# **Supporting Information**

# Cascade dearomatizative [4+2] cycloaddition of indoles with in

# situ generated ortho-quinone methide: practical access to

# divergent indoline-fused polycycles

Pei-Zhen Dong<sup>‡</sup>,<sup>a</sup> Bin Qiu<sup>‡</sup>,<sup>a</sup> Xiao-De An<sup>a</sup> and Jian Xiao\*<sup>a, b</sup>

<sup>a</sup> College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China. Email: chemjianxiao@163.com.

<sup>b</sup> College of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China. <sup>‡</sup>These authors contributed equally

### **Table of Contents**

| 1. General Information                            | S2   |
|---------------------------------------------------|------|
| 2. General Procedure                              | S3   |
| 3. Mechanistic Study                              | S7   |
| 4. The Effect of Loading of Pyrrolidine           | S8   |
| 5. Characterization of Products                   | S9   |
| 6. <sup>1</sup> H and <sup>13</sup> C NMR Spectra | S43  |
| 7. X-ray Crystallography Data                     | S126 |

### **1. General Information**

Unless otherwise noted, all reagents and solvents were purchased from the commercial sources and used as received. Thin layer chromatography (TLC) was used to monitor the reaction on Merck 60 F254 precoated silica gel plate (0.2 mm thickness). TLC spots were visualized by UV-light irradiation on Spectroline Model ENF-24061/F 254 nm. The products were isolated by direct filtration or purified by flash column chromatography (200-300 mesh silica gel) eluted with the gradient of petroleum ether and ethyl acetate. <sup>1</sup>H, <sup>13</sup>C and <sup>19</sup>F NMR spectra were recorded on a Bruker AMX 500 (500 MHz for <sup>1</sup>H, 126 MHz for <sup>13</sup>C and 470 MHz for <sup>19</sup>F NMR) spectrometer at room temperature. The chemical shifts were reported in parts per million (ppm), downfield from SiMe<sub>4</sub> ( $\delta$  0.0) and relative to the signal of chloroform-d ( $\delta$  7.26, singlet) or dimethyl sulfoxide-d<sub>6</sub> ( $\delta$  2.54, singlet). Multiplicities were afforded as: s (singlet); d (doublet); t (triplet); q (quartet); dd (doublets of doublet) or m (multiplets). The number of protons for a given resonance is indicated by nH. Coupling constants were reported as a J value in Hz. Carbon nuclear magnetic resonance spectra ( $^{13}$ C NMR) was referenced to the appropriate residual solvent peak. High resolution mass spectral analysis (HRMS) was performed on Waters XEVO G2 Q-TOF. Melting points were determined on a microscopic melting point apparatus and are uncorrected. The X-ray diffraction analysis were performed on Gemini E/EOS.

### 2. General Procedure

#### 2.1 General procedure for the synthesis of 3aa-3ma.



A sealed tube was charged with 2-((1H-indol-1-yl)methyl)benzaldehyde **1a-1m** (0.12 mmol), 3,4-(methylenedioxy)-phenol (0.1 mmol), pyrrolidine (0.1 mmol, 7.1 mg) and EtOH (1.0 mL). The mixture was stirred at room temperature under an air atmosphere. After completion of the reaction as indicated by TLC analysis, the solid product was collected by filtering and washed with EtOH to get **3aa-3ha** and **3ja**, and the mixture was concentrated in vacuum and the residue was directly purified by flash column chromatography on silica gel (eluent: ethyl acetate/petroleum ether = 1:10) to afford the desired product **3ia**, **3ka**, **3la**, **3ma**.

#### 2.2 General procedure for the synthesis of 5aa-5na.



A sealed tube was charged with 2-((1H-indol-3-yl)methyl)benzaldehyde **4a-4n** (0.12 mmol), 3,4-(methylenedioxy)-phenol (0.1 mmol), pyrrolidine (0.1 mmol, 7.1 mg) and EtOH (1.0 mL). The mixture was stirred at room temperature under an air atmosphere. After completion of the reaction as indicated by TLC analysis, the solid product was collected by filtering and washed with EtOH to get **5aa**, **5ba**, **5da**, **5ea**, **5fa**, **5ga**, **5ja**, **5ka**, **5la**, **5ma**, **5ma**, and the mixture was concentrated in vacuum and the residue was directly purified by flash column chromatography on silica gel (eluent: ethyl acetate/petroleum ether = 1:10) to afford the desired product **5ca**, **5ha**, **5ia**.

#### 2.3 General procedure for the synthesis of 6ab-6mb.



A sealed tube was charged with 2-((1H-indol-1-yl)methyl)benzaldehyde **1a-1m** (0.12 mmol), 4-hydroxyindole (0.1 mmol), pyrrolidine (0.1 mmol, 7.1 mg) and EtOH (1.0 mL). The mixture was stirred at room temperature under an air atmosphere. After completion of the reaction as indicated by TLC analysis, the solid product was collected by filtering and washed with EtOH to get **6ab**, **6bb**, **6cb**, **6db**, **6eb**, **6fb**, **6ib**, **6jb**, **6lb**, and the filtrate mixture was concentrated in vacuum and the residue was directly purified by flash column chromatography on silica gel (eluent: ethyl acetate/petroleum ether = 1:5) to afford the desired product **6gb**, **6hb**, **6kb**, **6mb**.

2.4 General procedure for the the synthesis of 2-((1H-indol-1-yl)methyl) benzaldehyde 1a-1m.



- -1<sup>st</sup> step: To synthesize 1-(2-bromobenzyl)-1H-indole (s-1) according to the literature procedure.<sup>[1]</sup>
- -2<sup>nd</sup> step: To synthesize 2-((1H-indol-1-yl)methyl) benzaldehyde (1a-1m) according to the literature.<sup>[2]</sup>

2.5 General procedure for the the synthesis of 2-((1H-indol-3-yl)methyl) benzaldehyde 4a-4n.



-1<sup>st</sup> step: To synthesize (2-bromophenyl)(1H-indol-3-yl)methanol (**s-2**)according to the literature procedure.<sup>[3]</sup>

-2<sup>nd</sup> step procedure:

To a stirred solution of (2-bromophenyl)(1H-indol-3-yl)methanol (3.63g, 12.0 mmol) in DCM (40 mL), Hantzsch esters (3.80g, 15.0 mmol) was added. Then *p*-toluenesulfonic acid monohydrate (114.0 mg, 0.6 mmol) was added to the mixture and the resultant was stirred for 4 hours. After the reaction was completed by TLC, the solvent was removed in vacuum. The residue was purified by flash column chromatography (petroleum ether/EtOAc = 5:1) on silica gel to afford 3-(2-bromobenzyl)-1H-indole (**S-3**) as a white solid (2461.1 mg, 86%).

- -3<sup>rd</sup> step: The amine protection step was performed according to the literature procedure.<sup>[4]</sup>
- -4<sup>th</sup> step: To synthesize 2-((1H-indol-3-yl)methyl) benzaldehyde according to the literature.<sup>[2]</sup>
- 2.6 General procedure for the the synthesis of 2-(indolin-1-ylmethyl)benzaldehyde 1a'.<sup>[2][5]</sup>



To synthesize 2-(indolin-1-ylmethyl)benzaldehyde 1a' according to the literature.<sup>[2][5]</sup>

### 2.7 Referrence

- [1] N. Barbero, R. SanMartin and E. Domínguez, Tetrahedron Lett., 2009, 50, 2129.
- [2] P. D. Jadhav, X. Lu and R.-S. Liu, ACS Catal., 2018, 8, 9697.
- [3] M. L. Deb, B. Deka, P. J. Saikia and P. K. Baruah, Tetrahedron Lett., 2017, 58, 1999.
- [4] S. K. Banjare, T. Nanda and P. C. Ravikumar, Org. Lett., 2019, 21: 8138.
- [5] W.-L. Jia, N. Westerveld, K. M. Wong, T. Morsch, M. Hakkennes, K. Naksomboon and M. Á.

Fernández-Ibáñez, Org. Lett., 2019, 21, 9339.

# 3. Mechanistic Study

### **3.1 Proposed Mechanism**



To verify the reaction mechanism, we stopped the reaction of **1a** and **2a** after 12 h under standard reaction conditions, and the reaction system was then sent to high-resolution mass spectrometry to detect the intermediates mentioned above.

### 3.2 HRMS (ESI-TOF) Spectra data of MS-1.



**HRMS (ESI-TOF)**: m/z [M + H] <sup>+</sup> calcd for C<sub>20</sub>H<sub>23</sub>N<sub>2</sub>O:307.1804, found: 307.1798.



### 3.3 HRMS (ESI-TOF) Spectra data of MS-2.



**HRMS (ESI-TOF)**: *m*/*z* [M + H] <sup>+</sup> calcd for C<sub>27</sub>H<sub>27</sub>N<sub>2</sub>O<sub>3</sub>:427.2016, found: 427.2011.



# 4. The Effect of Pyrrolidine Loading



Figure 1 The effect of pyrrolidine loading on the isolated yield of 3aa

### 5. Characterization of Products

2-((1H-indol-1-yl) methyl) benzaldehyde (1a)



White solid; 70% yield, mp 78-80 °C; column chromatography eluent, petroleum ether/EtOAc = 30:1. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  10.15 (s, 1H), 7.81 (d, *J* = 7.5 Hz, 1H), 7.67 – 7.65 (m, 1H), 7.39 (t, *J* = 7.5 Hz, 1H), 7.30 (t, *J* = 7.5 Hz, 1H), 7.14 – 7.08 (m, 4H), 6.58 (d, *J* = 3.0 Hz, 1H), 6.48 (d, *J* = 8.0 Hz, 1H), 5.78 (s, 2H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  193.79, 140.21, 136.43, 135.42, 134.37, 132.92, 128.75, 128.69, 127.78, 127.18, 121.96, 121.14, 119.79, 109.75, 102.14, 47.99. HRMS (ESI-TOF): *m/z* [M + H]<sup>+</sup> calcd for C<sub>16</sub>H<sub>14</sub>NO: 236.1069, found: 236.1070.

2-((4-methyl-1H-indol-1-yl) methyl) benzaldehyde (1b)



Yellow oil; 68% yield; column chromatography eluent, petroleum ether/EtOAc = 30:1. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  10.23 (s, 1H), 7.89 (d, J = 7.5 Hz, 1H), 7.47 (t, J = 7.5 Hz, 1H), 7.39 (t, J = 7.5 Hz, 1H), 7.15 (d, J = 3.0 Hz, 1H), 7.12 – 7.08 (m, 1H), 7.04 (d, J = 8.0 Hz, 1H), 6.97 (d, J = 7.0 Hz, 1H), 6.65 (d, J = 3.0 Hz, 1H), 6.55 (d, J = 8.0 Hz, 1H), 5.84 (s, 2H), 2.63 (s, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  193.70, 140.56, 136.65, 135.21, 134.28, 132.84, 128.88, 127.59, 127.22, 126.09, 121.78, 119.09, 118.93, 111.22, 109.42, 47.59, 9.67. HRMS (ESI-TOF): m/z [M + H]<sup>+</sup> calcd for C<sub>17</sub>H<sub>16</sub>NO: 250.1226, found: 250.1227.

2-((4-fluoro-1H-indol-1-yl) methyl) benzaldehyde (1c)



Light yellow solid; 30% yield, mp 65-66 °C; column chromatography eluent, petroleum ether/EtOAc = 30:1. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  10.20 (s, 1H), 7.89 (dd, *J* = 7.5, 1.5 Hz, 1H), 7.49 (t, *J* = 7.5 Hz, 1H), 7.40 (td, *J* = 7.5, 1.5 Hz, 1H), 7.11 (d, *J* = 3.5 Hz, 1H), 7.07 (td, *J* = 8.0, 5.5 Hz, 1H), 6.95 (d, *J* = 8.5 Hz, 1H), 6.80 (dd, *J* = 10.5, 8.0 Hz, 1H), 6.70 (d, *J* = 3.5 Hz, 1H), 6.52 (d, *J* = 7.5 Hz, 1H), 5.83 (s, 2H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  193.79, 156.57 (d, *J* = 247.5 Hz, 1C), 139.63, 139.07 (d, *J* = 11.5 Hz, 1C), 135.61, 134.36, 132.88, 128.59, 127.91, 127.03, 122.43 (d, *J* = 7.9 Hz, 1C), 117.71 (d, *J* = 22.6 Hz, 1C), 105.84 (d, *J* = 3.5 Hz, 1C), 104.53 (d, *J* = 19.0 Hz, 1C), 98.18, 48.30. <sup>19</sup>F NMR (470 MHz, CDCl<sub>3</sub>)  $\delta$  -121.80. HRMS (ESI-TOF): *m/z* [M + H]<sup>+</sup> calcd for C<sub>16</sub>H<sub>13</sub>FNO: 254.0976, found: 254.0978.

2-((4-chloro-1H-indol-1-yl) methyl) benzaldehyde (1d)



White solid; 30% yield, mp 52-54 °C; column chromatography eluent, petroleum ether/EtOAc = 30:1. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 10.19 (s, 1H), 7.87 (dd, *J* = 7.5, 1.5 Hz, 1H), 7.47 (t, *J* = 7.5 Hz, 1H), 7.39 (td, *J* = 7.5, 1.5 Hz, 1H), 7.16 (d, *J* = 3.5 Hz, 1H), 7.13 – 7.11 (m, 1H), 7.08 – 7.04 (m, 2H), 6.71 (d, *J* = 3.0 Hz, 1H), 6.49 (d, *J* = 8.0 Hz, 1H), 5.82 (s, 2H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 193.78, 139.53, 137.09, 135.61, 134.34, 132.80, 129.18, 127.89, 127.38, 126.97, 126.29, 122.47, 119.50, 108.36, 100.72, 48.29. HRMS (ESI-TOF): *m/z* [M + H]<sup>+</sup> calcd for C<sub>16</sub>H<sub>13</sub>ClNO: 270.0680, found: 270.0682.

### 2-((5-methyl-1H-indol-1-yl) methyl) benzaldehyde (1e)



Light yellow solid; 80% yield, mp 86-87 °C; column chromatography eluent, petroleum ether/EtOAc = 30:1. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  10.18 (s, 1H), 7.84 (d, *J* = 7.5 Hz,

1H), 7.43 (t, J = 7.5 Hz, 1H), 7.35 (t, J = 8.0 Hz, 1H), 7.10 (d, J = 3.0 Hz, 1H), 7.06 (t, J = 7.5 Hz, 1H), 6.99 (d, J = 8.5 Hz, 1H), 6.92 (d, J = 7.0 Hz, 1H), 6.61 (d, J = 3.0 Hz, 1H), 6.51 (d, J = 7.5 Hz, 1H), 5.80 (s, 2H), 2.59 (s, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  193.71, 140.22, 136.05, 135.28, 134.27, 132.79, 130.47, 128.51, 127.92, 127.63, 127.09, 121.99, 119.89, 107.26, 100.49, 48.02, 18.73. HRMS (ESI-TOF): m/z [M + H]<sup>+</sup> calcd for C<sub>17</sub>H<sub>16</sub>NO: 250.1226, found: 250.1227.

2-((5-methoxy-1H-indol-1-yl) methyl) benzaldehyde (1f)



White solid; 84% yield, mp 82-84 °C; column chromatography eluent, petroleum ether/EtOAc = 30:1. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  10.20 (s, 1H), 7.87 (dd, *J* = 7.5, 1.0 Hz, 1H), 7.45 (t, *J* = 7.5 Hz, 1H), 7.38 (td, *J* = 7.5, 1.5 Hz, 1H), 7.14 (d, *J* = 2.5 Hz, 1H), 7.10 (d, *J* = 3.0 Hz, 1H), 7.04 (d, *J* = 8.5 Hz, 1H), 6.81 (dd, *J* = 8.5, 2.0 Hz, 1H), 6.52 – 6.50 (m, 2H), 5.78 (s, 2H), 3.85 (s, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  193.73 (d, *J* = 3.2 Hz, 1C), 154.21, 140.32, 135.34, 134.31, 132.81, 131.63, 129.13, 129.02, 127.69, 127.08, 112.19, 110.42, 102.61, 101.56, 55.81, 48.12. HRMS (ESI-TOF): *m/z* [M + H]<sup>+</sup> calcd for C<sub>17</sub>H<sub>16</sub>NO<sub>2</sub>: 266.1176, found: 266.1177.

2-((5-fluoro-1H-indol-1-yl) methyl) benzaldehyde (1g)



Yellow oil; 45% yield; column chromatography eluent, petroleum ether/EtOAc = 30:1. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  10.19 (s, 1H), 7.87 (dd, J = 7.5, 1.5 Hz, 1H), 7.47 (t, J= 7.5 Hz, 1H), 7.39 (td, J = 7.5, 1.5 Hz, 1H), 7.30 (dd, J = 12.5, 2.5 Hz, 1H), 7.16 (d, J= 3.5 Hz, 1H), 7.05 (dd, J = 9.0, 4.0 Hz, 1H), 6.88 (td, J = 9.0, 2.5 Hz, 1H), 6.55 (d, J= 3.0 Hz, 1H), 6.49 (d, J = 8.0 Hz, 1H), 5.80 (s, 2H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$ 193.76 (d, J = 1.8 Hz, 1C), 158.92, 157.06, 139.82, 135.54, 134.32, 132.89 (d, J = 15.1 Hz,1C), 130.20, 128.87 (d, J = 10.1 Hz, 1C), 127.84, 126.99, 110.35 (d, J = 6.2 Hz, 1C), 110.21 (d, J = 10.3 Hz, 1C), 105.75 (d, J = 23.7 Hz, 1C), 101.96 (d, J = 4.5 Hz, 1C), 48.21. <sup>19</sup>F NMR (470 MHz, CDCl<sub>3</sub>)  $\delta$  -124.99. HRMS (ESI-TOF): m/z [M + H]<sup>+</sup> calcd for C<sub>16</sub>H<sub>13</sub>FNO: 254.0976, found: 254.0979.

2-((5-chloro-1H-indol-1-yl) methyl) benzaldehyde (1h)



White solid; 35% yield, mp 80-83 °C; column chromatography eluent, petroleum ether/EtOAc = 30:1. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  10.01 (s, 1H), 7.69 (dd, *J* = 7.5, 1.5 Hz, 1H), 7.48 – 7.47 (m, 1H), 7.30 (td, *J* = 7.5, 1.0 Hz, 1H), 7.20 (td, *J* = 7.5, 1.5 Hz, 1H), 6.98 (d, *J* = 3.5 Hz, 1H), 6.94 – 6.90 (m, 2H), 6.38 (dd, *J* = 3.5, 1.0 Hz, 1H), 6.34 (d, *J* = 8.0 Hz, 1H), 5.63 (s, 2H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  193.87, 139.71, 135.71, 134.97, 134.47, 133.05, 130.19, 129.86, 128.10, 127.19, 125.64, 122.34, 120.61, 110.93, 101.91, 48.27. HRMS (ESI-TOF): *m*/*z* [M + H]<sup>+</sup> calcd for C<sub>16</sub>H<sub>13</sub>ClNO: 270.0680, found: 270.0683.

2-((6-fluoro-1H-indol-1-yl) methyl) benzaldehyde (1i)



Light yellow solid; 43% yield, mp 55-56 °C; column chromatography eluent, petroleum ether/EtOAc = 30:1. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  10.19 (s, 1H), 7.87 (dd, J = 7.5, 1.5 Hz, 1H), 7.47 (t, J = 7.5 Hz, 1H), 7.39 (td, J = 7.5, 1.5 Hz, 1H), 7.30 (dd, J = 10.0, 2.5 Hz, 1H), 7.16 (d, J = 3.5 Hz, 1H), 7.05 (dd, J = 9.0, 4.0 Hz, 1H), 6.88 (td, J = 9.0, 2.5 Hz, 1H), 6.55 (d, J = 3.0 Hz, 1H), 6.49 (d, J = 8.0 Hz, 1H), 5.80 (s, 2H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  193.76 (d, J = 1.76 Hz, 1C), 158.92, 157.06, 139.82, 135.54, 134.32, 132.89 (d, J = 15.1 Hz, 1C), 130.20, 128.87 (d, J = 10.1 Hz, 1C), 127.84, 126.99, 110.35 (d, J = 6.2 Hz, 1C), 110.21 (d, J = 10.3 Hz, 1C), 105.75 (d, J = 23.7 Hz, 1C), 101.96 (d, J = 4.5 Hz, 1C), 48.21. <sup>19</sup>F NMR (470 MHz, CDCl<sub>3</sub>)  $\delta$  -120.54. HRMS (ESI-TOF): m/z [M + H]<sup>+</sup> calcd for C<sub>16</sub>H<sub>13</sub>FNO: 254.0976, found: 254.0979.



Yellow oil, 70% yield; column chromatography eluent, petroleum ether/EtOAc = 30:1. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  9.94 (s, 1H), 7.59 (dd, J = 7.5, 1.5 Hz, 1H), 7.36 (d, J= 8.5 Hz, 1H), 7.20 (td, J = 7.5, 1.0 Hz, 1H), 7.13 (td, J = 7.5, 1.5 Hz, 1H), 6.80 (d, J = 3.0 Hz, 1H), 6.62 (dd, J = 8.5, 2.0 Hz, 1H), 6.46 (d, J = 2.5 Hz, 1H), 6.36 – 6.34 (m, 2H), 5.54 (s, 2H), 3.53 (s, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  193.59 (d, J = 1.8 Hz, 1C), 156.36, 139.91, 137.05, 135.16, 134.14, 132.77, 127.57, 127.42, 126.98, 122.81, 121.52, 109.54, 101.91, 93.14, 55.45, 47.69. HRMS (ESI-TOF): m/z [M + H]<sup>+</sup> calcd for C<sub>17</sub>H<sub>16</sub>NO<sub>2</sub>: 266.1176, found: 266.1179.

2-((2-methyl-1H-indol-1-yl) methyl) benzaldehyde (1k)



Yellow oil; 65% yield; column chromatography eluent, petroleum ether/EtOAc = 30:1. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  10.03 (s, 1H), 7.63 (dd, *J* = 8.0, 1.5 Hz, 1H), 7.53 (dd, *J* = 7.5, 1.5 Hz, 1H), 7.20 (td, *J* = 7.0, 1.0 Hz, 1H), 7.07 (td, *J* = 7.6, 1.5 Hz, 1H), 7.04 – 7.00 (m, 1H), 6.98 – 6.96 (m, 2H), 6.32 (s, 1H), 6.22 (d, *J* = 8.0 Hz, 1H), 5.67 (s, 2H), 2.16 (s, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  194.04, 140.56, 137.41, 136.94, 135.72, 134.51, 133.07, 128.60, 127.68, 126.50, 121.18, 120.14, 120.02, 109.42, 101.03, 44.82, 12.64. HRMS (ESI-TOF): *m/z* [M + H]<sup>+</sup> calcd for C<sub>17</sub>H<sub>16</sub>NO: 250.1226, found: 250.1228.

2-((3-methyl-1H-indol-1-yl) methyl) benzaldehyde (11)



White solid; 62% yield, mp 79-81 °C; column chromatography eluent, petroleum

ether/EtOAc = 30:1. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  10.22 (s, 1H), 7.88 (d, J = 7.5 Hz, 1H), 7.65 – 7.62 (m, 1H), 7.46 (t, J = 7.5 Hz, 1H), 7.39 (t, J = 7.5 Hz, 1H), 7.16 – 7.13 (m, 3H), 6.90 (s, 1H), 6.56 (d, J = 7.5 Hz, 1H), 5.77 (s, 2H), 2.38 (s, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  194.75, 141.05, 136.68, 135.24, 134.31, 132.87, 128.91, 127.63, 127.26, 126.13, 121.81, 119.12, 118.97, 111.25, 109.46, 47.63, 9.71. HRMS (ESITOF): m/z [M + H]<sup>+</sup> calcd for C<sub>17</sub>H<sub>16</sub>NO: 250.1226, found: 250.1228.

2-((2,3-dimethyl-1H-indol-1-yl) methyl) benzaldehyde (1m)



Yellow solid; 66% yield, mp 90-91 °C; column chromatography eluent, petroleum ether/EtOAc = 30:1. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  10.26 (s, 1H), 7.89 (d, *J* = 7.5 Hz, 1H), 7.59 (dd, *J* = 7.5, 4.0 Hz, 1H), 7.45 (t, *J* = 7.5 Hz, 1H), 7.35 (t, *J* = 7.5 Hz, 1H), 7.15 – 7.10 (m, 3H), 6.33 (dd, *J* = 8.0, 3.5 Hz, 1H), 5.78 (d, *J* = 3.0 Hz, 2H), 2.35 (d, *J* = 4.0 Hz, 3H), 2.25 (d, *J* = 3.0 Hz, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  194.06, 140.91, 136.31, 135.67, 134.48, 132.80, 132.47, 128.79, 127.43, 126.51, 120.93, 119.06, 118.12, 108.80, 107.27, 44.81, 9.97, 9.00. HRMS (ESI-TOF): *m/z* [M + H]<sup>+</sup> calcd for C<sub>18</sub>H<sub>18</sub>NO: 264.1383, found: 264.1387.

2-(indolin-1-ylmethyl) benzaldehyde (1a')



Yellow solid; 89% yield, mp 81-82 °C; column chromatography eluent, petroleum ether/EtOAc = 30:1. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  10.29 (s, 1H), 7.87 (dd, J = 7.5, 1.5 Hz, 1H), 7.58 – 7.53 (m, 2H), 7.46 (td, J = 7.5, 1.5 Hz, 1H), 7.10 (dd, J = 7.5, 1.5 Hz, 1H), 7.03 (td, J = 8.0, 1.5 Hz, 1H), 6.69 (td, J = 7.5, 1.0 Hz, 1H), 6.44 (d, J = 8.0 Hz, 1H), 4.63 (s, 2H), 3.34 (t, J = 8.5 Hz, 2H), 2.98 (t, J = 8.5 Hz, 2H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  192.80, 152.18, 141.16, 134.03, 133.80, 132.46, 129.89, 129.00, 127.59, 127.32, 124.51, 118.10, 106.98, 54.07, 51.63, 28.58. HRMS (ESI-TOF): m/z

 $[M + H]^+$  calcd for C<sub>23</sub>H<sub>20</sub>NO: 238.1226, found: 238.1226.

2-((1-butyl-1H-indol-3-yl) methyl) benzaldehyde (4a)



Yellow oil; 63% yield; column chromatography eluent, petroleum ether/EtOAc = 30:1. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  10.27 (s, 1H), 7.84 – 7.82 (m, 1H), 7.51 (d, *J* = 7.5 Hz, 1H), 7.41 (td, *J* = 7.5, 1.5 Hz, 1H), 7.313 – 7.285 (m, 2H), 7.26 (d, *J* = 8.0 Hz, 1H), 7.17 (t, *J* = 7.5 Hz, 1H), 7.05 (t, *J* = 7.5 Hz, 1H), 6.61 (s, 1H), 4.46 (s, 2H), 3.92 (t, *J* = 7.5 Hz, 2H), 1.67 (p, *J* = 14.5, 7.0 Hz, 2H), 1.23 (h, *J* = 14.5, 7.0 Hz, 2H), 0.85 (t, *J* = 7.0 Hz, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  191.27 (d, *J* = 2.0 Hz, 1C), 142.68, 135.35, 132.89, 132.86, 130.04, 129.65, 126.47, 125.68, 125.50, 120.59, 117.94, 117.82, 112.88, 108.42, 44.89, 31.25, 27.18, 19.08, 12.63. HRMS (ESI-TOF): *m/z* [M + H]<sup>+</sup> calcd for C<sub>20</sub>H<sub>22</sub>NO: 292.1696, found: 292.1698.

2-((1-benzyl-1H-indol-3-yl) methyl) benzaldehyde (4b)



White solid; 72% yield, mp 81-83 °C; column chromatography eluent, petroleum ether/EtOAc = 30:1. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  10.24 (s, 1H), 7.80 (dd, *J* = 7.5, 1.5 Hz, 1H), 7.47 (d, *J* = 8.0 Hz, 1H), 7.41 (td, *J* = 7.5, 1.5 Hz, 1H), 7.29 (dd, *J* = 9.5, 8.0 Hz, 2H), 7.20 – 7.12 (m, 4H), 7.10 – 7.07 (m, 1H), 7.03 – 6.99 (m, 1H), 6.97 – 6.95 (m, 2H), 6.63 (s, 1H), 5.14 (s, 2H), 4.46 (s, 2H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  191.86 (d, *J* = 3.0 Hz, 1C), 143.11, 137.12, 136.35, 133.53, 133.46, 130.64, 130.52, 128.27, 127.37, 127.35, 127.08, 126.60, 126.34, 126.17, 121.62, 118.85, 118.66, 114.30, 109.40, 109.39, 49.47, 27.82. HRMS (ESI-TOF): *m/z* [M + H]<sup>+</sup> calcd for C<sub>23</sub>H<sub>20</sub>NO: 326.1539, found: 326.1541.

#### 2-((1-methyl-1H-indol-3-yl) methyl) benzaldehyde (4c)



Yellow solid; 70% yield, mp 67-68 °C; column chromatography eluent, petroleum ether/EtOAc = 30:1. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  10.06 (s, 1H), 7.64 (dd, J = 8.5, 1.5 Hz, 1H), 7.34 (d, J = 8.0 Hz, 1H), 7.21 (td, J = 7.5, 2.0 Hz, 1H), 7.12 – 7.09 (m, 2H), 7.02 – 7.01 (m, 2H), 6.90 (dt, J = 8.0, 4.0 Hz, 1H), 6.33 (s, 1H), 4.25 (s, 2H), 3.31 (s, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  191.17, 142.52, 135.92, 132.71, 129.94, 129.65, 126.34, 126.30, 125.56, 120.64, 120.63, 117.82, 117.76, 112.83, 108.14, 31.23, 26.93. HRMS (ESI-TOF): m/z [M + H]<sup>+</sup> calcd for C<sub>17</sub>H<sub>16</sub>NO: 250.1226, found: 250.1228.

2-((1-allyl-1H-indol-3-yl) methyl) benzaldehyde (4d)



Yellow oil; 63% yield; column chromatography eluent, petroleum ether/EtOAc = 30:1. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  10.24 (s, 1H), 7.81 (d, *J* = 8.0 Hz, 1H), 7.50 (d, *J* = 8.0 Hz, 1H), 7.39 (t, *J* = 8.0 Hz, 1H), 7.30 – 7.27 (m, 2H), 7.22 (d, *J* = 8.0 Hz, 1H), 7.15 (t, *J* = 7.5 Hz, 1H), 7.05 (t, *J* = 7.5 Hz, 1H), 6.59 (s, 1H), 5.83 (ddt, *J* = 16.0, 10.5, 5.5 Hz, 1H), 5.06 (d, *J* = 10.0 Hz, 1H), 4.95 (d, *J* = 17.0 Hz, 1H), 4.49 (d, *J* = 5.5 Hz, 2H), 4.45 (s, 2H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  192.38, 143.77, 136.76, 134.16, 134.00, 133.67, 131.24, 131.03, 127.92, 126.89, 126.69, 122.05, 119.35, 119.21, 117.19, 114.62, 109.87, 48.74, 28.33. HRMS (ESI-TOF): *m/z* [M + Na]<sup>+</sup> calcd for C<sub>19</sub>H<sub>17</sub>NNaO: 298.1202, found: 298.1205.

2-((1-(cyclopropylmethyl)-1H-indol-3-yl) methyl) benzaldehyde (4e)



Yellow oil; 59% yield; column chromatography eluent, petroleum ether/EtOAc = 30:1. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  10.27 (s, 1H), 7.82 (d, *J* = 7.5 Hz, 1H), 7.50 (d, *J* = 8.0 Hz, 1H), 7.40 (t, *J* = 7.5 Hz, 1H), 7.31 – 7.26 (m, 3H), 7.16 (t, *J* = 7.0 Hz, 1H), 7.04 (t, *J* = 7.5 Hz, 1H), 6.71 (s, 1H), 4.46 (s, 2H), 3.77 (d, *J* = 7.0 Hz, 2H), 0.47 (t, *J* = 6.0 Hz, 2H), 0.21 (t, *J* = 5.0 Hz, 2H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  192.47, 143.90, 136.76, 134.12, 134.05, 131.25, 130.94, 127.75, 126.89, 126.51, 121.88, 119.18, 119.15, 114.14, 109.70, 50.57, 28.42, 11.48, 4.18 (s, 2C). HRMS (ESI-TOF): *m/z* [M + Na]<sup>+</sup> calcd for C<sub>20</sub>H<sub>19</sub>NNaO: 312.1359, found: 312.1366.

2-((1-benzyl-2-methyl-1H-indol-3-yl) methyl) benzaldehyde (4f)



Yellow oil; 30% yield; column chromatography eluent, petroleum ether/EtOAc = 30:1. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  10.38 (s, 1H), 7.82 (dd, J = 7.4, 1.7 Hz, 1H), 7.37 (td, J = 7.5, 1.5 Hz, 1H), 7.31 (dd, J = 16.0, 7.0 Hz, 2H), 7.27 – 7.19 (m, 5H), 7.14 (d, J = 7.5 Hz, 1H), 7.09 (t, J = 7.5 Hz, 1H), 7.00 (t, J = 7.5 Hz, 1H), 6.95 (d, J = 8.0 Hz, 2H), 5.31 (s, 2H), 4.58 (s, 2H), 2.23 (s, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  193.02, 144.10, 138.06, 136.85, 134.06, 133.95, 133.86, 132.36, 130.13, 128.88 (s, 2C), 128.25, 127.38, 126.44, 126.04 (s, 2C), 121.20, 119.43, 118.43, 109.50, 109.22, 46.68, 27.27, 10.44. HRMS (ESI-TOF): m/z [M + Na]<sup>+</sup> calcd for C<sub>24</sub>H<sub>21</sub>NNaO: 362.1515, found: 362.1516. 2-((1-benzyl-4-methyl-1H-indol-3-yl) methyl) benzaldehyde (4g)



White solid; 55% yield, mp 99-101 °C; column chromatography eluent, petroleum

ether/EtOAc = 30:1. <sup>1</sup>**H** NMR (500 MHz, CDCl<sub>3</sub>) δ 10.26 (s, 1H), 7.85 (d, *J* = 7.5 Hz, 1H), 7.39 (t, *J* = 7.5 Hz, 1H), 7.31 (t, *J* = 7.5 Hz, 1H), 7.22 – 7.16 (m, 4H), 7.05 – 7.00 (m, 2H), 6.97 (d, *J* = 7.5 Hz, 2H), 6.79 (d, *J* = 6.5 Hz, 1H), 6.47 (s, 1H), 5.09 (s, 2H), 4.69 (s, 2H), 2.54 (s, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 192.30 (d, *J* = 1.8 Hz, 1C), 144.11, 137.50, 137.26, 133.96, 133.60, 131.08, 131.00, 130.67, 128.61 (s, 2C), 127.64, 127.38, 126.62, 126.47, 126.44 (s, 2C), 122.10, 120.89, 114.90, 107.75, 49.77, 30.22, 19.99. HRMS (ESI-TOF): m/z [M + Na]<sup>+</sup> calcd for C<sub>24</sub>H<sub>21</sub>NNaO: 362.1515, found: 362.1517.

2-((1-benzyl-4-fluoro-1H-indol-3-yl) methyl) benzaldehyde (4h)



Yellow oil; 35% yield; column chromatography eluent, petroleum ether/EtOAc = 30:1. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  10.22 (s, 1H), 7.76 (d, *J* = 7.0 Hz, 1H), 7.37 (t, *J* = 7.5 Hz, 1H), 7.26 – 7.23 (m, 2H), 7.18 – 7.11 (m, 4H), 6.90 (d, *J* = 8.0 Hz, 2H), 6.86 (d, *J* = 8.5 Hz, 1H), 6.62 (dd, J = 11.5, 8.0 Hz, 1H), 6.47 (s, 1H), 5.04 (s, 2H), 4.54 (s, 2H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  191.23, 157.36, 155.40, 142.70, 138.48 (d, *J* = 11.6 Hz, 1C), 136.04, 132.87, 130.00, 129.70, 127.73 (s, 2C), 126.63, 126.15, 125.72, 125.51 (s, 2C), 121.49 (d, *J* = 8.1 Hz, 1C), 112.63 (d, *J* = 3.3 Hz, 1C), 104.93 (d, *J* = 3.8 Hz, 1C), 103.59, 103.43, 49.20, 28.00 (d, *J* = 1.9 Hz, 1C). <sup>19</sup>F NMR (470 MHz, CDCl<sub>3</sub>)  $\delta$  -123.16. HRMS (ESI-TOF): m/z [M + Na]<sup>+</sup> calcd for C<sub>23</sub>H<sub>18</sub>FNNaO: 366.1265, found: 366.1262.

2-((1-benzyl-4-chloro-1H-indol-3-yl) methyl) benzaldehyde (4i)



Yellow oil; 31% yield; column chromatography eluent, petroleum ether/EtOAc = 30:1. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  10.30 (s, 1H), 7.87 (dd, J = 8.0, 1.5 Hz, 1H), 7.44 (td, J = 7.5, 1.5 Hz, 1H), 7.34 (t, J = 7.5 Hz, 1H), 7.25 – 7.18 (m, 4H), 7.07 (d, J = 7.5 Hz, 1H), 7.03 - 6.99 (m, 2H), 6.96 (d, J = 7.5 Hz, 2H), 6.50 (s, 1H), 5.11 (s, 2H), 4.81 (s, 2H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  192.36, 144.05, 138.32, 137.05, 134.15, 133.88, 131.08, 130.49, 128.89 (s, 2C), 128.84, 127.79, 126.87, 126.82, 126.54 (s, 2C), 124.63, 122.72, 120.45, 115.29, 108.84, 50.22, 29.57. HRMS (ESI-TOF): m/z [M + Na]<sup>+</sup> calcd for C<sub>23</sub>H<sub>18</sub>ClNNaO: 382.0969, found: 382.0969.

2-((1-benzyl-5-methoxy-1H-indol-3-yl) methyl) benzaldehyde (4j)



Yellow solid; 77% yield, mp 65-67 °C; column chromatography eluent, petroleum ether/EtOAc = 30:1. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  10.28 (s, 1H), 7.83 (d, *J* = 7.5 Hz, 1H), 7.44 – 7.41 (m, 1H), 7.33 – 7.30 (m, 2H), 7.22 – 7.16 (m, 3H), 7.06 (d, *J* = 9.0 Hz, 1H), 6.99 – 6.96 (m, 3H), 6.79 (dd, *J* = 9.0, 2.5 Hz, 1H), 6.65 (s, 1H), 5.08 (s, 2H), 4.46 (s, 2H), 3.75 (s, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  192.39, 154.15, 143.65, 137.81, 134.15, 133.96, 132.23, 131.15, 131.08, 128.80 (s, 2C), 128.30, 127.79, 127.61, 126.88, 126.68 (s, 2C), 114.26, 112.22, 110.76, 101.27, 55.96, 50.20, 28.41. HRMS (ESI-TOF): m/z [M + Na]<sup>+</sup> calcd for C<sub>24</sub>H<sub>21</sub>NNaO<sub>2</sub>: 378.1465, found: 378.1463.

2-((1-benzyl-5-fluoro-1H-indol-3-yl) methyl) benzaldehyde (4k)



Yellow oil; 59% yield; column chromatography eluent, petroleum ether/EtOAc = 30:1. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 10.23 (s, 1H), 7.80 (d, *J* = 7.5 Hz, 1H), 7.41 (td, *J* = 7.5, 1.5 Hz, 1H), 7.32 – 7.29 (m, 2H), 7.22 – 7.17 (m, 3H), 7.14 (dd, *J* = 9.5, 2.5 Hz, 1H), 7.05 (dd, *J* = 8.5, 4.0 Hz, 1H), 6.97 (d, *J* = 7.5 Hz, 2H), 6.83 (td, *J* = 9.5, 2.5 Hz, 1H), 6.75 (s, 1H), 5.09 (s, 2H), 4.42 (s, 2H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 192.50, 158.80, 156.93, 143.25, 137.44, 134.06, 133.45, 131.70, 131.13, 128.90 (s, 2C), 128.87, 128.23 (d, *J* = 9.7 Hz, 1C), 127.78, 127.03, 126.69 (s, 2C), 114.64 (d, *J* = 5.0 Hz, 1C), 110.74 (d, *J* = 9.5 Hz, 1C), 110.46 (d, *J* = 26.3 Hz, 1C), 104.19 (d, *J* = 23.9 Hz, 1C), 50.29, 28.39. <sup>19</sup>F NMR (470 MHz, CDCl<sub>3</sub>) δ -119.72. HRMS (ESI-TOF): m/z [M +

Na]<sup>+</sup> calcd for C<sub>23</sub>H<sub>18</sub>FNNaO: 366.1265, found: 366.1263.

2-((1-benzyl-5-chloro-1H-indol-3-yl) methyl) benzaldehyde (41)



Yellow solid; 46% yield, mp 93-95 °C; column chromatography eluent, petroleum ether/EtOAc = 30:1. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  10.26 (s, 1H), 7.85 (dd, J = 8.0, 1.5 Hz, 1H), 7.49 – 7.46 (m, 2H), 7.37 (t, J = 7.5 Hz, 1H), 7.32 (d, J = 8.0 Hz, 1H), 7.27 – 7.21 (m, 3H), 7.11 – 7.06 (m, 2H), 7.00 (d, J = 6.5 Hz, 2H), 6.74 (s, 1H), 5.16 (s, 2H), 4.46 (s, 2H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  192.37, 142.95, 137.07, 135.07, 133.95, 133.83, 131.67, 130.94, 128.81, 128.77 (s, 2C), 128.39, 127.67, 126.91, 126.48 (s, 2C), 125.10, 122.28, 118.57, 114.26, 110.90, 50.11, 28.13. HRMS (ESI-TOF): m/z [M + Na]<sup>+</sup> calcd for C<sub>23</sub>H<sub>18</sub>CINNaO: 382.0969, found: 382.0969.

2-((1-benzyl-6-methoxy-1H-indol-3-yl) methyl) benzaldehyde (4m)



Yellow oil; 52% yield; column chromatography eluent, petroleum ether/EtOAc = 30:1. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  10.29 (s, 1H), 7.83 (d, *J* = 7.5 Hz, 1H), 7.44 – 7.39 (m, 2H), 7.32 (d, *J* = 7.5 Hz, 2H), 7.22 (d, *J* = 7.5 Hz, 2H), 7.19 (d, *J* = 7.0 Hz, 1H), 7.00 (d, *J* = 6.5 Hz, 3H), 6.90 (d, *J* = 8.0 Hz, 1H), 6.60 (s, 1H), 5.12 (s, 2H), 4.47 (s, 2H), 2.39 (s, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  192.21, 143.66, 137.73, 137.26, 133.99, 133.81, 131.87, 131.01, 130.78, 128.67 (s, 2C), 127.42, 126.68, 126.53 (s, 2C), 126.39, 125.70, 121.08, 118.76, 114.62, 109.69, 49.68, 28.27, 21.82. HRMS (ESI-TOF): m/z [M + Na]<sup>+</sup> calcd for C<sub>24</sub>H<sub>21</sub>NNaO<sub>2</sub>: 378.1465, found: 378.1461.

### 2-((1-benzyl-6-fluoro-1H-indol-3-yl) methyl) benzaldehyde (4n)



Yellow oil; 56% yield; column chromatography eluent, petroleum ether/EtOAc = 30:1. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  10.29 (s, 1H), 7.83 (d, *J* = 7.5 Hz, 1H), 7.44 – 7.39 (m, 2H), 7.32 (d, *J* = 7.5 Hz, 2H), 7.22 (d, *J* = 7.5 Hz, 2H), 7.19 (d, *J* = 7.0 Hz, 1H), 7.00 (d, *J* = 6.5 Hz, 3H), 6.90 (d, *J* = 8.0 Hz, 1H), 6.60 (s, 1H), 5.12 (s, 2H), 4.47 (s, 2H), 2.39 (s, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  192.43, 161.03, 159.13, 143.26, 137.10, 136.86 (d, *J* = 12.6 Hz, 1C), 133.97, 131.41, 131.08, 128.86 (s, 2C), 127.75, 127.40 (d, *J* = 3.7 Hz, 1C), 126.95, 126.63 (s, 2C), 124.42, 119.93 (d, *J* = 10.2 Hz, 1C), 115.00, 108.07 (d, *J* = 24.7 Hz, 1C), 96.33 (d, *J* = 26.21 Hz, 1C), 50.17, 28.31. <sup>19</sup>F NMR (470 MHz, CDCl<sub>3</sub>)  $\delta$  -120.54. HRMS (ESI-TOF): m/z [M + Na]<sup>+</sup> calcd for C<sub>23</sub>H<sub>18</sub>FNNaO: 366.1265, found: 366.1267.

5,6<sup>1</sup>,10b,16b-tetrahydro-[1,3]dioxolo [4',5':6,7]chromeno[4,3,2hi]dibenzo[b,f]indolizine (3aa)



White solid; 32.3 mg, 91% yield, mp 136-138 °C; direct filtration purification. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.39 (d, J = 7.5 Hz, 1H), 7.36 – 7.33 (m, 3H), 7.30 – 7.28 (m, 1H), 7.14 (td, J =8.0, 1.5 Hz, 1H), 6.67 (t, J = 7.5 Hz, 1H), 6.35 – 6.34 (m, 2H), 6.00 (d, J = 1.5 Hz, 1H), 5.85 (d, J = 8.5 Hz, 1H), 5.75 (d, J = 1.5 Hz, 1H), 5.70 (d, J = 1.0 Hz, 1H), 4.42 (dd, J = 8.5, 3.5 Hz, 1H), 4.27 (dd, J = 53.0, 15.5 Hz, 2H), 4.19 (d, J = 3.5 Hz, 1H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  152.01, 148.85, 146.13, 142.24, 134.55, 133.52, 130.88, 130.53, 127.51, 127.46, 127.28, 126.69, 126.22, 120.42, 117.43, 107.25, 106.03, 100.83, 100.74, 78.39, 61.98, 46.43, 38.27. HRMS (ESI-TOF): m/z [M + H]<sup>+</sup> calcd for C<sub>23</sub>H<sub>18</sub>NO<sub>3</sub>: 356.1281, found: 356.1281.

10-methyl-5,61,10b,16b-tetrahydro-[1,3]dioxolo[4',5':6,7]chromeno[4,3,2hi]dibenzo[b,f]indolizine (3ba)



White solid; 27.7 mg, 75% yield, mp 156-158 °C; direct filtration purification. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.37 – 7.33 (m, 3H), 7.29 – 7.27 (m, 1H), 7.04 (t, J = 7.5 Hz, 1H), 6.47 (d, J = 7.5 Hz, 1H), 6.34 (s, 1H), 6.17 (d, J = 7.5 Hz, 1H), 6.00 (s, 1H), 5.92 (d, J = 8.5 Hz, 1H), 5.72 (dd, J = 28.0, 1.5 Hz, 2H), 4.41 (dd, J = 8.5, 3.5 Hz, 1H), 4.26 (dd, J = 47.5, 15.5 Hz, 2H), 4.19 (d, J = 3.5 Hz, 1H), 2.46 (s, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  151.96, 148.96, 146.07, 142.24, 136.87, 134.61, 133.63, 130.89, 130.55, 127.47, 127.45, 126.63, 125.32, 120.68, 118.95, 107.31, 103.47, 100.72, 100.56, 77.84, 61.86, 46.47, 38.39, 18.02. HRMS (ESI-TOF): m/z [M + H]<sup>+</sup> calcd for C<sub>24</sub>H<sub>20</sub>NO<sub>3</sub>:370.1438, found: 370.1437.

10-fluoro-5,6<sup>1</sup>,10b,16b-tetrahydro-[1,3]dioxolo[4',5':6,7]chromeno[4,3,2hi]dibenzo[b,f]indolizine (3ca)



White solid; 27.4 mg, 60% yield, mp 149-150 °C; direct filtration purification. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.39 – 7.33 (m, 3H), 7.30 – 7.27 (m, 1H), 7.09 (td, *J* = 8.5, 6.0 Hz, 1H), 6.43 (s, 1H), 6.33 (t, *J* = 8.5 Hz, 1H), 6.08 (dd, *J* = 13.5, 8.0 Hz, 2H), 5.97 (d, *J* = 1.0 Hz, 1H), 5.75 (dd, *J* = 19.0, 1.5 Hz, 2H), 4.48 (dd, *J* = 9.0, 3.5 Hz, 1H), 4.28 (dd, *J* = 62.0, 15.5 Hz, 2H), 4.20 (s, 1H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  161.75, 159.76, 154.18 (d, *J* = 8.6 Hz, 1C), 148.66, 146.25, 142.49, 134.23, 133.04, 132.63 (d, *J* = 9.2 Hz, 1C), 130.90, 127.66, 127.40, 126.85, 120.44, 112.70 (d, *J* = 20.2 Hz, 1C), 107.22, 104.41 (d, *J* = 20.8 Hz, 1C), 101.77 (d, *J* = 2.6 Hz, 1C), 100.85 (d, *J* = 8.1 Hz, 1C), 75.88, 62.49, 46.35, 38.32. <sup>19</sup>F NMR (470 MHz, CDCl<sub>3</sub>)  $\delta$  -118.64. HRMS (ESITOF): *m/z* [M + H]<sup>+</sup> calcd for C<sub>23</sub>H<sub>17</sub>FNO<sub>3</sub>:374.1187, found: 374.1187.

10-chloro-5,6<sup>1</sup>,10b,16b-tetrahydro-[1,3]dioxolo[4',5':6,7]chromeno[4,3,2-



White solid; 24.6 mg, 63% yield, mp 152-153 °C; direct filtration purification. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 7.38 -7.34 (m, 3H), 7.29 – 7.27 (m, 1H), 7.04 (t, *J* = 8.0 Hz, 1H), 6.59 (d, *J* = 8.0 Hz, 1H), 6.44 (s, 1H), 6.18 (d, *J* = 8.0 Hz, 1H), 5.97 (d, *J* = 9.5 Hz, 2H), 5.74 (dd, *J* = 21.5, 1.5 Hz, 2H), 4.47 (dd, *J* = 8.5, 3.0 Hz, 1H), 4.35 – 4.17 (m, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 153.22, 148.66, 146.23, 142.50, 134.23, 132.96, 132.58, 131.91, 130.89, 127.66, 127.39, 126.86, 124.28, 120.62, 117.54, 107.16, 104.07, 100.92, 100.80, 77.52, 61.90, 46.22, 38.33. HRMS (ESI-TOF): *m/z* [M + H]<sup>+</sup> calcd for C<sub>23</sub>H<sub>17</sub>ClNO<sub>3</sub>:374.1187, found: 374.1187.

9-methyl-5,6<sup>1</sup>,10b,16b-tetrahydro-[1,3]dioxolo[4',5':6,7]chromeno[4,3,2hi]dibenzo[b,f]indolizine (3ea)



White solid; 31.8 mg, 86% yield, mp 90-92 °C; direct filtration purification. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 7.34 – 7.31 (m, 3H), 7.26 – 7.24 (m, 1H), 7.02 (d, *J* = 2.5 Hz, 1H), 6.73 (dd, *J* = 8.5, 3.0 Hz, 1H), 6.35 (s, 1H), 6.30 (d, *J* = 8.5 Hz, 1H), 6.05 (s, 1H), 5.76 (d, *J* = 8.5 Hz, 1H), 5.71 (dd, *J* = 28.0, 1.5 Hz, 2H), 4.32 (dd, *J* = 8.5, 3.5 Hz, 1H), 4.26 – 4.13 (m, 3H), 3.76 (s, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 152.67, 148.91, 146.70, 146.14, 142.20, 134.71, 133.92, 130.73, 128.50, 127.47, 127.45, 126.70, 119.92, 116.26, 112.41, 107.16, 107.11, 100.75, 100.66, 78.47, 62.73, 56.10, 47.68, 38.22. HRMS (ESI-TOF): *m/z* [M + H]<sup>+</sup> calcd for C<sub>24</sub>H<sub>20</sub>NO<sub>3</sub>:370.1438, found: 370.1438.

9-methoxy-5,6<sup>1</sup>,10b,16b-tetrahydro-[1,3]dioxolo[4',5':6,7]chromeno[4,3,2hi]dibenzo[b,f]indolizine (3fa)



White solid; 30.8 mg, 80% yield, mp 204-206 °C; direct filtration purification. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 7.36 – 7.34 (m, 3H), 7.29 – 7.27 (m, 1H), 7.04 (d, *J* = 2.5 Hz, 1H), 6.76 (dd, *J* = 8.0, 2.5 Hz, 1H), 6.36 – 6.32 (m, 2H), 6.05 (s, 1H), 5.80 – 5.72 (m, 3H), 4.36 (dd, *J* = 8.5, 3.5 Hz, 1H), 4.28 – 4.14 (m, 3H), 3.77 (s, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 152.68, 148.91, 146.72, 146.15, 142.21, 134.72, 133.93, 130.74, 128.51, 127.48, 126.72, 119.94, 116.29, 112.42, 107.17, 107.12, 100.77, 100.67, 78.50, 62.75, 56.13, 47.70, 38.24, 29.71. HRMS (ESI-TOF): *m/z* [M + H]<sup>+</sup> calcd for C<sub>24</sub>H<sub>20</sub>NO<sub>4</sub>:386.1387, found: 386.1388.

9-fluoro-5,6<sup>1</sup>,10b,16b-tetrahydro-[1,3]dioxolo[4',5':6,7]chromeno[4,3,2hi]dibenzo[b,f]indolizine (3ga)



White solid; 27.6 mg, 74% yield, mp 160-162 °C; direct filtration purification. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.38 – 7.32 (m, 3H), 7.30 – 7.27 (m, 1H), 7.11 (dd, *J* = 8.0, 2.5 Hz, 1H), 6.84 (td, *J* = 8.5, 2.5 Hz, 1H), 6.35 (s, 1H), 6.24 (dd, *J* = 8.5, 4.0 Hz, 1H), 6.01 (d, *J* = 1.0 Hz, 1H), 5.80 (d, *J* = 8.5 Hz, 1H), 5.74 (dd, *J* = 21.5, 1.5 Hz, 2H), 4.42 (dd, *J* = 8.5, 3.5 Hz, 1H), 4.21 (dd, *J* = 81.5, 14.5 Hz, 2H), 4.31 – 4.12 (m, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  156.92, 155.06, 148.66, 148.48, 146.24, 142.39, 134.40, 133.48, 130.77, 128.34 (d, *J* = 7.6 Hz, 1C), 127.59, 127.45, 126.83, 120.18, 116.84 (d, *J* = 23.7 Hz, 1C), 113.29 (d, *J* = 23.8 Hz, 1C), 107.16, 106.31 (d, *J* = 8.1 Hz, 1C), 100.80 (d, *J* = 4.4 Hz, 1C), 78.12 (d, *J* = 2.3 Hz, 1C), 62.60, 47.13, 38.26. <sup>19</sup>F NMR (470 MHz, CDCl<sub>3</sub>)  $\delta$  -127.24. HRMS (ESI-TOF): *m*/*z* [M + H]<sup>+</sup> calcd for C<sub>23</sub>H<sub>17</sub>FNO<sub>3</sub>:374.1187, found: 374.1189.

9-chloro-5,6<sup>1</sup>,10b,16b-tetrahydro-[1,3]dioxolo[4',5':6,7]chromeno[4,3,2hi]dibenzo[b,f]indolizine (3ha)



White solid; 27.3 mg, 70% yield, mp 176-178 °C; direct filtration purification. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.30 – 7.25 (m, 4H), 7.22 – 7.20 (m, 1H), 7.00 (dd, J = 8.5, 2.0 Hz, 1H), 6.29 (s, 1H), 6.17 (d, J = 8.0 Hz, 1H), 5.91 (s, 1H), 5.74 (d, J = 8.5 Hz, 1H), 5.68 (d, J = 20.0 Hz, 2H), 4.38 (dd, J = 9.0, 4.0 Hz, 1H), 4.27 – 4.07 (m, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  150.59, 148.56, 146.29, 142.48, 134.23, 133.15, 130.86, 130.37, 128.85, 127.67, 127.45, 126.89, 126.25, 121.68, 120.39, 107.22, 106.71, 100.98, 100.86, 77.96, 62.30, 46.42, 38.26. HRMS (ESI-TOF): m/z [M + H]<sup>+</sup> calcd for C<sub>23</sub>H<sub>17</sub>ClNO<sub>3</sub>:390.0892, found: 390.0896.

8-fluoro-5,6<sup>1</sup>,10b,16b-tetrahydro-[1,3]dioxolo[4',5':6,7]chromeno[4,3,2-

hi]dibenzo[b,f]indolizine (3ia)



White solid; 20.9 mg, 56% yield, mp 204-206 °C; column chromatography eluent, petroleum ether/EtOAc = 10:1. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.30 – 7.24 (m,3H), 7.21 – 7.19 (m, 2H), 6.26 (s, 1H), 6.23 (td, *J* = 10.0, 8.0, 2.0 Hz, 1H), 5.91 (dd, *J* = 10.0, 2.5 Hz, 1H), 5.88 (d, *J* = 1.0 Hz, 1H), 5.74 (d, *J* = 9.0 Hz, 1H), 5.66 (dd, *J* = 20.0, 1.5 Hz, 2H), 4.42 (dd, *J* = 8.5, 3.5 Hz, 1H),4.26 – 4.06 (m, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  166.45,164.51, 153.61 (d, *J* = 12.7 Hz, 1C), 148.64, 146.29, 142.46, 134.28, 132.98, 130.88, 127.69, 127.45, 127.06 (d, *J* = 11.1 Hz, 1C), 126.89, 122.77 (d, *J* = 2.1 Hz, 1C), 120.66, 107.26, 103.54 (d, *J* = 23.3 Hz, 1C), 100.93 (d, *J* = 21.8 Hz, 1C), 93.57 (d, *J* = 26.2 Hz, 1C), 77.89, 62.83, 46.06, 38.44. <sup>19</sup>F NMR (470 MHz, CDCl<sub>3</sub>)  $\delta$  -111.20. HRMS (ESI-TOF): *m*/*z* [M + H]<sup>+</sup> calcd for C<sub>23</sub>H<sub>17</sub>FNO<sub>3</sub>:374.1187, found: 374.1189.

8-methoxy-5,6<sup>1</sup>,10b,16b-tetrahydro-[1,3]dioxolo[4',5':6,7]chromeno[4,3,2hi]dibenzo[b,f]indolizine (3ja)



White solid; 26.2 mg, 68% yield, mp 168-172 °C; direct filtration purification. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.23 – 7.20 (m, 3H), 7.15 – 7.13 (m, 2H),, 6.22 (d, *J* = 3.5 Hz, 1H), 6.07 (dt, *J* = 8.5, 2.5 Hz, 1H), 5.86 (d, *J* = 3.0 Hz, 1H), 5.75 (t, *J* = 2.5 Hz, 1H), 5.66 (dd, *J* = 8.5, 3.0 Hz, 1H), 5.59 (dd, *J* = 23.0, 3.0 Hz, 2H), 4.31 (dt, *J* = 7.0, 3.0 Hz, 1H), 4.12 (ddd, *J* = 18.0, 15.0, 3.0 Hz, 2H), 4.03 (t, *J* = 3.5 Hz, 1H), 3.61 (d, *J* = 3.5 Hz, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  162.38, 153.48, 148.85, 146.10, 142.18, 134.52, 133.35, 130.83, 127.47, 127.40, 126.74, 126.66, 120.57, 119.82, 107.19, 102.28, 100.91, 100.69, 92.46, 78.11, 62.75, 55.20, 46.19, 38.44. HRMS (ESI-TOF): m/z [M + H]<sup>+</sup> calcd for C<sub>24</sub>H<sub>20</sub>NO<sub>4</sub>: 386.1387, found: 386.1389.

6<sup>1</sup>-methyl-5,6<sup>1</sup>,10b,16b-tetrahydro-[1,3]dioxolo[4',5':6,7]chromeno[4,3,2 hi]dibenzo[b,f]indolizine (3ka)



White solid; 12.9 mg, 35% yield, mp 151-152 °C; column chromatography eluent, petroleum ether/EtOAc = 10:1. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.40 (d, *J* = 7.9 Hz, 1H), 7.22 (dt, *J* = 5.2, 3.5 Hz, 1H), 6.83 – 6.79 (m, 1H), 6.72 (dt, *J* = 7.0, 3.6 Hz, 2H), 6.70 – 6.64 (m, 1H), 6.61 (td, *J* = 7.6, 1.2 Hz, 1H), 6.07 (s, 1H), 6.00 (d, *J* = 8.6 Hz, 2H), 5.85 (d, *J* = 7.8 Hz, 1H), 5.46 (dd, *J* = 23.3, 1.5 Hz, 2H), 5.02 (s, 2H), 4.40 (s, 1H), 1.91 (s, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  154.48, 149.97, 142.78, 141.86, 139.49, 139.12, 136.27, 130.89, 130.72, 130.68, 130.53, 128.59, 123.42, 122.41, 122.24, 111.55, 109.45, 103.38, 103.38, 101.80, 55.39, 47.31, 25.99, 15.27. HRMS (ESI-TOF): *m/z* [M + H]<sup>+</sup> calcd for C<sub>24</sub>H<sub>20</sub>NO<sub>3</sub>: 370.1438, found: 370.1438.

10b-methyl-5,6<sup>1</sup>,10b,16b-tetrahydro-[1,3]dioxolo[4',5':6,7]chromeno[4,3,2hi]dibenzo[b,f]indolizine (3la)



White solid; 14.0 mg, 38% yield, mp 158-159 °C; column chromatography eluent, petroleum ether/EtOAc = 10:1. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.36 – 7.34 (m, 3H), 7.31 (d, *J* = 7.5 Hz, 1H), 7.29 – 7.27 (m, 1H), 7.11 (t, *J* = 8.0 Hz, 1H), 6.67 (t, *J* = 7.5 Hz, 1H), 6.32 – 6.29 (m, 2H), 5.98 (s, 1H), 5.71 (dd, *J* = 25.5, 1.5 Hz, 2H), 4.26 (dd, *J* = 30, 15 Hz, 2H), 4.12 (dd, *J* = 10.5, 3.5 Hz, 2H), 1.90 (s, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  151.20, 149.34, 146.13, 142.15, 134.58, 133.57, 131.04, 130.78, 130.05, 127.51, 127.42, 126.71, 123.63, 120.16, 117.33, 106.98, 105.83, 100.70, 100.59, 84.31, 68.24, 46.58, 38.84, 26.57. HRMS (ESI-TOF): *m/z* [M + H]<sup>+</sup> calcd for C<sub>24</sub>H<sub>20</sub>NO<sub>3</sub>: 370.1438, found: 370.1439.

6<sup>1</sup>,10b-dimethyl-5,6<sup>1</sup>,10b,16b-tetrahydro-[1,3]dioxolo[4',5':6,7]chromeno[4,3,2hi]dibenzo[b,f]indolizine (3ma)



White solid; 17.3 mg, 45% yield, mp 154-158 °C; column chromatography eluent, petroleum ether/EtOAc = 10:1. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 7.69 (d, *J* = 8..0 Hz, 1H), 7.50 – 7.47 (m, 1H), 7.11 (td, *J* = 7.5, 1.0 Hz, 1H), 7.05 – 7.02 (m, 2H), 6.92 (td, *J* = 7.5, 1.5 Hz, 1H), 6.36 (s, 1H), 6.28 (s, 1H), 6.18 (dd, *J* = 7.8, 1.3 Hz, 1H), 5.77 (dd, *J* = 21.5, 1.5 Hz, 2H), 5.40 (s, 2H), 5.22 (s, 1H), 4.73 (s, 1H), 2.24 (s, 3H), 2.14 (s, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 150.74, 146.18, 138.98, 138.05, 134.91, 130.99, 127.46, 126.84, 126.74, 124.99, 119.68, 117.78, 116.92, 107.37, 106.23, 105.68, 99.60, 98.02, 43.76, 22.22 (s, 2C), 21.05, 12.78, 8.94, 7.62. HRMS (ESI-TOF): *m/z* [M + H]<sup>+</sup> calcd for C<sub>25</sub>H<sub>22</sub>NO<sub>3</sub>: 384.1594, found: 384.1595.

[1,3]dioxolo[4',5':6,7]indeno[2',1':3,4]chromeno[2,3-b]indole (5aa)



White solid; 40.3 mg, 98% yield, mp 160-162 °C; direct filtration purification. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.24 – 7.14 (m, 3H), 7.06 – 7.02 (m, 2H), 6.97 (d, *J* = 7.0 Hz, 1H), 6.66 (s, 1H), 6.61 (td, *J* = 7.5, 1.0 Hz, 1H), 6.42 (s, 1H), 6.36 – 6.25 (m, 1H), 5.80 (dd, *J* = 17.5, 1.5 Hz, 2H), 5.31 (s, 1H), 4.35 (s, 1H), 3.37 – 3.21 (m, 2H), 3.30 (dd, *J* = 89.0, 16.0 Hz, 2H), 1.72 – 1.58 (m, 2H), 1.37 (h, *J* = 15.0, 7.5 Hz, 2H), 0.95 (t, *J* = 7.5 Hz, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  149.81, 147.13, 146.94, 144.63, 142.20, 140.27, 132.09, 128.38, 127.37, 127.08, 124.62, 123.89, 122.15, 118.67, 117.44, 108.58, 105.40, 100.87, 100.80, 100.51, 58.47, 51.82, 46.26, 44.25, 29.62, 20.41, 13.95. HRMS (ESI-TOF): m/z [M + H]<sup>+</sup> calcd for C<sub>27</sub>H<sub>26</sub>NO<sub>3</sub>:412.1907, found: 412.1914.

10-benzyl-5,10,10a,16b-tetrahydro-

[1,3]dioxolo[4',5':6,7]indeno[2',1':3,4]chromeno[2,3-b]indole (5ba)



White solid; 39.2 mg, 88% yield, mp 100-101 °C; direct filtration purification. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.21 – 7.05 (m, 8H), 7.01 (dd, J = 7.5, 1.5 Hz, 1H), 6.92 (td, J = 8.0, 1.5 Hz, 1H), 6.88 (d, J = 7.5 Hz, 1H), 6.60 (s, 1H), 6.57 (t, J = 7.5 Hz, 1H), 6.23 (d, J = 7.5 Hz, 1H), 6.18 (s, 1H), 5.73 (dd, J = 8.0, 1.0 Hz, 2H), 5.23 (s, 1H), 4.42 (s, 2H), 4.30 (s, 1H), 3.24 (dd, J = 102.5, 16.0 Hz, 2H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  149.82, 147.15, 147.09, 144.66, 142.42, 140.32, 138.04, 132.33, 128.61 (s, 2C), 128.59, 127.61 (s, 2C), 127.55, 127.26, 127.22, 124.75, 124.04, 122.43, 118.82, 118.22, 108.69, 106.14, 101.15, 101.04, 100.52, 58.59, 52.03, 48.53, 46.34. HRMS (ESI-TOF): m/z [M + H]<sup>+</sup> calcd for C<sub>30</sub>H<sub>24</sub>NO<sub>3</sub>:446.1751, found: 446.1754.

10-methyl-5,10,10a,16b-tetrahydro-



White solid; 17.0 mg, 46% yield, mp 169-170 °C; column chromatography eluent, petroleum ether/EtOAc = 10:1. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.13 – 7.04 (m, 3H), 6.97 – 6.93 (m, 2H), 6.87 (d, *J* = 7.5 Hz, 1H), 6.56 (s, 1H), 6.53 (td, *J* = 7.0, 1.0 Hz, 1H), 6.32 (s, 1H), 6.24 (d, *J* = 7.5 Hz, 1H), 5.72 (dd, *J* = 16.5, 1.5 Hz, 2H), 5.11 (s, 1H), 4.22 (s, 1H), 3.22 (dd, *J* = 86.5, 16.5 Hz, 2H), 2.78 (s, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  150.21, 147.08, 147.06, 144.62, 142.34, 140.41, 132.46, 128.56, 127.47, 127.18, 124.63, 124.04, 122.16, 118.93, 117.91, 108.64, 105.52, 102.06, 100.99, 100.82, 58.24, 52.05, 46.02, 30.90. HRMS (ESI-TOF): m/z [M + H]<sup>+</sup> calcd for C<sub>24</sub>H<sub>20</sub>NO<sub>3</sub>:370.1438, found: 370.1438.

(5aS,10aS,16bS)-10-allyl-5,10,10a,16b-tetrahydro-

[1,3]dioxolo[4',5':6,7]indeno[2',1':3,4]chromeno[2,3-b]indole (5da)



White solid; 27.3 mg, 69% yield, mp 178-180 °C; direct filtration purification. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.64 (d, J = 7.5 Hz, 1H), 7.36 (dd, J = 8.0, 3.5 Hz, 2H), 7.18 (ddt, J = 20.5, 14.0, 8.0 Hz, 5H), 6.36 (s, 1H), 6.21 (s, 1H), 5.72 (d, J = 7.5 Hz, 2H), 5.68 (t, J = 4.0 Hz, 1H), 5.57 (ddt, J = 15.5, 10.0, 5.0 Hz, 1H), 4.94 – 4.92 (m, 2H), 4.79 (d, J = 17.0 Hz, 1H), 4.65 – 4.60 (m, 1H), 4.48 – 4.43 (m, 1H), 4.29 (ddd, J = 24.0, 20.0, 3.5 Hz, 2H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  146.88, 146.61, 141.93, 137.69, 137.28, 134.78, 133.27 (s, 2C), 129.65, 129.32, 126.39, 126.38, 126.30, 122.97, 121.70, 119.19, 118.42, 116.04, 109.51, 109.26, 107.94, 101.00, 98.34, 45.58, 37.16, 26.69. HRMS (ESI-TOF): m/z [M + H]<sup>+</sup> calcd for C<sub>26</sub>H<sub>22</sub>NO<sub>3</sub>: 396.1594, found: 396.1587.

(5aS,10aS,16bS)-10-(cyclopropylmethyl)-5,10,10a,16b-tetrahydro-



White solid; 31.9 mg, 78% yield, mp 146-148 °C; direct filtration purification. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.25 – 7.15 (m, 3H), 7.05 (dt, J = 7.0, 5.0 Hz, 2H), 7.00 (d, J = 7.0 Hz, 1H), 6.67 (s, 1H), 6.62 (t, J = 7.0 Hz, 1H), 6.41 (d, J = 7.0 Hz, 2H), 5.80 (d, J = 17.0 Hz, 2H), 5.49 (s, 1H), 4.35 (s, 1H), 3.40 (d, J = 16.0 Hz, 1H), 3.30 – 3.24 (m, 2H), 3.05 (dd, J = 14.0, 7.5 Hz, 1H), 1.08 (m, 1H), 0.59 – 0.48 (m, 2H), 0.35 (m, 1H), 0.23 (m, 1H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  149.69, 147.15, 146.91, 144.56, 142.20, 140.35, 132.34, 128.39, 127.39, 127.08, 124.65, 123.96, 122.20, 118.78, 117.63, 108.50, 105.62, 100.87, 100.77, 99.94, 58.31, 51.76, 48.85, 46.14, 9.01, 4.67, 2.97. HRMS (ESI-TOF): m/z [M + Na]<sup>+</sup> calcd for C<sub>27</sub>H<sub>23</sub>NNaO<sub>3</sub>: 432.1570, found: 432.1569. (5aS,10aS,16bS)-10-benzyl-10a-methyl-5,10,10a,16b-tetrahydro-

[1,3]dioxolo[4',5':6,7]indeno[2',1':3,4]chromeno[2,3-b]indole (5fa)



White solid; 35.8 mg, 78% yield, mp 198-200 °C; direct filtration purification. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 7.27 – 7.24 (m, 3H),, 7.21 – 7.16 (m, 5H), 7.07 (dd, *J* = 10.5, 7.0 Hz, 2H), 6.93 (t, *J* = 7.5 Hz, 1H), 6.78 (s, 1H), 6.64 (t, *J* = 7.5 Hz, 1H), 6.32 (s, 1H), 6.12 (d, *J* = 7.5 Hz, 1H), 5.84 (d, *J* = 9.0 Hz, 2H), 4.54 – 4.36 (m, 3H), 3.44 (dd, *J* = 92.5, 16.5 Hz, 2H), 1.40 (s, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 148.86, 147.30, 146.83, 143.92, 142.06, 140.98, 138.95, 133.07, 128.40 (s, 2C), 128.18, 127.41, 127.03, 126.68, 126.56 (s, 2C), 123.86, 123.77, 121.49, 118.11, 117.83, 108.25, 106.89, 102.15, 100.87, 100.60, 60.16, 51.86, 45.91, 41.57, 20.75. HRMS (ESI-TOF): m/z [M + Na]<sup>+</sup> calcd for C<sub>31</sub>H<sub>25</sub>NNaO<sub>3</sub>: 482.1727, found: 482.1727.

#### (5aS,10aS,16bS)-10-benzyl-6-methyl-5,10,10a,16b-tetrahydro-



White solid; 30.8 mg, 67% yield, mp 91-93 °C; direct filtration purification. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) & 7.27 – 7.20 (m, 6H), 7.17 (t, *J* = 7.5 Hz, 1H), 7.12 (t, *J* = 7.5 Hz, 1H), 6.94 – 6.89 (m, 2H), 6.73 (s, 1H), 6.46 (d, *J* = 7.5 Hz, 1H), 6.22 (s, 1H), 6.16 (d, *J* = 8.0 Hz, 1H), 5.82 (d, *J* = 10.0 Hz, 2H), 5.32 (s, 1H), 4.73 (s, 1H), 4.46 (dd, *J* = 23.5, 16.0 Hz, 2H), 3.48 (dd, *J* = 321.5, 16.5 Hz, 2H), 2.30 (s, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) & 150.25, 147.00, 146.98, 145.22, 142.20, 140.29, 137.97, 133.94, 128.44 (s, 2C), 128.42, 128.07, 127.41 (s, 2C), 127.26, 127.07, 127.01, 124.71, 123.77, 121.23, 118.86, 108.80, 104.06, 101.42, 101.10, 100.93, 58.65, 49.60, 48.58, 44.19, 19.19. HRMS (ESI-TOF): m/z [M + Na]<sup>+</sup> calcd for C<sub>31</sub>H<sub>25</sub>NNaO<sub>3</sub>: 482.1727, found: 482.1731. (*5aS,10aS,16bS)-10-benzyl-6-fluoro-5,10,10a,16b-tetrahydro-*

[1,3]dioxolo[4',5':6,7]indeno[2',1':3,4]chromeno[2,3-b]indole (5ha)



White solid; 21.3 mg, 46% yield, mp 153-154 °C; column chromatography eluent, petroleum ether/EtOAc = 20:1. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.32 – 7.28 (m, 2H), 7.27 – 7.21 (m, 4H), 7.18 (t, J = 7.5 Hz, 1H), 7.13 (t, J = 7.5 Hz, 1H), 6.96 (dd, J = 14.0, 8.0 Hz, 1H), 6.87 (d, J = 7.0 Hz, 1H), 6.76 (s, 1H), 6.35 (t, J = 9.0 Hz, 1H), 6.23 (s, 1H), 6.08 (d, J = 8.0 Hz, 1H), 5.89 (dd, J = 9.0, 2.0 Hz, 2H), 5.37 (s, 1H), 4.73 (s, 1H), 4.48 (s, 2H), 3.82 (d, J = 15.5 Hz, 1H), 3.14 (d, J = 15.5 Hz, 1H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  160.75, 158.80, 152.27 (d, J = 9.3 Hz, 1C), 147.12, 146.69, 145.27, 142.46, 140.14, 137.52, 130.30 (d, J = 9.2 Hz, 1C), 128.57 (s, 2C), 127.38 (s, 2C), 127.23 (d, J = 2.1 Hz, 1C), 127.07, 124.55, 123.46, 118.80, 109.19, 105.63, 105.46, 101.76 (d, J = 2.5 Hz, 1C), 101.27, 101.01, 100.47, 58.07 (d, J = 3.0 Hz, 1C), 49.99, 48.26, 44.28. <sup>19</sup>F NMR (470 MHz, CDCl<sub>3</sub>)  $\delta$  -119.72. HRMS (ESI-TOF): m/z [M +

Na]<sup>+</sup> calcd for C<sub>30</sub>H<sub>22</sub>FNNaO<sub>3</sub>: 486.1476, found: 486.1471.

(5aS,10aS,16bS)-10-benzyl-6-chloro-5,10,10a,16b-tetrahydro-[1,3]dioxolo[4',5':6,7]indeno[2',1':3,4]chromeno[2,3-b]indole (5ia)



White solid; 19.2 mg, 40% yield, mp 171-173 °C; column chromatography eluent, petroleum ether/EtOAc = 20:1. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.29 – 7.23 (m, 4H),  $\delta$  7.21 – 7.16 (m, 3H), 7.11 (t, *J* = 7.5 Hz, 1H), 6.91 (t, *J* = 8.0 Hz, 1H), 6.85 (d, *J* = 7.5 Hz, 1H), 6.76 (s, 1H), 6.59 (d, *J* = 8.0 Hz, 1H), 6.22 (s, 1H), 6.16 (d, *J* = 8.0 Hz, 1H), 5.86 (d, *J* = 11.0 Hz, 2H), 5.42 (s, 1H), 5.11 (s, 1H), 4.47 (s, 2H), 4.17 (d, *J* = 16.0 Hz, 1H), 3.03 (d, *J* = 16.0 Hz, 1H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  151.74, 147.11, 146.64, 145.20, 142.47, 139.99, 137.32, 130.45, 129.87, 128.57 (s, 2C), 127.29 (s, 2C), 127.23, 127.18, 127.05, 126.06, 124.66, 123.47, 119.17, 119.12, 109.23, 104.15, 101.31, 101.03, 100.98, 59.68, 48.61, 48.13, 43.37. HRMS (ESI-TOF): m/z [M + Na]<sup>+</sup> calcd for C<sub>30</sub>H<sub>22</sub>ClNNaO<sub>3</sub>: 502.1180, found: 502.1183.

(5aS,10aS,16bS)-10-benzyl-7-methoxy-5,10,10a,16b-tetrahydro-[1,3]dioxolo[4',5':6,7]indeno[2',1':3,4]chromeno[2,3-b]indole (5ja)



White solid; 42.3 mg, 89% yield, mp 191-193 °C; direct filtration purification. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 7.39 (d, *J* = 7.5 Hz, 1H), 7.32 (d, *J* = 7.5 Hz, 1H), 7.20 (t, *J* = 7.0 Hz, 1H), 7.15 – 7.12 (m, 5H), 7.05 (d, *J* = 8.5 Hz, 1H), 6.83 – 6.78 (m, 3H), 6.33 (s, 1H), 6.12 (d, *J* = 1.0 Hz, 1H), 5.73 (d, *J* = 1.5 Hz, 2H), 5.64 (t, *J* = 3.5 Hz, 1H), 5.17 (dd, *J* = 88.0, 17.0 Hz, 2H), 4.95 (s, 1H), 4.31 (ddd, *J* = 24.0, 20.5, 4.0 Hz, 2H), 3.90 (d, *J* = 1.0 Hz, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 154.03, 146.87, 146.60, 141.88, 137.97, 137.68, 135.82, 133.26, 132.96, 129.74, 129.32, 128.34 (s, 2C), 126.80, 126.68, 126.44, 126.33, 125.81 (s, 2C), 122.75, 111.64, 110.37, 109.26, 107.84, 100.98, 100.80,

98.38, 56.02, 46.71, 37.42, 26.85. HRMS (ESI-TOF):  $m/z [M + H]^+$  calcd for  $C_{31}H_{26}NO_4$ : 476.1856, found: 476.1846.

(5aS,10aS,16bS)-10-benzyl-7-fluoro-5,10,10a,16b-tetrahydro-[1,3]dioxolo[4',5':6,7]indeno[2',1':3,4]chromeno[2,3-b]indole (5ka)



White solid; 45.0 mg, 97% yield, mp 121-123 °C; direct filtration purification. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.36 (d, J = 7.5 Hz, 1H), 7.32 – 7.29 (m, 2H), 7.18 (t, J = 7.0 Hz, 1H), 7.13 – 7.10 (m, 4H), 7.02 (q, J = 4.5 Hz, 1H), 6.86 (td, J = 9.0, 2.5 Hz, 1H), 6.76 – 6.74 (m, 2H), 6.27 (s, 1H), 6.07 (s, 1H), 5.21 (dd J = 82.0, 17.5 Hz, 2H), 4.79 (s, 1H), 4.26 (ddd, J = 24.0, 20.5, 4.0 Hz, 2H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  158.78, 156.92, 146.54 (d, J = 4.0 Hz, 1C), 141.96, 137.61 (d, J = 4.0 Hz, 1C), 137.18, 134.16, 133.04, 129.70, 129.32, 128.35 (s, 2C), 126.87, 126.67 (d, J = 9.8 Hz, 1C), 126.46 (d, J = 14.5 Hz, 1C), 125.73 (s, 2C), 122.70, 110.17 (d, J = 9.7 Hz, 1C), 109.95, 109.74, 109.15, 108.20 (d, J = 4.5 Hz, 1C), 103.66, 103.47, 100.98, 98.22, 46.73, 37.01, 26.67. <sup>19</sup>F NMR (470 MHz, CDCl<sub>3</sub>)  $\delta$  -126.25. HRMS (ESI-TOF): m/z [M + H]<sup>+</sup> calcd for C<sub>30</sub>H<sub>23</sub>FNO<sub>3</sub>: 464.1657, found: 464.1645.

(5aS,10aS,16bS)-10-benzyl-7-chloro-5,10,10a,16b-tetrahydro-[1,3]dioxolo[4',5':6,7]indeno[2',1':3,4]chromeno[2,3-b]indole (5la)



Yellow oil; 44.2 mg, 92% yield; direct filtration purification. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.30 – 7.27 (m, 2H), 7.25 – 7.17 (m, 5H), 7.15 (t, *J* = 7.5 Hz, 1H), 7.03 (d, *J* = 2.0 Hz, 1H), 6.96 (d, *J* = 7.5 Hz, 1H), 6.93 (dd, *J* = 8.5, 2.0 Hz, 1H), 6.68 (s, 1H), 6.28 (s, 1H), 6.18 (d, *J* = 8.5 Hz, 1H), 5.83 (d, *J* = 6.5 Hz, 2H), 5.29 (s, 1H), 4.47 (s, 2H), 4.33 (s, 1H), 3.29 (dd, *J* = 82.0, 16.0 Hz, 2H) <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  148.35, 147.19, 146.93, 144.24, 142.56, 139.88, 137.50, 134.29, 128.69 (s, 2C), 128.31,

127.68, 127.50 (s, 2C), 127.38 (s, 2C), 124.78, 124.07, 122.84, 122.71, 118.47, 108.65, 106.95, 101.11 (s, 2C), 100.39, 58.49, 51.88, 48.44, 46.11. HRMS (ESI-TOF): m/z [M + H]<sup>+</sup> calcd for C<sub>30</sub>H<sub>23</sub>ClNO<sub>3</sub>: 480.1361, found: 480.1354.

(5aS,10aS,16bS)-10-benzyl-8-methoxy-5,10,10a,16b-tetrahydro-[1,3]dioxolo[4',5':6,7]indeno[2',1':3,4]chromeno[2,3-b]indole (5ma)



White solid; 35.2 mg, 74% yield, mp 190-191 °C; direct filtration purification. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.56 (d, *J* = 8.0 Hz, 1H), 7.37 (d, *J* = 7.5 Hz, 1H), 7.30 (d, *J* = 8.0 Hz, 1H), 7.18 (t, *J* = 7.5 Hz, 1H), 7.13 – 6.10 (m, 4H), 7.00 (d, *J* = 8.0 Hz, 1H), 6.97 (s, 1H), 6.80 – 6.78 (m, 2H), 6.32 (s, 1H), 6.06 (d, *J* = 1.5 Hz, 1H), 5.70 (s, 2H), 5.57 (t, *J* = 4.0 Hz, 1H), 5.15 (dd, *J* = 96.5, 17.0 Hz, 2H), 4.89 (d, *J* = 10.5 Hz, 1H), 4.31 (ddd, *J* = 24.0, 20.0, 3.5 Hz, 2H), 2.41 (s, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  146.99, 146.58, 141.81, 138.24, 137.96, 137.59, 134.27, 133.29, 131.86, 129.70, 129.31, 128.32 (s, 2C), 126.71, 126.37, 126.30, 125.74 (s, 2C), 124.25, 122.64, 121.07, 118.16, 109.58, 109.26, 108.13, 100.94, 98.42, 46.43, 37.53, 26.80, 21.92. HRMS (ESI-TOF): m/z [M + H]<sup>+</sup> calcd for C<sub>31</sub>H<sub>26</sub>NO4: 476.1856, found: 476.1856.

(5aS,10aS,16bS)-10-benzyl-8-fluoro-5,10,10a,16b-tetrahydro-[1,3]dioxolo[4',5':6,7]indeno[2',1':3,4]chromeno[2,3-b]indole (5na)



Colorless oil; 30.6 mg, 66% yield; direct filtration purification. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.33 – 7.30 (m, 2H), 7.28 – 7.27 (m, 1H), 7.26 – 7.16 (m, 5H), 7.00 (ddd, J = 7.5, 5.5, 1.5 Hz, 1H), 6.96 (d, J = 7.0 Hz, 1H), 6.70 (d, J = 1.5 Hz, 1H), 6.34 – 7.30 (m, 1H), 6.29 (d, J = 1.5 Hz, 1H), 6.02 (dt, J = 3.5, 2.0 Hz, 1H), 5.90 – 5.89 (m, 2H), 5.35 (d, J = 1.5 Hz, 1H), 4.49 (d, J = 2.5 Hz, 2H), 4.35 (s, 1H), 3.32 (dd, J = 101.0, 16.0 Hz, 2H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  164.95, 163.02, 151.25 (d, J = 12.2 Hz, 1C),

147.10, 146.80, 144.39, 142.51, 140.00, 137.25, 128.66 (s, 2C), 127.54, 127.47 (s, 2C), 127.36, 127.26, 124.67, 123.90, 122.92 (d, J = 10.8 Hz, 1C), 118.70, 108.64, 103.85 (d, J = 23.1 Hz, 1C), 101.08 (d, J = 8.2 Hz, 1C), 100.66, 94.30 (d, J = 27.7 Hz, 1C), 58.13, 52.18, 48.22, 46.32. <sup>19</sup>F NMR (470 MHz, CDCl<sub>3</sub>)  $\delta$  -113.68. HRMS (ESI-TOF): m/z [M + H]<sup>+</sup> calcd for C<sub>30</sub>H<sub>23</sub>FNO<sub>3</sub>: 464.1657, found: 464.1655.

(5bS,5b1S,15bS)-5b,5b1,10,15b-tetrahydro-3H-

dibenzo[b,f]pyrrolo[2',3':7,8]chromeno[4,3,2-hi]indolizine (6ab)



White solid; 31.9 mg, 91% yield, mp 195-198 °C, direct filtration purification. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.72 (s, 1H), 7.55 (dd, J = 7.5, 1.5 Hz, 1H), 7.50 – 7.47 (m, 1H), 7.44 – 7.39 (m, 2H), 7.33 – 7.32 (m, 1H), 7.10 (td, J = 7.5, 1.5 Hz, 1H), 6.88 (dd, J = 3.0, 2.0 Hz, 1H), 6.72 – 6.68 (m, 2H), 6.54 – 6.53 (m, 1H), 6.48 (d, J = 8.5 Hz, 1H), 6.33 (d, J = 8.0 Hz, 1H), 6.01 (d, J = 7.0 Hz, 1H), 5.31 (s, 1H), 4.47 (s, 1H), 4.29 (dd, J = 26, 15 Hz, 2H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  152.09, 147.50, 136.36, 135.56, 133.60, 131.30, 130.34, 128.37, 127.43, 127.15, 126.40, 126.09, 123.38, 121.43, 119.55, 117.66, 115.39, 106.47, 104.20, 99.44, 77.63, 62.68, 46.81, 37.47. HRMS (ESI-TOF): m/z [M + H]<sup>+</sup> calcd for C<sub>24</sub>H<sub>19</sub>N<sub>2</sub>O:351.1492, found: 351.1491.

(5bS,5b1S,15bS)-15-methyl-5b,5b1,10,15b-tetrahydro-3H-

dibenzo[b,f]pyrrolo[2',3':7,8]chromeno[4,3,2-hi]indolizine (6bb)



White solid; 32.4 mg, 89% yield, mp 170-171 °C; direct filtration purification. <sup>1</sup>H NMR (500 MHz, DMSO-d<sub>6</sub>) δ 10.87 (s, 1H), 7.45 – 7.44 (m, 1H), 7.38 – 7.32 (m, 1H), 7.11 (t, *J* = 2.5 Hz, 1H), 6.94 (t, *J* = 7.5 Hz, 1H), 6.76 (d, *J* = 8.5 Hz, 1H), 6.41 (d, *J* = 7.5 Hz, 1H), 6.27 (d, *J* = 8.5 Hz, 2H), 6.22 (d, *J* = 7.5 Hz, 1H), 6.04 (d, *J* = 7.5 Hz, 1H),

4.40 – 4.37 (m, 2H),4.21 (dd, J = 21.0, 15.5 Hz, 2H ), 3.36 (s, 2H), 2.50 (s, 3H). <sup>13</sup>C NMR (126 MHz, DMSO-d<sub>6</sub>)  $\delta$  152.39, 147.48, 136.86, 136.53, 136.00, 134.04, 131.62, 130.65, 127.82, 127.47, 127.01, 126.73, 124.82, 120.93, 119.76, 119.24, 115.21, 104.89, 104.59, 98.20, 76.59, 62.36, 46.73, 37.17, 18.22. HRMS (ESI-TOF): m/z [M + H]<sup>+</sup> calcd for C<sub>25</sub>H<sub>21</sub>N<sub>2</sub>O:365.1648, found: 365.1651.

(5bS,5b1S,15bS)-15-fluoro-5b,5b1,10,15b-tetrahydro-3Hdibenzo[b,f]pyrrolo[2',3':7,8]chromeno[4,3,2-hi]indolizine (6cb)



White solid; 28.7 mg, 78% yield, mp 218-220 °C; direct filtration purification. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.83 (s, 1H),7.45 – 7.42 (m, 1H), 7.37 (m, 2H), 7.28 – 7.26 (m, 1H), 6.99 – 6.94 (m, 2H), 6.73 (d, J = 8.5 Hz, 1H), 6.56 (t, J = 2.5 Hz, 1H), 6.38 (d, J = 8.5 Hz, 1H), 6.29 (t, J = 8.5 Hz, 1H), 6.19 (d, J = 8.0 Hz, 1H), 6.01 (d, J = 8.0 Hz, 1H), 4.51 (dd, J = 8.0, 3.5 Hz, 1H), 4.42 (d, J = 3.5 Hz, 1H), 4.23 (dd, J = 55, 15.0 Hz, 2H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  161.79, 159.81, 154.28 (d, J = 8.3 Hz, 1C), 147.26, 136.49, 135.25, 133.16, 132.35 (d, J = 9.2 Hz, 1C), 131.27, 127.33 (d, J = 8.6 Hz, 1C), 126.58, 123.53, 121.31, 119.84, 115.73, 113.69 (d, J = 20.2 Hz, 1C), 104.63, 104.47, 102.07 (d, J = 2.6 Hz, 1C), 99.61, 75.20, 63.14, 46.65, 37.67. <sup>19</sup>F NMR (470 MHz, CDCl<sub>3</sub>)  $\delta$  -118.64. HRMS (ESI-TOF): m/z [M + H]<sup>+</sup> calcd for C<sub>24</sub>H<sub>18</sub>FN<sub>2</sub>O:369.1398, found: 369.1399.

(5bS,5b1S,15bS)-15-chloro-5b,5b1,10,15b-tetrahydro-3Hdibenzo[b,f]pyrrolo[2',3':7,8]chromeno[4,3,2-hi]indolizine (6db)



White solid; 27.7 mg, 72% yield, mp 140-141 °C; direct filtration purification. <sup>1</sup>H NMR (500 MHz, DMSO-d<sub>6</sub>) δ 10.89 (s, 1H), 7.49 – 4.48 (m, 1H), 7.41 – 7.36 (m, 2H), 7.35
- 7.33 (m ,1H), 7.12 (t, J = 2.5 Hz, 1H), 7.04 (t, J = 7.5 Hz, 1H), 6.78 (d, J = 8.0 Hz, 1H), 6.57 (d, J = 8.0 Hz, 1H), 6.33 (d, J = 8.0 Hz, 1H), 6.29 (t, J = 2.5 Hz, 1H), 6.21 (d, J = 8.0 Hz, 1H), 6.08 (d, J = 8.0 Hz, 1H), 4.53 (dd, J = 8.0, 3.5 Hz, 1H), 4.41 (d, J = 3.5 Hz, 1H), 4.25 (dd, J = 55.0, 15.5 Hz, 2H). <sup>13</sup>C NMR (126 MHz, DMSO-d<sub>6</sub>)  $\delta$  153.84, 146.99, 136.90, 135.55, 133.46, 132.53, 131.86, 131.64, 127.81, 127.64, 126.87, 125.73, 124.98, 120.73, 119.93, 117.35, 115.47, 105.41, 105.31, 98.25, 76.41, 62.25, 46.32, 37.09. HRMS (ESI-TOF): m/z [M + H]<sup>+</sup> calcd for C<sub>24</sub>H<sub>18</sub>ClN<sub>2</sub>O:385.1102, found: 385.1105.

## (5bS,5b1S,15bS)-14-methyl-5b,5b1,10,15b-tetrahydro-3Hdibenzo[b,f]pyrrolo[2',3':7,8]chromeno[4,3,2-hi]indolizine (6eb)



White solid; 33.9 mg, 93% yield, mp 194-196 °C; direct filtration purification. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.77 (s, 1H), 7.37 – 7.34 (m, 1H), 7.30 – 7.26 (m, 1H), 7.25 (d, *J* = 1.5 Hz, 1H), 7.21 – 7.19 (m, 1H), 7.18 (s, 1H), 6.88 – 6.88 (m, 1H), 6.83 (dd, *J* = 8.0, 2.0 Hz, 1H), 6.65 (dd, *J* = 8.5, 1.0 Hz, 1H), 6.46 – 6.43 (m, 2H), 6.22 (d, *J* = 8.0 Hz, 1H), 5.81 (d, *J* = 8.0 Hz, 1H), 4.35 (d, *J* = 4.0 Hz, 1H), 4.29 (dd, *J* = 7.5, 3.5 Hz, 1H), 4.16 (dd, *J* = 25.5, 15.0 Hz, 1H), 2.18 (s, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  150.21, 147.72, 136.39, 135.75, 133.90, 131.32, 130.77, 128.81, 127.46, 127.26, 127.10, 126.74, 126.38, 123.24, 121.64, 119.43, 114.82, 106.82, 104.04, 99.70, 63.14, 47.52, 37.35, 20.80. HRMS (ESI-TOF): m/z [M + H]<sup>+</sup> calcd for C<sub>25</sub>H<sub>21</sub>ClN<sub>2</sub>O:365.1648, found: 365.1650.

(5bS,5b1S,15bS)-14-methoxy-5b,5b1,10,15b-tetrahydro-3Hdibenzo[b,f]pyrrolo[2',3':7,8]chromeno[4,3,2-hi]indolizine (6fb)



White solid; 28.1 mg, 74% yield, mp 189-191 °C; direct filtration purification. <sup>1</sup>H NMR (500 MHz, DMSO-d<sub>6</sub>)  $\delta$  10.86 (s, 1H), 7.46 (dd, J = 6.5, 2.0 Hz, 1H), 7.38 – 7.31 (m, 3H), 7.11 (t, J = 3.5 Hz, 2H), 6.76 (d, J = 8.5 Hz, 1H), 6.72 (dd, J = 8.5, 2.5 Hz, 1H), 6.43 (d, J = 8.0 Hz, 1H), 6.36 (d, J = 8.5 Hz, 1H), 6.29 (t, J = 2.5 Hz, 1H), 5.86 (d, J = 7.5 Hz, 1H), 4.39 (d, J = 3.5 Hz, 1H), 4.27 (dd, J = 7.5, 3.5 Hz, 1H), 4.17 (dd, J = 28.0, 15.0 Hz, 2H), 3.67 (s, 3H). <sup>13</sup>C NMR (126 MHz, DMSO-d<sub>6</sub>)  $\delta$  152.24, 146.88, 146.45, 136.13, 135.54, 133.67, 131.97, 129.71, 127.16, 126.78, 126.09, 124.09, 120.31, 118.78, 115.31, 113.40, 112.25, 107.52, 104.15, 97.78, 76.37, 62.66, 55.48, 47.41, 36.15. HRMS (ESI-TOF): m/z [M + H]<sup>+</sup> calcd for C<sub>25</sub>H<sub>21</sub>N<sub>2</sub>O<sub>2</sub>:381.1598, found: 381.1598.

(5bS,5b1S,15bS)-14-fluoro-5b,5b1,10,15b-tetrahydro-3Hdibenzo[b,f]pyrrolo[2',3':7,8]chromeno[4,3,2-hi]indolizine (6gb)



White solid; 22.8 mg, 62% yield, mp 198-190 °C; column chromatography eluent, petroleum ether/EtOAc = 5:1. <sup>1</sup>H NMR (500 MHz, DMSO-d<sub>6</sub>)  $\delta$  10.89 (s, 1H), 7.46 – 7.44 (m, 1H), 7.41 – 7.35 (m, 3H), 7.32 – 7.30 (m, 1H), 7.12 (t, *J* = 2.5 Hz, 1H), 6.78 (d, *J* = 8.0 Hz, 1H), 6.34 – 6.21 (m, 4H), 5.93 (d, *J* = 8.0 Hz, 1H), 4.50 (dd, *J* = 8.0, 4.0 Hz, 1H), 4.38 (d, *J* = 4.0 Hz, 1H), 4.25 (dd, *J* = 28.5, 16.0 Hz, 2H). <sup>13</sup>C NMR (126 MHz, DMSO-d<sub>6</sub>)  $\delta$  166.04, 164.12, 154.24 (d, *J* = 13.2 Hz, 1C), 147.20, 136.91, 135.62, 133.48, 131.71, 127.68 (d, *J* = 19.5 Hz, 1C), 127.45 (d, *J* = 11.5 Hz, 1C), 126.82, 124.94, 124.92, 120.88, 119.82, 115.13, 105.14, 103.41 (d, *J* = 23.4 Hz, 1C), 98.33, 94.30 (d, *J* = 27.3 Hz, 1C), 76.48, 63.23, 46.25, 37.06. <sup>19</sup>F NMR (470 MHz, CDCl<sub>3</sub>)  $\delta$  -127.13. HRMS (ESI-TOF): m/z [M + H]<sup>+</sup> calcd for C<sub>24</sub>H<sub>18</sub>FN<sub>2</sub>O:369.1398, found: 369.1398. (5bS,5b1S,15bS)-14-chloro-5b,5b1,10,15b-tetrahydro-3H-dibenzo[b,f]pyrrolo[2',3':7,8]chromeno[4,3,2-hi]indolizine (6hb)



White solid; 22.3 mg, 58% yield, mp 168-170 °C; column chromatography eluent, petroleum ether/EtOAc = 5:1. <sup>1</sup>H NMR (500 MHz, DMSO-d<sub>6</sub>)  $\delta$  7.88 (s, 1H), 7.46 – 7.42 (m, 2H), 7.36 (qd, *J* = 13.0, 9.5, 7.5, 2.0 Hz, 2H), 7.28 – 7.27 (m, 1H), 7.00 – 6.98 (m, 2H), 6.76 (d, *J* = 8.5 Hz, 1H), 6.54 (t, *J* = 2.5 Hz, 1H), 6.42 (d, *J* = 8.5 Hz, 1H), 6.19 (d, *J* = 8.0 Hz, 1H), 5.92 (d, *J* = 8.0 Hz, 1H), 4.48 (dd, *J* = 8.5, 4.0 Hz, 1H), 4.41 (d, *J* = 3.5 Hz, 1H), 4.22 (dd, *J* = 48.5, 15.0 Hz, 2H). <sup>13</sup>C NMR (126 MHz, DMSO-d<sub>6</sub>)  $\delta$  151.29, 147.16, 136.92, 135.59, 133.56, 131.68, 130.91, 130.33, 127.82, 127.58, 126.82, 126.20, 125.01, 120.91, 120.76, 119.71, 114.88, 108.00, 105.23, 98.35, 76.64, 62.74, 46.57, 36.90. HRMS (ESI-TOF): m/z [M + H]<sup>+</sup> calcd for C<sub>24</sub>H<sub>18</sub>ClN<sub>2</sub>O:385.1102, found: 385.1105.

## (5bS,5b1S,15bS)-13-fluoro-5b,5b1,10,15b-tetrahydro-3Hdibenzo[b,f]pyrrolo[2',3':7,8]chromeno[4,3,2-hi]indolizine (6ib)



White solid; 26.2 mg, 71% yield, mp 198-199 °C; direct filtration purification. <sup>1</sup>H NMR (500 MHz, DMSO-d<sub>6</sub>) δ 10.89 (s, 1H), 7.47 – 7.43 (m, 1H), 7.42 – 7.34 (m, 3H), 7.34 – 7.29 (m, 1H), 7.12 (t, *J* = 2.7 Hz, 1H), 6.78 (d, *J* = 8.3 Hz, 1H), 6.35 – 6.30 (m, 1H), 6.29 (s, 1H), 6.25 (d, *J* = 8.4 Hz, 1H), 6.22 (dd, *J* = 10.5, 2.4 Hz, 1H), 5.93 (d, *J* = 8.0 Hz, 1H), 4.50 (dd, *J* = 8.1, 3.7 Hz, 1H), 4.38 (d, *J* = 3.7 Hz, 1H), 4.25 (q, *J* = 15.8 Hz, 2H). <sup>13</sup>C NMR (126 MHz, DMSO-d<sub>6</sub>) δ 166.04, 164.12, 154.24 (d, *J* = 13.2 Hz, 1C), 147.20, 136.91, 135.63, 133.48, 131.71, 127.76, 127.61, 127.45 (d, *J* = 11.6 Hz, 1C), 126.82, 124.94, 120.88, 119.82, 115.13, 105.14, 103.41 (d, *J* = 23.4 Hz, 1C), 98.33, 94.30 (d, *J* = 27.3 Hz, 1C), 76.48, 63.23, 46.25, 37.06. <sup>19</sup>F NMR (470 MHz, CDCl<sub>3</sub>) δ

-111.62. HRMS (ESI-TOF): m/z  $[M + H]^+$  calcd for C<sub>24</sub>H<sub>18</sub>FN<sub>2</sub>O:369.1398, found: 369.1398.

(5bS,5b1S,15bS)-13-methoxy-5b,5b1,10,15b-tetrahydro-3Hdibenzo[b,f]pyrrolo[2',3':7,8]chromeno[4,3,2-hi]indolizine (6jb)



White solid; 32.0 mg, 84% yield, mp 197-199 °C; direct filtration purification. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.91 (s, 1H), 7.46 – 7.42 (m, 1H), 7.39 – 7.34 (m, 3H), 7.31 – 7.29 (m, 1H), 6.99 (dd, J = 3.5, 2.5 Hz, 1H), 6.76 (dd, J = 8.0, 1.0 Hz, 1H), 6.53 (ddd, J = 3.0, 2.0, 1.0 Hz, 1H), 6.42 (dd, J = 8.5, 1.0 Hz, 1H), 6.18 (dd, J = 8.0, 2.5 Hz, 1H), 5.93 (d, J = 8.0 Hz, 1H), 5.88 (d, J = 2.5 Hz, 1H), 4.50 (dd, J = 8.0, 3.5 Hz, 1H), 4.41 (d, J = 3.5 Hz, 1H), 4.26 (dd, J = 38.5, 15.0 Hz, 2H), 3.71 (s, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  162.27 153.62, 147.61, 136.46, 135.59, 133.52, 131.30, 127.43, 127.19, 126.69, 126.47, 123.35, 121.50, 120.99, 119.76, 115.74, 104.14, 102.64, 99.63, 92.92, 77.49, 63.50, 55.24, 46.63, 37.80. HRMS (ESI-TOF): m/z [M + H]<sup>+</sup> calcd for C<sub>25</sub>H<sub>21</sub>N<sub>2</sub>O<sub>2</sub>:381.1598, found: 381.1598.

(5bS,5b1S,15bS)-5b1-methyl-5b,5b1,10,15b-tetrahydro-3Hdibenzo[b,f]pyrrolo[2',3':7,8]chromeno[4,3,2-hi]indolizine (6kb)



White solid; 14.6 mg, 40% yield, mp 198-200 °C; column chromatography eluent, petroleum ether/EtOAc = 5:1. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.81 (s, 1H), 7.48 (dd, J = 7.5, 1.5 Hz, 1H), 7.37 – 7.32 (m, 3H), 7.31 – 7.29 (m, 1H), 7.03 (td, J = 8.0, 1.5 Hz, 1H), 6.95 (dd, J = 3.5, 2.5 Hz, 1H), 6.70 (dd, J = 8.5, 1.0 Hz, 1H), 6.59 (td, J = 7.0, 0.5 Hz, 1H), 6.52 (ddd, J = 3.5, 2.0, 1.0 Hz, 1H), 6.25 – 6.22 (m, 2H), 5.57 (s, 1H), 5.28 (s,

2H), 4.38 (d, J = 15.5 Hz, 1H), 4.15 (s, 1H), 4.08 (dd, J = 15.0, 1.0 Hz, 1H), 1.36 (s, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  151.39, 147.34, 136.51, 135.23, 133.10, 131.41, 130.35, 127.17, 127.06, 126.81, 126.70, 126.33, 123.46, 121.20, 119.95, 117.75, 117.03, 106.09, 104.42, 99.44, 85.89, 67.31, 45.58, 44.50, 25.30. HRMS (ESI-TOF): m/z [M + H]<sup>+</sup> calcd for C<sub>25</sub>H<sub>21</sub>N<sub>2</sub>O:365.1648, found: 365.1648.

(5bS,5b1S,15bS)-15b-methyl-5b,5b1,10,15b-tetrahydro-3Hdibenzo[b,f]pyrrolo[2',3':7,8]chromeno[4,3,2-hi]indolizine (6lb)



White solid; 28.4 mg, 78% yield, mp 201-203 °C; direct filtration purification. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.66 (s, 1H), 7.46 – 7.44 (m, 1H), 7.41 (d, J = 7.5 Hz, 1H), 7.38 – 7.32 (m, 2H), 7.26 (d, J = 6.0 Hz, 1H), 7.01 (t, J = 8.0 Hz, 1H), 6.83 – 6.82 (m, 1H), 6.63 (dd, J = 15.0, 7.5 Hz, 2H), 6.46 (t, J = 2.5 Hz, 1H), 6.41 (d, J = 8.5 Hz, 1H), 6.25 (d, J = 7.5 Hz, 1H), 4.35 (d, J = 3.5 Hz, 1H), 4.22 (dd, J = 40.0, 15.0 Hz, 2H), 4.11 (d, J = 3.5 Hz, 1H), 1.99 (s, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  151.27, 147.74, 136.37, 135.60, 133.64, 132.17, 131.25, 129.83, 127.40, 127.13, 126.40, 123.39, 123.22, 121.16, 119.32, 117.57, 114.87, 106.33, 104.00, 99.46, 83.15, 68.63, 47.02, 37.78, 26.03. HRMS (ESI-TOF): m/z [M + H]<sup>+</sup> calcd for C<sub>25</sub>H<sub>21</sub>N<sub>2</sub>O:365.1648, found: 365.1649.

(5bS,5b1S,15bS)-5b1,15b-dimethyl-5b,5b1,10,15b-tetrahydro-3Hdibenzo[b,f]pyrrolo[2',3':7,8]chromeno[4,3,2-hi]indolizine (6mb)



White solid; 19.3 mg, 51% yield, mp 198-200 °C; column chromatography eluent, petroleum ether/EtOAc = 5:1. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.61 (s, 1H), 7.31 – 7.24 (m, 4H), 7.20 – 7.18 (m, 1H), 6.92 (td, *J* = 7.5, 1.0 Hz, 1H), 6.79 (dd, *J* = 3.0, 2.0 Hz,

1H), 6.55 (dd, J = 8.0, 0.5 Hz, 1H), 6.50 (td, J = 7.5, 1.0 Hz, 1H), 6.40 – 6.39 (m, 1H), 6.20 (d, J = 8.5 Hz, 1H), 6.11 (d, J = 8.0 Hz, 1H), 4.22 – 4.03 (m, 3H), 1.89 (s, 3H), 1.18 (s, 3H). <sup>13</sup>**C NMR (126 MHz, CDCl**<sub>3</sub>)  $\delta$  150.05, 147.63, 136.34, 136.08, 132.81, 131.62, 131.54, 129.96, 127.22, 126.95, 126.48, 123.48, 123.20, 121.43, 119.33, 116.88, 116.37, 105.81, 103.98, 99.55, 87.43, 69.38, 45.41, 44.44, 22.28, 21.25. HRMS (ESI-TOF): m/z [M + H]<sup>+</sup> calcd for C<sub>26</sub>H<sub>23</sub>N<sub>2</sub>O:379.1805, found: 379.1804.

## 6. <sup>1</sup>H and <sup>13</sup>C NMR Spectra

2-((1H-indol-1-yl)methyl)benzaldehyde (1a)











 $\frac{1}{16.5} - 117.0 - 117.5 - 118.0 - 118.5 - 119.0 - 119.5 - 120.0 - 120.5 - 121.0 - 121.5 - 122.0 - 122.5 - 123.0 - 123.5 - 124.0 - 124.5 - 125.0 - 125.5 - 126.0 - 126.5 - 127.$ 











#### S50



-121.5 -122.0 -122.5 -123.0 -123.5 -124.0 -124.5 -125.0 -125.5 -126.0 -126.5 -127.0 -127.5 -128.0 f1 (ppm)

# 2-((5-chloro-1H-indol-1-yl)methyl)benzaldehyde (1h)





## 2-((6-fluoro-1H-indol-1-yl)methyl)benzaldehyde (1i)



20.32 -120.36 -120.40 -120.44 -120.48 -120.52 -120.56 -120.60 -120.64 -120.68 -120.72 -120.76 f1 (ppm)







210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -4 r1 (ppm)

2-((3-methyl-1H-indol-1-yl)methyl)benzaldehyde (11)





- 220 210 200 190 180 170 150 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 ri (ppm)

#### 2-(indolin-1-ylmethyl)benzaldehyde (1a')

10.288 17.867 17.867 17.863 17.864 17.864 17.864 17.556 17.556 17.556 17.556 17.556 17.558 17.556 17.556 17.556 17.556 17.556 17.556 17.556 17.556 17.556 17.556 17.556 17.556 17.556 17.556 17.556 17.556 17.556 17.556 17.556 17.556 17.556 17.556 17.556 17.556 17.556 17.556 17.556 17.556 17.556 17.556 17.556 17.556 17.556 17.556 17.556 17.556 17.556 17.556 17.556 17.556 17.556 17.556 17.556 17.556 17.556 17.556 17.556 17.556 17.556 17.556 17.556 17.556 17.556 17.556 17.556 17.556 17.556 17.556 17.556 17.556 17.556 17.556 17.556 17.556 17.556 17.556 17.556 17.556 17.556 17.556 17.556 17.556 17.556 17.556 17.556 17.556 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557 17.557







#### 2-((1-benzyl-1H-indol-3-yl)methyl)benzaldehyde (4b)





S62



#### 2-((1-allyl-1H-indol-3-yl)methyl)benzaldehyde (4d)



2-((1-(cyclopropylmethyl)-1H-indol-3-yl)methyl)benzaldehyde (4e)



### $\label{eq:linear} 2-((1-benzyl-2-methyl-1H-indol-3-yl)methyl) benzaldehyde~(4f)$





2-((1-benzyl-4-fluoro-1H-indol-3-yl)methyl)benzaldehyde (4h)





2-((1-benzyl-4-chloro-1H-indol-3-yl)methyl)benzaldehyde (4i)





2-((1-benzyl-5-methoxy-1H-indol-3-yl)methyl)benzaldehyde (4j)

#### 2-((1-benzyl-5-fluoro-1H-indol-3-yl)methyl)benzaldehyde (4k)



S71



-118.3 -118.5 -118.7 -118.9 -119.1 -119.3 -119.5 -119.7 -119.9 -120.1 -120.3 -120.5 -120.7 -120.9 -121.1 -121.3 -121. f1 (ppm)
2-((1-benzyl-5-chloro-1H-indol-3-yl)methyl)benzaldehyde (4l)





#### S74



#### 2-((1-benzyl-6-fluoro-1H-indol-3-yl)methyl)benzaldehyde (4n)



20. 32 -120. 36 -120. 40 -120. 44 -120. 48 -120. 52 -120. 56 -120. 60 -120. 64 -120. 68 -120. 72 -120. 76 f1 (ppm)

5,6<sup>1</sup>,10b,1<sup>6</sup>b-tetrahydro-[1,3]dioxolo[4',5':6,7]chromeno[4,3,2-

### hi]dibenzo[b,f]indolizine (3aa)



10-methyl-5,61,10b,16b-tetrahydro-[1,3]dioxolo[4',5':6,7]chromeno[4,3,2-



10-fluoro-5,6<sup>1</sup>,10b,16b-tetrahydro-[1,3]dioxolo[4',5':6,7]chromeno[4,3,2-

hi]dibenzo[b,f]indolizine (3ca)





10-chloro-5,6<sup>1</sup>,10b,16b-tetrahydro-[1,3]dioxolo[4',5':6,7]chromeno[4,3,2-

hi]dibenzo[b,f]indolizine (3da)





hi]dibenzo[b,f]indolizine (3ea).



9-methoxy-5,6<sup>1</sup>,10b,16b-tetrahydro-[1,3]dioxolo[4',5':6,7]chromeno[4,3,2-

hi]dibenzo[b,f]indolizine (3fa).



9-fluoro-5,6<sup>1</sup>,10b,16b-tetrahydro-[1,3]dioxolo[4',5':6,7]chromeno[4,3,2-

hi]dibenzo[b,f]indolizine (3ga)





-109 -111 -113 -115 -117 -119 -121 -123 -125 -127 -129 -131 -133 -135 -137 -139 -141 -143 fl (ppm)

9-chloro-5,6<sup>1</sup>,10b,16b-tetrahydro-[1,3]dioxolo[4',5':6,7]chromeno[4,3,2-

hi]dibenzo[b,f]indolizine (3ha)



8-fluoro-5,6<sup>1</sup>,10b,16b-tetrahydro-[1,3]dioxolo[4',5':6,7]chromeno[4,3,2-

hi]dibenzo[b,f]indolizine (3ia)

7,7304 7,7280 7,7280 7,729 7,727 7,729 7,729 7,729 7,729 7,729 7,729 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,720 7,7200 7,7200 7,7200 7,7200 7,7200 7,7200 7,7200 7,7200 7,7200





8-methoxy-5,6<sup>1</sup>,10b,16b-tetrahydro-[1,3]dioxolo[4',5':6,7]chromeno[4,3,2-

### hi]dibenzo[b,f]indolizine (3ja)

7,7218 7,7212 7,7127 7,127 7,127 7,127 7,127 7,127 7,127 7,127 7,127 7,127 7,127 7,127 7,127 7,127 7,127 7,127 7,127 7,127 7,127 7,127 7,127 7,127 7,127 7,127 7,127 7,127 7,127 7,127 7,127 7,127 7,127 7,127 7,127 7,127 7,127 7,127 7,127 7,127 7,127 7,127 7,127 7,127 7,127 7,127 7,127 7,127 7,127 7,127 7,127 7,127 7,127 7,127 7,127 7,127 7,127 7,127 7,127 7,127 7,127 7,127 7,127 7,127 7,127 7,127 7,127 7,127 7,127 7,127 7,127 7,127 7,127 7,127 7,127 7,127 7,127 7,127 7,127 7,127 7,127 7,127 7,127 7,127 7,127 7,127 7,127 7,127 7,127 7,127 7,127 7,127 7,127 7,127 7,127 7,127 7,127 7,127 7,127 7,127 7,127 7,127 7,127 7,127 7,127 7,127 7,127 7,127 7,127 7,127 7,127 7,127 7,127 7,127 7,127 7,127 7,127 7,127 7,127 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27 7,27





10b-methyl-5,6<sup>1</sup>,10b,16b-tetrahydro-[1,3]dioxolo[4',5':6,7]chromeno[4,3,2-







S92

10-butyl-5,10,10a,16b-tetrahydro-

[1,3]dioxolo[4',5':6,7]indeno[2',1':3,4]chromeno[2,3-b]indole (5aa)



10-benzyl-5,10,10a,16b-tetrahydro-

[1,3]dioxolo[4',5':6,7]indeno[2',1':3,4]chromeno[2,3-b]indole (5ba)



#### 10-methyl-5,10,10a,16b-tetrahydro-

[1,3]dioxolo[4',5':6,7]indeno[2',1':3,4]chromeno[2,3-b]indole (5ca)



# (5aS,10aS,16bS)-10-allyl-5,10,10a,16b-tetrahydro-[1,3]dioxolo[4',5':6,7]indeno[2',1':3,4]chromeno[2,3-b]indole (5da)









S98



(5aS,10aS,16bS)-10-benzyl-6-fluoro-5,10,10a,16b-tetrahydro-[1,3]dioxolo[4',5':6,7]indeno[2',1':3,4]chromeno[2,3-b]indole (5ha)





- 118.3 -118.5 -118.7 -118.9 -119.1 -119.3 -119.5 -119.7 -119.9 -120.1 -120.3 -120.5 -120.7 -120.9 -121.1 -121.3 -121.5 -121.7 -121.9 -12 f1 (ppm) (5aS,10aS,16bS)-10-benzyl-6-chloro-5,10,10a,16b-tetrahydro-[1,3]dioxolo[4',5':6,7]indeno[2',1':3,4]chromeno[2,3-b]indole (5ia)



(5aS,10aS,16bS)-10-benzyl-7-methoxy-5,10,10a,16b-tetrahydro-[1,3]dioxolo[4',5':6,7]indeno[2',1':3,4]chromeno[2,3-b]indole (5ja)



(5aS,10aS,16bS)-10-benzyl-7-fluoro-5,10,10a,16b-tetrahydro-[1,3]dioxolo[4',5':6,7]indeno[2',1':3,4]chromeno[2,3-b]indole (5ka)





-107 -109 -111 -113 -115 -117 -119 -121 -123 -125 -127 -129 -131 -133 -135 -137 -139 -141 -143 -145 -147 f1 (ppm) (5aS,10aS,16bS)-10-benzyl-7-chloro-5,10,10a,16b-tetrahydro-[1,3]dioxolo[4',5':6,7]indeno[2',1':3,4]chromeno[2,3-b]indole (5la)





## (5aS,10aS,16bS)-10-benzyl-8-fluoro-5,10,10a,16b-tetrahydro-[1,3]dioxolo[4',5':6,7]indeno[2',1':3,4]chromeno[2,3-b]indole (5na)




# (5bS,5b1S,15bS)-5b,5b1,10,15b-tetrahydro-3Hdibenzo[b,f]pyrrolo[2',3':7,8]chromeno[4,3,2-hi]indolizine (6ab)













# (5bS,5b1S,15bS)-14-methyl-5b,5b1,10,15b-tetrahydro-3Hdibenzo[b,f]pyrrolo[2',3':7,8]chromeno[4,3,2-hi]indolizine (6eb)









## (5bS,5b1S,15bS)-14-chloro-5b,5b1,10,15b-tetrahydro-3Hdibenzo[b,f]pyrrolo[2',3':7,8]chromeno[4,3,2-hi]indolizine (6hb)





S120















### (5bS,5b1S,15bS)-5b1,15b-dimethyl-5b,5b1,10,15b-tetrahydro-3Hdibenzo[b,f]pyrrolo[2',3':7,8]chromeno[4,3,2-hi]indolizine (6mb)



### 7. X-ray Crystallography Data

#### 7.1 X-ray crystallography data of 3aa.

| 3aa CCDC : 2083117                                              |  |  |
|-----------------------------------------------------------------|--|--|
| Identification code 10439                                       |  |  |
| Empirical formula C23 H17 N O3                                  |  |  |
| Formula weight 355.38                                           |  |  |
| Temperature293(2) K                                             |  |  |
| Wavelength 1.54178 A                                            |  |  |
| Crystal system, space group Monoclinic, C2/c                    |  |  |
| Unit cell dimensions $a = 11.9483(6) A$ alpha = 90 deg.         |  |  |
| b = 17.9325(13) A beta = 90.010(6) deg.                         |  |  |
| c = 16.0130(11) A gamma = 90 deg.                               |  |  |
| Volume 3431.0(4) A^3                                            |  |  |
| Z, Calculated density 8, 1.376 Mg/m <sup>3</sup>                |  |  |
| Absorption coefficient 0.738 mm^-1                              |  |  |
| F(000) 1488                                                     |  |  |
| Crystal size 0.120 x 0.110 x 0.110 mm                           |  |  |
| Theta range for data collection 4.447 to 67.222 deg.            |  |  |
| Limiting indices -14<=h<=8, -21<=k<=20, -19<=l<=19              |  |  |
| Reflections collected / unique $10183 / 3056 [R(int) = 0.0579]$ |  |  |
| Completeness to theta = $67.222$ 99.8 %                         |  |  |
| Refinement method Full-matrix least-squares on F^2              |  |  |
| Data / restraints / parameters 3056 / 0 / 244                   |  |  |
| Goodness-of-fit on F <sup>2</sup> 1.015                         |  |  |
| Final R indices [I>2sigma(I)] R1 = 0.0951, wR2 = 0.2612         |  |  |
| R indices (all data) $R1 = 0.1454, wR2 = 0.3137$                |  |  |

Extinction coefficient n/a

Largest diff. peak and hole 0.756 and -0.220 e.A^-3

### 7.2 X-ray crystallography data of 5aa.



| 5aa                                 | CCDC : 2083118                       |
|-------------------------------------|--------------------------------------|
| Identification code                 | exp_11683                            |
| Empirical formula                   | C27 H25 N O3                         |
| Formula weight                      | 411.48                               |
| Temperature                         | 293(2) K                             |
| Wavelength                          | 1.54184 A                            |
| Crystal system, space grou          | p Orthorhombic, Pna2(1)              |
| Unit cell dimensions                | a = 24.355(2) A alpha = 90 deg.      |
| b = 6.4076(7) A beta = 9            | 0 deg.                               |
| c = 13.2555(16) A gamm              | a = 90  deg.                         |
| Volume 200                          | 58.6(4) A^3                          |
| Z, Calculated density               | 4, 1.321 Mg/m^3                      |
| Absorption coefficient              | 0.682 mm^-1                          |
| F(000) 87                           | 72                                   |
| Crystal size 0                      | 0.120 x 0.120 x 0.110 mm             |
| Theta range for data collec         | ction 3.630 to 67.229 deg.           |
| Limiting indices                    | -29<=h<=27, -7<=k<=6, -15<=l<=15     |
| Reflections collected / uni-        | que $12326 / 3375 [R(int) = 0.1340]$ |
| Completeness to theta $= 6^{\circ}$ | 7.229 100.0 %                        |
| Refinement method                   | Full-matrix least-squares on F^2     |
| Data / restraints / paramete        | ers 3375 / 1 / 282                   |
| Goodness-of-fit on F <sup>2</sup>   | 0.994                                |
| Final R indices [I>2sigma           | [I] R1 = 0.0842, wR2 = 0.1873        |

R indices (all data)R1 = 0.1635, wR2 = 0.2664Absolute structure parameter0.0(5)Extinction coefficient0.0088(12)Largest diff. peak and hole0.228 and -0.248 e.A^-3

#### 7.3 X-ray crystallography data of 6kb.



| Goodness-of-fit on F <sup>2</sup> | 0.983                     |
|-----------------------------------|---------------------------|
| Final R indices [I>2sigma(I)      | R1 = 0.0572, wR2 = 0.1032 |
| R indices (all data)              | R1 = 0.1214, wR2 = 0.1399 |
| Extinction coefficient            | 0.00169(14)               |
| Largest diff. peak and hole       | 0.156 and -0.168 e.A^-3   |