), 7.09 (d, *J* = 8.5 Hz, 2H), 7.04 (d, *J* = 8.6 Hz, 2H), 6.88 (d, *J* = 8.4 Hz, 2H), 6.79 (d, *J* = 8.6 Hz, 2H), 4.06 (q, *J* = 7.1 Hz, 1H), 3.89 (s, 3H), 3.86 (s, 2H), 3.74 (s, 3H), 1.67 (d, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 173.2, 157.9, 157.7, 149.0, 139.0, 135.1, 133.7, 132.8, 129.8, 129.6, 129.3, 128.9, 127.3, 126.1, 121.2, 12.1, 119.0, 113.8, 105.5, 55.2, 55.2, 45.5, 40.3, 18.5. HRMS (ESI) m/z calcd for C₂₈H₂₆O₄Na⁺ (M+Na)⁺ 449.1723, found 449.1731.

Pyridin-3-ylmethyl 4-(4-methoxybenzyl)benzoate (5b)

Yield: 47.3 mg, 71%; white solid; mp 91-93 °C (uncorrected); ¹H NMR (400 MHz, CDCl₃) δ : 8.71 (s, 1H), 8.59 (s, 1H), 7.97 (d, J = 8.2 Hz, 2H), 7.77 (d, J = 7.9 Hz, 1H), 7.33-7.30 (m, 1H), 7.25 (d, J = 8.1 Hz, 2H), 7.08 (d, J = 8.5 Hz, 2H), 6.83 (d, J = 8.6 Hz, 2H), 5.36 (s, 2H), 3.97 (s, 2H), 3.78 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 166.2, 158.1, 149.5, 147.5, 135.9, 132.0, 131.8, 129.9, 129.8, 128.9, 128.8, 127.4, 123.5, 114.0, 63.9, 55.2, 41.0. HRMS (ESI) m/z calcd for C₂₁H₁₉NO₃Na⁺ (M+Na)⁺ 356.1257, found 356.1266.

4-(4-Methoxybenzyl)phenyl 2-(4-((2-oxocyclopentyl)methyl)phenyl)propanoate (5c)

Yield: 60.1 mg, 68%; colorless oil; ¹H NMR (400 MHz, CDCl₃) δ : 7.30 (d, J = 7.9 Hz, 2H), 7.15 (d, J = 7.9 Hz, 2H), 7.12 (d, J = 8.3 Hz, 2H), 7.06 (d, J = 8.3 Hz, 2H), 6.90 (d, J = 8.2 Hz, 2H), 6.81 (d, J = 8.5 Hz, 2H), 3.92 (d, J = 7.2 Hz, 1H), 3.89 (s, 2H), 3.77 (s, 3H), 3.14 (dd, J = 13.8, 4.0 Hz, 1H), 2.52 (dd, J = 13.8, 9.5 Hz, 1H), 2.34 (dd, J = 18.7, 9.2 Hz, 2H), 2.16-2.05 (m, 2H), 2.00-1.92 (m, 1H), 1.76-1.70 (m, 1H), 1.64 (d, J = 3.6 Hz, 1H), 1.58 (d, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 220.1, 173.1, 158.0, 149.0, 139.1, 139.0, 137.9, 132.9, 130.0, 129.6, 129.2, 127.5, 121.2, 113.8, 55.2, 50.9, 45.2, 40.3, 38.1, 35.2, 29.2, 20.5, 18.5.

HRMS (ESI) m/z calcd for $C_{29}H_{30}O_4Na^+$ (M+Na)⁺ 465.2036, found 465.2044.

2-(4-(4-Cyanobenzyl)phenoxy)ethyl 2-(3-benzoylphenyl)propanoate (5d)

Yield: 70.4 mg, 72%; colorless oil; ¹H NMR (400 MHz, CDCl₃) δ : 7.76 (d, *J* = 8.4 Hz, 3H), 7.65 (d, *J* = 7.7 Hz, 1H), 7.58 (d, *J* = 7.4 Hz, 1H), 7.55 (d, *J* = 2.7 Hz, 3H), 7.46 (t, *J* = 7.6 Hz, 2H), 7.40 (t, *J* = 7.7 Hz, 1H), 7.24 (d, *J* = 8.3 Hz, 2H), 7.03 (d, *J* = 8.6 Hz, 2H), 6.78 (d, *J* = 8.6 Hz, 2H), 4.49-4.34 (m, 2H),

4.10 (t, J = 4.8 Hz, 2H), 3.94 (s, 2H), 3.84 (q, J = 7.1 Hz, 1H), 1.54 (d, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 196.3, 173.9, 157.1, 147.0, 140.5, 137.8, 137.4, 132.4, 132.2, 131.9, 131.4, 130.0, 129.9, 129.4, 129.1, 129.0, 128.5, 128.2, 118.9, 114.8, 109.9, 65.8, 63.1, 45.2, 41.0, 18.4. HRMS (ESI) m/z calcd for C₃₂H₂₇NO₄Na⁺ (M+Na)⁺ 512.1832, found 512.1833.

2-(4-(4-Cyanobenzyl)phenoxy)ethyl 2-(2-fluoro-[1,1'-biphenyl]-4-yl)propanoate (5e)

Yield: 76.7 mg, 80%; colorless oil; ¹H NMR (400 MHz, CDCl₃) δ : 7.57-7.47 (m, 4H), 7.43 (t, *J* = 7.4 Hz, 2H), 7.37 (d, *J* = 7.2 Hz, 1H), 7.34 (d, *J* = 7.9 Hz, 1H), 7.23 (d, *J* = 8.3 Hz, 2H), 7.16-7.11 (m, 2H), 7.04 (d, *J* = 8.6 Hz, 2H), 6.81 (d, *J* = 8.6 Hz, 2H), 4.45 (td, *J* = 4.5, 2.6 Hz, 2H), 4.13 (t, *J* = 4.7 Hz, 2H), 3.94 (s, 2H), 3.79 (q, *J* = 7.1 Hz, 1H), 1.54 (d, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 173.8, 159.6 (d, *J* = 246.9 Hz), 157.2, 147.0, 141.5 (d, *J* = 7.6 Hz), 135.4, 132.2, 131.9, 130.7 (d, *J* = 3.8 Hz), 129.9, 129.4, 128.9, 128.8, 128.4, 127.6, 123.5 (d, *J* = 3.3 Hz), 118.9, 115.2 (d, *J* = 23.6 Hz), 114.9, 109.9, 65.84, 63.17, 44.86, 41.00, 18.29. HRMS (ESI) m/z calcd for C₃₁H₂₇FNO₃⁺ (M+H)⁺ 480.1969, found 480.1975.

2-(4-(4-Cyanobenzyl)phenoxy)ethyl 2-(11-oxo-6,11-dihydrodibenzo[b,e]oxepin-9-yl)acetate (5f) Yield: 67.4 mg, 67%; colorless oil; ¹H NMR (400 MHz, CDCl₃) δ : 8.11 (d, *J* = 2.4 Hz, 1H), 7.87 (d, *J* = 7.7 Hz, 1H), 7.59-7.52 (m, 3H), 7.46 (t, *J* = 7.6 Hz, 1H), 7.41 (dd, *J* = 8.4, 2.4 Hz, 1H), 7.36 (d, *J* = 7.4 Hz, 1H), 7.25 (d, *J* = 8.3 Hz, 2H), 7.06 (d, *J* = 8.6 Hz, 2H), 7.00 (d, *J* = 8.4 Hz, 1H), 6.84 (d, *J* = 8.6 Hz, 2H), 5.16 (s, 2H), 4.48-4.41 (m, 2H), 4.18-4.12 (m, 2H), 3.95 (s, 2H), 3.67 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ : 190.7, 171.3, 160.5, 157.2, 147.1, 140.4, 136.3, 135.5, 132.8, 132.4, 132.2, 132.0, 130.0, 129.5, 129.4, 129.2, 127.8, 127.5, 125.1, 121.0, 119.0, 114.9, 109.9, 73.6, 65.9, 63.2, 41.0, 40.0. HRMS (ESI) m/z calcd for C₃₂H₂₅O₅N⁺ (M+H)⁺ 526.1625, found 526.1629.

5. Reference

[1] E. D. Nacsa, D. W. C. MacMillan, J. Am. Chem. Soc. 2018, 140, 3322.

[2] L. Zhang, X. Hu, Chem. Sci. 2020, 11, 10786

[3] P. Guo, K. Wang, W.-J. Jin, H. Xie, L. Qi, X.-Y. Liu, X.-Z. Shu, J. Am. Chem. Soc. 2021, 143, 513.

[4] Z. He, F. Song, H. Sun, Y. Huang, J. Am. Chem. Soc. 2018, 140, 2693.

[5] M. A. Larsen, C. V. Wilson, J. F. Hartwig, J. Am. Chem. Soc. 2015, 137, 8633.

[6] A. D. Benischke, I. Knoll, A. R érat, C. Gosmini, P. Knochel, Chem. Commun. 2016, 52, 3171.

[7] A. Dewanji, P. E. Krach, M. Rueping, Angew. Chem. Int. Ed. 2019, 58, 3566.

[8] S. Duez, M. Sc. A. K. Steib, M. Sc. S. M. Manolikakes, P. Knochel, Angew. Chem. Int. Ed. 2018, 57, 15517.

[9] M. L. N. Rao, R. J. Dhanorkara, RSC Advances, 2013, 3, 6794.

[10] C. Han, Z. Zhang, S. Xu, K. Wang, K. Chen, J. Zhao, J. Org. Chem. 2019, 84, 16308.

[11] J. Shi, T. Yuan, M. Zheng, X. Wang, ACS Catal. 2021, 11, 3040.

6. Spectra

4-(4-Methoxybenzyl)benzonitrile (3a)

Methyl 4-(4-methoxybenzyl)benzoate (3b)

4-(4-Methoxybenzyl)benzaldehyde (3c)

1-Methoxy-4-(4-(methylsulfonyl)benzyl)benzene (3d)

(4-(4-Methoxybenzyl)phenyl)(phenyl)methanone (3e)

1-(4-(4-Methoxybenzyl)phenyl)ethan-1-one (3f)

3-Chloro-4-(4-methoxybenzyl)benzonitrile (3g)

2-(4-Methoxybenzyl)benzonitrile (3h)

4-(4-Methoxybenzyl)-1,1'-biphenyl (3i)

1-Methoxy-4-(4-methylbenzyl)benzene (3j)

S38

1-Methoxy-4-(4-phenoxybenzyl)benzene (3k)

(4-(4-Methoxybenzyl)phenyl)(methyl)sulfane (3l)

6-(4-Methoxybenzyl)-2,3-dihydro-1*H*-inden-1-one (3m)

6-(4-Methoxybenzyl)isobenzofuran-1(3*H*)-one (3n)

2-(4-Methoxybenzyl)naphthalene (30)

4,4'-bis(4-methoxybenzyl)-1,1'-biphenyl (3p)

2,7-bis(4-methoxybenzyl)naphthalene (3q)

2-(4-Methoxybenzyl)pyridine (3r)

2-(4-Methoxybenzyl)-5-(trifluoromethyl)pyridine (3s)

2-(4-Methoxybenzyl)-3-methylpyridine (3u)

3-(4-Methoxybenzyl)pyridine (3v)

4-(4-Methoxybenzyl)-2,6-dimethylpyridine (3x)

2-Chloro-5-(4-methoxybenzyl)pyrimidine (3y)

6-(4-Methoxybenzyl)quinoline (3z)

6-(4-Methoxybenzyl)-2-methylbenzo[d]thiazole (3aa)

Methyl 2,6-bis(4-methoxybenzyl)isonicotinate (3ab)

4-(4-Methylbenzyl)benzonitrile (4b)

 $\int {0.087 \over 0.000}$

4-(4-(tert-Butyl)benzyl)benzonitrile (4c)

4-(4-Isopropoxybenzyl)benzonitrile (4d)

4-(4-(2-Chloroethoxy)benzyl)benzonitrile (4e)

4-(4-Fluorobenzyl)benzonitrile (4f)

4-(4-Chlorobenzyl)benzonitrile (4g)

Methyl 4-(4-cyanobenzyl)benzoate (4h)

S62

4-Benzylbenzonitrile (4i)

240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 fl (ppm)

4-(3-Methylbenzyl)benzonitrile (4l)

4-(Thiophen-2-ylmethyl)benzonitrile (4m)

2-(4-(4-Cyanobenzyl)phenoxy)ethyl acetate (4n)

4-(4-Methoxybenzyl)phenyl (S)-2-(6-methoxynaphthalen-2-yl)propanoate (5a)

Pyridin-3-ylmethyl 4-(4-methoxybenzyl)benzoate (5b)

4-(4-Methoxybenzyl)phenyl 2-(4-((2-oxocyclopentyl)methyl)phenyl)propanoate (5c) 7,77306 7,77714 7,77714 7,77714 7,77714 7,77714 7,77777 7,77714 7,77777 7,7777 7,7777 7,7777 7,707 7,707 7,707 7,707 7,707 7,707 7,707 7,707 7,707 7,707 7,1 1.01H 0.99 2.09⊈ 2.99∕ 2.00 1.99 1.98 1.97 1.97 1.97 03 1.03 3.26 8.0 5.0 4.5 f1 (ppm) 4.0 3.5 3, 0 2.5 2.0 1.5 1.0 0.5 0.0 9.5 9.0 8.5 7.5 6.5 6.0 5.5 7.0 157.925 157.655 - 173.221 - 18.488 $\underbrace{ \left\{ \begin{array}{c} 77.318 \\ 77.000 \\ 76.682 \end{array} \right. } \\$ $\begin{cases} 55.240 \\ 55.163 \\ -45.495 \\ -40.257 \end{cases}$ ö 100 f1 (ppm) 60

90

80

70

50

40 30 20

10

0

110

200

190

180

170

160 150 140

130 120
2-(4-(4-Cyanobenzyl)phenoxy)ethyl 2-(3-benzoylphenyl)propanoate (5d)

