Supporting Information for

Atom-economic Synthesis of β-Ketosulfones Based on Gold-catalyzed Highly Regioselective Hydration of Alkynylsulfones

Elena I. Chikunova,^a Vadim Yu. Kukushkin^{a,b} and Alexey Yu. Dubovtsev^{*a}

^aSaint Petersburg State University, Universitetskaya Nab. 7/9 199034 Saint Petersburg, Russian Federation

^bLaboratory of Crystal Engineering of Functional Materials, South Ural State University, 76, Lenin Av., 454080 Chelyabinsk, Russian Federation

E-mail: a.dubovtsev@spbu.ru

Table of Contents

1	Ger	General Remarks					
2	Pre	Preparation of the Starting Materials					
	2.1. Chlor	2.1. General Procedure for the Synthesis of Starting Alkynylsulfones 1 from Arylsulfonyl Chlorides					
	2.2. Alker	General Procedure for the Synthesis of Starting Alkynylsulfones 1 from nyldibromides	4				
	2.3. Alkyr	General Procedure for the Synthesis of Starting Alkynylsulfones 1 from Terminal nes	7				
	2.4. Brom	General Procedure for the Synthesis of Starting Alkynylsulfones 1 from Alkynyl ides	8				
3	Cor	mplete Optimization Studies	12				
4	Exp	perimental Procedures and Characterization Data	14				
	4.1.	General Procedure for the Gold(I)-Catalyzed Hydration of Alkynylsulfones	14				
	4.2.	One-pot Synthesis of Quinoline 4	22				
	4.3.	One-pot Synthesis of Benzimidazole 6	23				
	4.4.	One-pot Synthesis of Triazole 8	23				
	4.5.	One-pot Propargylation of 2a. Synthesis of Furane 11 and Diketone 12	24				
5	Ref	ferences	26				
6	NM	IR Spectra	28				
7	XR	D Single Crystal Structures of 2q	89				
8	Cal	culations of Atom-economy	91				

1 General Remarks

NMR spectra were recorded at ambient temperature with a Bruker Avance III 400 instrument at 400.13 MHz (¹H NMR) and 100.61 MHz (¹³C NMR) in CDCl₃. Chemical shifts (δ) are given in ppm relative to resonances of the solvents (¹H: δ = 7.26 for residual CHCl₃ peak, δ = 2.50 for residual DMSO peak; ¹³C: δ = 77.2 for CDCl₃, δ = 39.5 for DMSO-*d*₆). Mass-spectra were recorded on Bruker MicroTOF (ESI) and Bruker maXis HRMS-ESI-QTOF instruments. Chromatographic separation was carried out on Macherey–Nagel silica gel 60 M (0.04–0.063 mm). Analytical TLC was performed on unmodified Merck ready-to-use plates (TLC silica gel 60 F254); detection was achieved with a UV lamp. Melting points were measured with Stuart smp30 apparatus. Gold complexes were synthesized accordingly to our previously published protocols.¹ Known alkynylsulfones **1** were prepared by the literature procedures.^{2–4} The solvents were purified using standard techniques and stored over activated 4 Å molecular sieves before use. Other reagents were purchased from commercial vendors and were used as received. For known compounds **1b**, **1e**, **1g–h**, **1l–m**, **2a–h**, **2j**, **2l–m**, **2z**, **2a–c**, **4**, **6**, **8**, **10**, **11**, **12** the ¹H and ¹³C NMR spectra are consistent with previously reported literature.

2 Preparation of the Starting Materials

2.1.General Procedure for the Synthesis of Starting Alkynylsulfones 1 from Arylsulfonyl Chlorides

$$Ph = TMS + ArSO_2CI \xrightarrow{\begin{array}{c} AICI_3, DCM \\ 0 \ ^{\circ}C \ to \ rt, \ 24 \ h \\ \end{array}} Ph = \begin{array}{c} O \\ Ph = \begin{array}{c} O \\ S \\ Ar \ 1 \end{array}$$

AlCl₃ (160 mg, 1.2 mmol, 1.2 equiv) was added to a solution of arylsulfonyl chloride (1.0 mmol) in DCM (5 mL) under argon atmosphere. The resulting mixture was stirred for 30 min and cooled to 0 °C. A solution of trimethyl(phenylethynyl)silane (209 mg, 1.2 mmol, 1.2 equiv) in DCM (5 mL) was then added dropwise. Upon completion, the reaction mixture was warmed to room temperature and stirred overnight. The reaction was carefully quenched with 10% HCl aqueous solution (30 ml) and extracted with DCM (2×20 mL). The combined organic extracts were dried over anhydrous Na₂SO₄. After filtration, the solvent was removed in vacuum, and the residue was separated by column chromatography (silica gel), eluting with hexane/EtOAc to afford alkynylsulfone **1**.

((Phenylethynyl)sulfonyl)benzene² (1b): brown solid (102 mg, 42%); R_f 0.30 (hexane/EtOAc 4:1); ¹H NMR (400 MHz, CDCl₃) δ 8.11–8.05 (m, 2H, Ar), 7.68 (t, J = 7.4 Hz, 1H, Ar), 7.59 (t, J = 7.6 Hz, 2H, Ar); 7.53–7.43 (m, 3H, Ar), 7.35 (t, J = 7.6 Hz, 2H, Ar); ¹³C

NMR (100 MHz, CDCl₃) *δ* 141.8, 134.3, 132.7, 131.7, 129.5, 128.7, 127.4, 117.8, 93.6, 85.4; **HRMS** (ESI): *m*/*z* [M + Na]⁺ calcd. for C₁₄H₁₀NaO₂S⁺: 265.0294; found: 265.0286.

1-Chloro-4-((phenylethynyl)sulfonyl)benzene² (**1e**): colorless solid (122 mg, 44%); R_f 0.45 (hexane/EtOAc 4:1); R_f 0.45 (hexane/EtOAc 4:1); **¹H NMR** (400 MHz, CDCl₃) δ 8.02 (d, J = 8.7 Hz, 2H, Ar), 7.57 (d, J = 8.7 Hz, 2H, Ar), 7.54–7.46 (m, 3H, Ar), 7.38 (t, J = 7.6 Hz, 2H, Ar); ¹³C NMR (100 MHz, CDCl₃) δ

141.1, 140.4, 132.9, 131.9, 129.9, 129.0, 128.9, 117.7, 94.1, 85.2; **HRMS** (ESI): *m*/*z* [M + Na]⁺ calcd. for C₁₄H₉ClNaO₂S⁺: 298.9904; found: 298.9907.

2-((Phenylethynyl)sulfonyl)naphthalene⁵ (**1g**): brown solid (135 mg, 46%); R_f 0.30 (hexane/EtOAc 4:1); R_f 0.30 (hexane/EtOAc 4:1); R_f 0.30 (hexane/EtOAc 4:1); ¹**H NMR** (400 MHz, CDCl₃) δ 8.65 (s, 1H, Ar), 8.09–8.00 (m, 3H, Ar), 7.94 (d, J = 8.4 Hz, 1H, Ar),

7.72–7.61 (m, 2H, Ar), 7.53–7.50 (m, 2H, Ar), 7.45 (t, J = 7.5 Hz, 1H), 7.35 (t, J = 7.5 Hz, 2H, Ar); ¹³C NMR (100 MHz, CDCl₃) δ 138.7, 135.6, 132.8, 132.2, 131.7, 129.9, 129.7, 129.7, 129.3, 128.8, 128.1, 128.0, 122.2, 118.0, 93.8, 85.6; **HRMS** (ESI): m/z [M + Na]⁺ calcd. for C₁₈H₁₂NaO₂S⁺: 315.0450; found: 315.0453.

2-((Phenylethynyl)sulfonyl)thiophene (**1v**): brown solid 84.3 mg, 34%); mp 75.0–77.0 °C (hexane/EtOAc); R_f 0.50 (hexane/EtOAc 2:1); ¹**H NMR** (400 MHz, CDCl₃) δ 7.89 (dd, J = 3.8, 1.4 Hz, 1H, Ar), 7.79 (dd, J = 4.9, 1.4 Hz, 1H, Ar), 7.57–7.49

(m, 2H, Ar), 7.51 (t, J = 7.5 Hz, 1H, Ar), 7.40 (t, J = 7.6 Hz, 2H, Ar), 7.20 (dd, J = 5.0, 3.8 Hz, 1H, Ar); ¹³**C NMR** (100 MHz, CDCl₃) δ 143.0, 135.0, 134.4, 132.9, 131.8, 128.8, 128.1, 117.9, 93.4, 85.8; **HRMS** (ESI): m/z [M + Na]⁺ calcd. for C₁₂H₈NaO₂S₂⁺: 270.9858; found: 270.9856.

2.2. General Procedure for the Synthesis of Starting Alkynylsulfones 1 from Alkenyldibromides

To a dry and degassed 3-necked round bottom flask was charged alkenyldibromide **1**^{'''} (1.0 mmol, prepared by the reported procedure⁶) and anhydrous THF (10 mL). The solution was cooled to -78 °C under dry argon atmosphere, and *n*-butyllithium (2.5 M in hexanes, 0.88 mL, 2.2 equiv) was added dropwise. The reaction mixture was stirred for 1 h at -78 °C, and a solution of benzyl thiocyanate (179 mg, 1.2 mmol, 1.2 equiv) or dimethyl disulfide (113 mg, 1.2 mmol, 1.2 equiv) in anhydrous THF (2 mL) were added dropwise. The reaction was allowed to warm to room temperature and stirred 24 h. The reaction was quenched by addition of saturated aqueous NH₄Cl (30 ml) and extracted with DCM (3×20 ml). The combined organic extracts were dried over anhydrous Na₂SO₄, and the solvent was evaporated under reduced pressure to afford a crude alkynylsulfide **1**'.

Most of alkynylsulfides **1'** were difficult to purify due to similar R_{js} to the starting materials and various impurities, therefore **1'** were immediately oxidized to the corresponding alkynylsulfones **1**. *m*-Chloroperoxybenzoic acid (77%, 672 mg, 3.0 mmol, 3.0 equiv) was added

portionwise to a stirred solution of the crude alkynylsulfide **1'** in dichloromethane (10 mL) at 0 °C. Then, the reaction was stirred at room temperature for 24 h. Next, aqueous K_2CO_3 (10%, 50 mL) was added, and the emulsion was extracted by DCM (3 × 50 mL). The combined organic extracts were dried over anhydrous K_2CO_3 . After filtration, the solvent was removed in vacuum, and the residue was separated by column chromatography (silica gel), eluting with hexane/EtOAc to afford alkynylsulfone **1**.

1-((Benzylsulfonyl)ethynyl)-2-methylbenzene(1n):colorless solid (243 mg, 90%); mp 77.5–79.5 °C(hexane/EtOAc); R_f 0.35 (hexane/EtOAc 4:1); ¹H NMR(400 MHz, CDCl₃) δ 7.49 (dd, J = 6.6, 2.9 Hz, 2H, Ar), 7.44–

7.38 (m, 4H, Ar), 7.38–7.34 (m, 1H, Ar), 7.21 (d, J = 7.8 Hz, 1H, Ar), 7.18 (t, J = 7.9 Hz, 1H, Ar), 4.51 (s, 2H, CH₂), 2.29 (s, 3H, Me); ¹³**C** NMR (100 MHz, CDCl₃) δ 142.4, 133.2, 131.7, 131.2, 129.9, 129.3, 128.8, 127.4, 125.9, 117.2, 93.5, 86.2, 64.5, 20.3; HRMS (ESI): m/z [M + Na]⁺ calcd. for C₁₆H₁₄NaO₂S⁺: 293.0607; found: 293.0603.

1-((Benzylsulfonyl)ethynyl)-4-

(trifluoromethyl)benzene (10): colorless solid (350 mg, 89%); mp 123.5–125.5 °C (hexane/EtOAc); $R_f 0.40$

(hexane/EtOAc 4:1); ¹**H** NMR (400 MHz, CDCl₃) δ 7.66 (d, J = 8.0 Hz, 2H, Ar), 7.57 (d, J = 8.1 Hz, 2H, Ar), 7.49–7.41 (m, 5H, Ar), 4.52 (s, 2H, CH₂); ¹³C NMR (100 MHz, CDCl₃) δ 133.4 (q, J_F = 33.1 Hz), 133.2, 131.4, 129.7, 129.1, 127.1, 125.9 (q, J_F = 3.7 Hz), 123.4 (q, J_F = 272.7 Hz), 121.5, 91.8, 84.4, 64.7; ¹⁹F NMR (376 MHz, CDCl₃) δ –63.34; **HRMS** (ESI): m/z [M + Na]⁺ calcd. for C₁₆H₁₁F₃NaO₂S⁺: 347.0324; found: 347.0322.

1-((Benzylsulfonyl)ethynyl)-4-fluorobenzene(1p):colorless solid (222 mg, 81%); mp 93.0–95.0 °C(hexane/EtOAc); R_f 0.35 (hexane/EtOAc 4:1); ¹H NMR

(400 MHz, CDCl₃) δ 7.48–7.39 (m, 7H, Ar), 7.09 (t, J = 8.6 Hz, 2H, Ar), 4.50 (s, 2H, CH₂); ¹³C NMR (100 MHz, CDCl₃) δ 164.6 (d, $J_F = 255.5$ Hz, CF), 135.3 (d, $J_F = 9.2$ Hz, CH), 131.4, 129.6, 129.0, 127.4, 116.6 (d, $J_F = 22.5$ Hz, CH), 113.8 (d, $J_F = 3.5$ Hz, C), 93.2, 82.8 (d, $J_F = 1.8$ Hz, C), 64.7; ¹⁹F NMR (376 MHz, CDCl₃) δ –104.05; HRMS (ESI): m/z [M + Na]⁺ calcd. for C₁₅H₁₁FNaO₂S⁺: 297.0356; found: 297.0352.

1-((Benzylsulfonyl)ethynyl)naphthalene (**1t**): yellow solid (156 mg, 51%); mp 78.0–80.0 °C (hexane/EtOAc); R_f 0.30 (hexane/EtOAc 4:1); **¹H NMR** (400 MHz, CDCl₃) δ 7.99 (d, J = 8.4 Hz, 1H, Ar), 7.92–7.85 (m, 2H, Ar), 7.74 (dd, J = 7.2,

1.2 Hz, 1H, Ar), 7.58–7.52 (m, 4H, Ar), 7.51–7.42 (m, 4H, Ar), 4.58 (s, 2H, CH₂); ¹³C NMR (100 MHz, CDCl₃) δ 133.5, 133.3, 133.0, 132.6, 131.4, 129.5, 129.1, 128.7, 128.2, 127.5, 127.3, 125.6, 125.1, 115.1, 93.2, 87.2, 64.9; **HRMS** (ESI): m/z [M + Na]⁺ calcd. for C₁₉H₁₄NaO₂S⁺: 329.0607; found: 329.0597.

5-((Benzylsulfonyl)ethynyl)benzo[*d*][1,3]dioxole (1w): yellow solid (180 mg, 60%); mp 100.0–102.0 °C (hexane/EtOAc); R_f 0.45 (hexane/EtOAc 2:1); ¹H NMR (400 MHz, CDCl₃) δ 7.49–7.37 (m, 5H, Ar), 7.02 (dd, *J* =

8.1, 1.7 Hz, 1H, Ar), 6.83 (d, J = 1.7 Hz, 1H, Ar), 6.79 (d, J = 8.1 Hz, 1H, Ar), 6.01 (s, 2H, CH₂), 4.48 (s, 2H, CH₂); ¹³**C NMR** (100 MHz, CDCl₃) δ 151.0, 147.8, 131.3, 129.4, 129.0, 128.9, 127.5, 112.0, 110.3, 109.0, 102.1, 94.9, 81.5, 64.7; **HRMS** (ESI): m/z [M + Na]⁺ calcd. for C₁₆H₁₂NaO₄S⁺: 323.0349; found: 323.0342.

3-((Benzylsulfonyl)ethynyl)-1-tosyl-1*H***-indole (1x):** orange oil (157 mg, 35%); R_f 0.50 (hexane/EtOAc 2:1); ¹**H NMR** (400 MHz, CDCl₃) δ 7.97 (d, J = 8.4 Hz, 1H, Ar), 7.92 (s, 1H, Ar), 7.80 (d, J = 8.2 Hz, 2H, Ar), 7.52–7.46 (m, 2H,

Ar), 7.46–7.36 (m, 5H, Ar), 7.31–7.26 (m, 3H, Ar), 4.53 (s, 2H, CH₂), 2.36 (s, 3H, Me); ¹³C **NMR** (100 MHz, CDCl₃) δ 146.3, 134.3, 133.9, 133.5, 131.3, 130.4, 129.5, 129.4, 129.0, 127.4, 127.2, 126.3, 124.5, 120.6, 113.8, 99.4, 87.7, 87.0, 64.8, 21.7; **HRMS** (ESI): m/z [M + Na]⁺ calcd. for C₂₄H₁₉NNaO₄S₂⁺: 247.0648; found: 472.0643.

(2-((Benzylsulfonyl)ethynyl)phenoxy)(tert-

butyl)dimethylsilane (1ae): colorless oil (73 mg, 19%); R_f 0.30 (hexane/EtOAc 2:1); ¹H NMR (400 MHz, CDCl₃) δ

7.48-7.45 (m, 2H, Ar), 7.41-7.38 (m, 3H, Ar), 7.37-7.33 (m, 2H, Ar), 6.95 (d, J = 7.6 Hz, 1H, Ar), 6.86 (d, J = 8.2 Hz, 1H, Ar), 4.48 (s, 2H, CH₂), 1.02 (s, 9H, Me), 0.23 (s, 6H, Me); 13 C NMR (100 MHz, CDCl₃) δ 158.7, 134.6, 133.3, 131.4, 129.4, 128.9, 127.3, 121.5, 120.0, 110.3, 92.6, 86.2, 64.7, 25.7, 18.3, -4.3; HRMS (ESI): m/z [M + Na]⁺ calcd. for C₂₁H₂₆NaO₃SSi⁺: 409.1264; found: 409.1262.

2.3.General Procedure for the Synthesis of Starting Alkynylsulfones 1 from Terminal Alkynes

To a dry and degassed 3-necked round bottom flask was charged terminalalkyne (1.0 mmol) and anhydrous THF (10 mL). The solution was cooled to -78 °C under dry argon atmosphere, and *n*-butyllithium (2.5 M in hexanes, 0.44 mL, 1.1 equiv) was added dropwise. The reaction mixture was stirred for 1 h at -78 °C, and a solution of benzyl thiocyanate (179 mg, 1.2 mmol, 1.2 equiv) or dimethyl disulfide (113 mg, 1.2 mmol, 1.2 equiv) in anhydrous THF (2 mL) were added dropwise. The reaction was allowed to warm to room temperature and stirred 24 h. The reaction was quenched by addition of saturated aqueous NH₄Cl (30 ml) and extracted with DCM (3×20 ml). The combined organic extracts were dried over anhydrous Na₂SO₄, and the solvent was evaporated under reduced pressure to afford a crude alkynylsulfide **1**'.

Most of alkynylsulfides **1'** were difficult to purify due to similar R_{fs} to the starting materials and various impurities, therefore **1'** were immediately oxidized to the corresponding alkynylsulfones **1**. *m*-Chloroperoxybenzoic acid (77%, 672 mg, 3.0 mmol, 3.0 equiv) was added portionwise to a stirred solution of the crude alkynylsulfide **1'** in dichloromethane (10 mL) at 0 °C. Then, the reaction was stirred at room temperature for 24 h. Next, aqueous K₂CO₃ (10%, 50 mL) was added, and the emulsion was extracted by DCM (3 × 50 mL). The combined organic extracts were dried over anhydrous K₂CO₃. After filtration, the solvent was removed in vacuum, and the residue was separated by column chromatography (silica gel), eluting with hexane/EtOAc to afford alkynylsulfone **1**.

1-Methyl-4-((methylsulfonyl)ethynyl)benzene⁷ (**11**): colorless solid (66 mg, 34%); R_f 0.50 (hexane/EtOAc 2:1); **¹H NMR** (400 MHz, CDCl₃) δ 7.48 (d, *J* = 8.3 Hz, 2H, Ar), 7.22 (d, *J* = 7.6

Hz, 2H, Ar), 3.29 (s, 3H, Me), 2.40 (s, 3H, Me); ¹³C NMR (100 MHz, CDCl₃) δ 142.8, 132.9, 129.7, 114.5, 92.4, 84.2, 47.0, 21.9; **HRMS** (ESI): m/z [M + Na]⁺ calcd. for C₁₀H₁₀NaO₂S⁺: 217.0294; found: 217.0290.

1-Methoxy-4-((methylsulfonyl)ethynyl)benzene⁷ (**1m**): colorless solid (133 mg, 32%); mp 55.0–57.0 °C (hexane/EtOAc); R_f 0.30 (hexane/EtOAc 2:1); ¹H NMR (400

MHz, CDCl₃) δ 7.50 (d, J = 8.8 Hz, 2H, Ar), 6.88 (d, J = 8.8 Hz, 2H, Ar), 3.81 (s, 3H, Me), 3.26 (s, 3H, Me); ¹³C NMR (100 MHz, CDCl₃) δ 162.3, 134.8, 114.6, 109.0, 92.7, 83.8, 55.5, 46.9; **HRMS** (ESI): m/z [M + Na]⁺ calcd. for C₁₀H₁₀NaO₃S⁺: 233.0243; found: 233.0242.

1-((Benzylsulfonyl)ethynyl)adamantine (**1u**): colorless solid (201 mg, 64%); mp 115.0–117.0 °C (hexane/EtOAc); $R_f 0.40$ (hexane/EtOAc 4:1); ¹H NMR (400 MHz, CDCl₃) δ

7.41 (br. s, 5H, Ar), 4.36 (s, 2H, CH₂), 1.97 (br. s, 3H, CH), 1.81 (d, J = 2.3 Hz, 6H, CH₂), 1.68 (q, J = 12.4 Hz, 6H, CH₂); ¹³C NMR (100 MHz, CDCl₃) δ 131.3, 129.4, 128.9, 127.8, 103.8, 74.2, 64.6, 40.9, 36.0, 30.0, 27.4; HRMS (ESI): m/z [M + Na]⁺ calcd. for C₁₉H₂₂NaO₂S⁺: 337.1233; found: 337.1225.

1-(Methylsulfonyl)oct-1-yne (**1***z*): colorless oil (180 mg, 48%); R_f 0.30 (hexane/EtOAc 4:1); ¹H NMR (400 MHz, CDCl₃) δ 3.10 (s, 3H, Me), 2.34 (t, *J* = 7.2 Hz, 2H, CH₂), 1.53 (p, *J* = 7.2 Hz, 2H, CH₂), 1.37–1.29 (m, 2H, CH₂), 1.28–1.17 (m, 4H, CH₂), 0.82 (t,

J = 6.8 Hz, 3H, Me); ¹³C NMR (100 MHz, CDCl₃) δ 95.6, 77.2, 46.6, 30.9, 28.3, 26.8, 22.2, 18.5, 13.8; **HRMS** (ESI): m/z [M + Na]⁺ calcd. for C₉H₁₆NaO₂⁺: 211.0763; found: 211.0765.

2.4.General Procedure for the Synthesis of Starting Alkynylsulfones 1 from Alkynyl Bromides

A 50 mL round-bottom flask was charged with alkynylbromide **1**^{''} (1.0 mmol, prepared by the reported procedures^{8,9}), Cu(MeCN)₄PF₆ (74.5 mg, 0.2 mmol, 20 mol %), and 1,10-phenanthroline monohydrate (39.6 mg, 0.2 mmol, 20 mol %). The flask was fitted with a rubber septum, evacuated under high vacuum and backfilled with argon. Dry degassed acetonitrile (10 mL), 2,6-lutidine (214 mg, 2.0 mmol, 2.0 equiv) and the corresponding mercaptan (1.5 mmol,

1.5 equiv) were next added and the dark red suspension was heated at 50 °C for 24 h with stirring. After completion, all volatile components were removed in vacuum, the dark green residue was suspended in DCM (50 mL) and filtered through a short pad of silica gel. The solvent was evaporated under reduced pressure to afford a crude alkynylsulfide **1**'.

Most of alkynylsulfides **1'** were difficult to purify due to similar R_fs to the starting materials and various impurities, therefore **1'** were immediately oxidized to the corresponding alkynylsulfones **1**. *m*-Chloroperoxybenzoic acid (77%, 672 mg, 3.0 mmol, 3.0 equiv) was added portionwise to a stirred solution of the crude alkynylsulfide **1'** in dichloromethane (10 mL) at 0 °C. Then, the reaction was stirred at room temperature for 24 h. Next, aqueous K₂CO₃ (10%, 50 mL) was added, and the emulsion was extracted by DCM (3 × 50 mL). The combined organic extracts were dried over anhydrous K₂CO₃. After filtration, the solvent was removed in vacuum, and the residue was separated by column chromatography (silica gel), eluting with hexane/EtOAc to afford alkynylsulfone **1**.

N-(4-((Phenylethynyl)sulfonyl)phenyl)acetamide¹⁰ (1h): colorless oil (182 mg, 61%); R_f 0.40 (hexane/EtOAc 1:2); ¹H NMR (400 MHz, CDCl₃) δ 7.53–7.48 (m, 4H, Ar), 7.44 (d, *J* = 8.8 Hz, 2H, Ar), 7.35–7.32 (m, 3H, Ar), 7.26 (br. s, 1H, NH), 2.18 (s, 3H, Me); ¹³C NMR (100 MHz, CDCl₃) δ

168.4, 136.9, 131.9, 128.8, 128.5, 127.9, 127.5, 123.0, 120.9, 97.7, 75.9, 24.8; **HRMS** (ESI): *m*/*z* [M + Na]⁺ calcd. for C₁₆H₁₃NNaO₃S⁺: 322.0508; found: 322.0510.

1-((Benzylsulfonyl)ethynyl)-4-nitrobenzene(1q):colorless solid (181 mg, 60%); mp 135.5–137.5 °C(hexane/EtOAc); R_f 0.50 (hexane/EtOAc 2:1); ¹H

NMR (400 MHz, CDCl₃) δ 8.25 (d, J = 8.8 Hz, 2H, Ar), 7.62 (d, J = 8.8 Hz, 2H, Ar), 7.53– 7.36 (m, 5H, Ar), 4.53 (s, 2H, CH₂); ¹³**C NMR** (100 MHz, CDCl₃) δ 149.3, 133.8, 131.4, 129.8, 129.2, 127.0, 124.2, 124.0, 90.6, 86.3, 64.7; **HRMS** (ESI): m/z [M + Na]⁺ calcd. for C₁₅H₁₁NNaO₄S⁺: 324.0301; found: 324.0298.

4-((Benzylsulfonyl)ethynyl)benzonitrile (**1r**): colorless solid (177 mg, 63%); mp 125.0–126.0 °C (hexane/EtOAc); R_f 0.60 (hexane/EtOAc 2:1); ¹H NMR

(400 MHz, CDCl₃) δ 7.67 (d, J = 8.3 Hz, 2H, Ar), 7.53 (d, J = 8.3 Hz, 2H, Ar), 7.50–7.39 (m, 5H, Ar), 4.52 (s, 2H, CH₂); ¹³C NMR (100 MHz, CDCl₃) δ 133.2, 132.4, 131.3, 129.7,

129.1, 126.9, 122.3, 117.6, 115.2, 91.0, 85.7, 64.6; **HRMS** (ESI): m/z [M + Na]⁺ calcd. for C₁₆H₁₁NNaO₂S⁺: 304.0403; found: 304.0405.

4-((Benzylsulfonyl)ethynyl)benzaldehyde (1s): colorless oil (22.7 mg, 8%); R_f 0.40 (hexane/EtOAc 2:1); ¹H NMR (400 MHz, CDCl₃) δ 10.05 (s, 1H, CH),

7.89 (d, J = 8.3 Hz, 2H, Ar), 7.61 (d, J = 8.2 Hz, 2H, Ar), 7.51–7.39 (m, 5H, Ar), 4.53 (s, 2H, CH₂); ¹³C NMR (100 MHz, CDCl₃) δ 191.0, 137.9, 133.4, 131.4, 129.7 (×2), 129.1, 127.1, 123.4, 92.1, 85.3, 64.7; HRMS (ESI): m/z [M + Na]⁺ calcd. for C₁₆H₁₂NaO₃S⁺: 307.0399; found: 307.0400.

7-((Benzylsulfonyl)ethynyl)-3-(4-methoxyphenyl)-

4*H***-chromen-4-one (1aa)**: colorless oil; (138 mg, 32%); $R_f 0.30$ (hexane/EtOAc 2:1); ¹**H NMR** (400 MHz, CDCl₃) δ 8.31 (d, J = 8.2 Hz, 1H, Ar), 8.02 (s, 1H, Ar), 7.59 (d, J = 1.5 Hz, 1H, Ar), 7.51–7.41

(m, 8H, Ar), 6.98 (d, J = 8.8 Hz, 2H, Ar), 4.54 (s, 2H, CH₂), 3.85 (s, 3H, Me); ¹³C NMR (100 MHz, CDCl₃) δ 175.5, 160.1, 155.5, 152.9, 131.4, 130.2, 129.8, 129.2, 128.4, 127.4, 127.1, 126.4, 126.0, 123.4, 123.0, 122.5, 114.3, 91.4, 85.1, 64.8, 55.5; **HRMS** (ESI): m/z [M + Na]⁺ calcd. for C₂₅H₁₈NaO₅S⁺: 453.0767; found: 453.0757.

(8*R*,9*S*,13*S*,14*S*)-3-((Benzylsulfonyl)ethynyl)-13-methyl-6,7,8,9,11,12,13,14,15,16-decahydro-17*H*-

cyclopenta[a]phenanthren-17-one (**1ab**): colorless oil (221 mg, 51%); R_f 0.30 (hexane/EtOAc 2:1); ¹**H NMR** (400 MHz, CDCl₃) δ 7.48–7.44 (m, 2H, Ar), 7.42–7.38 (m, 3H, Ar), 7.30 (d, J = 8.2 Hz, 1H, Ar), 7.24–7.21 (m,

2H, Ar), 4.48 (s, 2H, CH₂), 2.89 (dd, J = 8.6, 3.9 Hz, 2H, CH₂), 2.55–2.48 (m, 1H, CH), 2.43–2.38 (m, 1H, CH), 2.35–2.28 (m, 1H, CH), 2.50–1.95 (m, 4H, CH), 1.68–1.40 (m, 6H, CH), 0.91 (s, 3H, Me); ¹³**C NMR** (100 MHz, CDCl₃) δ 220.4, 144.5, 137.5, 133.4, 131.4, 130.2, 129.5, 129.0, 127.5, 126.0, 114.8, 95.0, 82.3, 64.8, 50.6, 47.9, 44.7, 37.8, 35.9, 31.6, 29.1, 26.2, 25.6, 21.7, 13.9; **HRMS** (ESI): m/z [M + Na]⁺ calcd. for C₂₇H₂₈NaO₃S⁺: 455.1651; found: 455.1644.

1,4-Bis((benzylsulfonyl)ethynyl)benzene(1ad):colorless solid (200 mg, 46%); mp 188.0–189.0 °C

(DCM); $R_f 0.45$ (DCM/MeOH 99:1); ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.75 (s, 4H, Ar), 7.54–7.51 (m, 4H, Ar), 7.47–7.42 (m, 6H, Ar), 4.98 (s, 4H, CH₂); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 133.1, 131.5, 129.1, 128.6, 127.9, 119.9, 90.9, 85.5, 63.0; HRMS (ESI): *m/z* [M + H]⁺ calcd. for C₂₄H₁₉O₄S₂⁺: 435.0719; found: 435.0710.

	PhS Tol- <i>p</i> 1a	+ H ₂ O 10	Cat equiv Te 	talyst mol % Solvent mperature Time Ph	DOOO S Tol	^{-p} 2a
Entry ^a	Catalyst	mol %	Solvent	Temperature, °C	Time, h	Yield, ^b %
1	_	_	Dioxane	100	12	_
2	_	_	THF	60	6	_
3	_	_	MeOH	60	6	_
4	_	_	Acetone	60	6	_
5	_	_	H ₂ O	60	6	_
6	Hg(OTf) ₂	5	THF	rt	24	95
7	MsOH	5	THF	rt	24	_
8	TfOH	5	THF	rt	24	_
9	Tf ₂ NH	5	THF	rt	24	_
10	TfOH	150	Dioxane	100	8	26
11	Zn(OTf) ₂	5	THF	rt	24	_
12	Cu(OTf) ₂	5	THF	rt	24	_
13	AgOTf	5	THF	rt	24	17
14	PtCl ₂	5	THF	rt	24	28
15	Ph ₃ PAuNTf ₂	5	THF	rt	24	97
16	IPrAuNTf ₂	5	THF	rt	24	96
17	JohnPhosAuNTf ₂	5	THF	rt	24	97
10	Die Au Cl.	5	THE		24	50

3 Complete Optimization Studies

PicAuCl₂ 18 5 THF rt 24 50 19 Ph₃PAuCl/AgNTf₂ 5 THF 24 96 rt 20 Ph₃PAuCl/AgOTf 5 24 57 THF rt 21 Ph₃PAuCl /AgSbF₆ 5 THF 63 rt 24 5 22 Ph₃PAuNTf₂ Dioxane 95 24 rt Ph₃PAuNTf₂ 5 23 MeCN 24 50 rt Ph₃PAuNTf₂ 5 MeOH 24 24 94 rt 25 Ph₃PAuNTf₂ EtOH 5 24 92 rt

26	Ph ₃ PAuNTf ₂	5	H ₂ O	rt	24	29
27	Ph ₃ PAuNTf ₂	5	H ₂ O	60	6	85
28	Ph ₃ PAuNTf ₂	3	THF	rt	24	96
29	Ph ₃ PAuNTf ₂	3	THF	60	3	98
30	Ph ₃ PAuNTf ₂	1.5	THF	rt	24	30
31	Ph ₃ PAuNTf ₂	0.5	THF	rt	24	6
31	Ph ₃ PAuNTf ₂	0.5	THF	60	24	65

^{*a*}All reactions were carried out on a 0.1 mmol scale (0.2 *M*); ^{*b*}Estimated by ¹H NMR spectroscopy using durene as an internal standard.

4 Experimental Procedures and Characterization Data

4.1. General Procedure for the Gold(I)-Catalyzed Hydration of Alkynylsulfones

Ph₃PAuNTf₂ (4.4 mg, 6.0 μ mol, 3 mol %) was added to the solution of alkynylsulfones (1, 0.2 mmol) and water (36 μ L, 2.0 mmol, 10 equiv) in tetrahydrofuran (1.0 mL). The resulting mixture was stirred at 60 °C for 3 h. After completion, all volatile components were removed in vacuum and the residue was purified by silica gel chromatography eluting with hexane/EtOAc to afford β -ketosulfones 2. 5 mol % of Ph₃PAuNTf₂ was used for the preparation of β -ketosulfones 20, 2q–s, and 2ab.

1-Phenyl-2-tosylethan-1-one¹¹ (**2a**): colorless solid (54.6 mg, 96%); mp 109.0–111.0 °C (hexane/EtOAc); R_f 0.35 (hexane/EtOAc 2:1); ¹H NMR (400 MHz, CDCl₃) δ 7.94 (dd, J = 8.4, 1.3 Hz, 2H, Ar), 7.76 (d, J = 8.4 Hz, 2H, Ar), 7.61 (t, J =

7.4 Hz, 1H, Ar), 7.47 (t, J = 7.8 Hz, 2H, Ar), 7.33 (d, J = 8.1 Hz, 2H, Ar), 4.71 (s, 2H, CH₂), 2.44 (s, 3H, Me); ¹³C NMR (100 MHz, CDCl₃) δ 188.3, 145.5, 136.0, 135.9, 134.4, 130.0, 129.5, 129.0, 128.7, 63.7, 21.8; **HRMS** (ESI): m/z [M + Na]⁺ calcd. for C₁₅H₁₄NaO₃S⁺: 297.0556; found: 297.0554.

1-Phenyl-2-(phenylsulfonyl)ethan-1-one¹¹ (**2b**): colorless solid (48.9 mg, 94%); mp 92.0–93.0 °C (hexane/EtOAc); R_f 0.35 (hexane/EtOAc 2:1); ¹**H NMR** (400 MHz, CDCl₃) δ 7.96–7.86 (m, 4H, Ar), 7.68–7.58 (m, 2H, Ar), 7.53 (t, J = 7.8 Hz, 2H, Ar),

7.51–7.42 (m, 2H, Ar), 4.74 (s, 2H, CH₂); ¹³C NMR (100 MHz, CDCl₃) δ 188.1, 138.9, 135.9, 134.5, 134.3, 129.4, 129.3, 129.0, 128.7, 63.5; HRMS (ESI): m/z [M + Na]⁺ calcd. for C₁₄H₁₂NaO₃S⁺: 283.0399; found: 283.0399.

2-((4-Methoxyphenyl)sulfonyl)-1-phenylethan-1-one¹¹ (**2c**): colorless solid (56.9 mg, 98%); mp 106.5–108.5 °C (hexane/EtOAc); R_f 0.35 (hexane/EtOAc 2:1); ¹**H NMR** (400 MHz, CDCl₃) δ 7.93 (d, J = 7.3 Hz, 2H, Ar), 7.80 (d, J

= 8.9 Hz, 2H, Ar), 7.61 (t, J = 7.4 Hz, 1H, Ar), 7.48 (t, J = 7.7 Hz, 2H, Ar), 6.98 (d, J =

9.0 Hz, 2H, Ar), 4.71 (s, 2H, CH₂), 3.87 (s, 3H, Me); ¹³C NMR (100 MHz, CDCl₃) δ 188.4, 164.3, 135.9, 134.4, 131.0, 130.4, 129.4, 129.0, 114.5, 63.9, 55.8; **HRMS** (ESI): m/z [M + Na]⁺ calcd. for C₁₅H₁₄NaO₄S⁺: 313.0505; found: 313.0506.

2-((4-Fluorophenyl)sulfonyl)-1-phenylethan-1-one¹¹ (**2d**): colorless solid (52.8 mg, 95%); mp 148.0–150.0 °C (hexane/EtOAc); R_f 0.40 (hexane/EtOAc 2:1); ¹H NMR (400 MHz, CDCl₃) δ 7.96–7.86 (m, 4H, Ar), 7.62 (t, *J* = 7.4 Hz, 1H,

Ar), 7.48 (t, J = 7.8 Hz, 2H, Ar), 7.21 (t, J = 8.5 Hz, 2H, Ar), 4.74 (s, 2H, CH₂); ¹³C NMR (100 MHz, CDCl₃) δ 188.1, 166.2 (d, $J_F = 257.3$ Hz, CF), 135.7, 134.8 (d, $J_F = 3.2$ Hz, C), 134.6, 131.8 (d, $J_F = 9.7$ Hz, CH), 129.4, 129.0, 116.7 (d, $J_F = 22.8$ Hz, CH), 63.5; **HRMS** (ESI): m/z [M + Na]⁺ calcd. for C₁₄H₁₁FNaO₃S⁺: 301.0305; found: 301.0301.

2-((4-Chlorophenyl)sulfonyl)-1-phenylethan-1-one¹¹ (**2e**): colorless solid (54.7 mg, 69%); mp 129.0–131.0 °C (hexane/EtOAc); R_f 0.40 (hexane/EtOAc 2:1); ¹**H NMR** (400 MHz, CDCl₃) δ 7.92 (d, J = 7.2 Hz, 2H, Ar), 7.83 (d, J =

8.7 Hz, 2H, Ar), 7.63 (t, J = 7.5 Hz, 1H, Ar), 7.55–7.44 (m, 4H, Ar), 4.74 (s, 2H, CH₂); ¹³C **NMR** (100 MHz, CDCl₃) δ 188.0, 141.2, 137.3, 135.7, 134.6, 130.3, 129.6, 129.4, 129.1, 63.4; **HRMS** (ESI): m/z [M + Na]⁺ calcd. for C₁₄H₁₁ClNaO₃S⁺: 314.0010; found: 317.0009.

2-((4-Bromophenyl)sulfonyl)-1-phenylethan-1-one¹¹ (2f): colorless solid (67.1 mg, 99%); mp 104.0–105.0 °C (hexane/EtOAc); R_f 0.45 (hexane/EtOAc 2:1); ¹H NMR (400 MHz, CDCl₃) δ 7.93 (d, J = 7.1 Hz, 2H, Ar), 7.76 (d, J = 8.7

Hz, 2H, Ar), 7.69 (d, J = 8.7 Hz, 2H, Ar), 7.64 (t, J = 7.5 Hz, 1H, Ar), 7.49 (t, J = 7.8 Hz, 2H, Ar), 4.73 (s, 2H, CH₂); ¹³C NMR (100 MHz, CDCl₃) δ 188.0, 137.8, 135.7, 134.7, 132.7, 130.4, 129.9, 129.4, 129.1, 63.5; HRMS (ESI): m/z [M + Na]⁺ calcd. for C₁₄H₁₁BrNaO₃S⁺: 360.9504; found: 360.9499.

2-(Naphthalen-2-ylsulfonyl)-1-phenylethan-1-one¹¹ (**2g**): colorless solid (57.7 mg, 93%); mp 132.5–133.5 °C (hexane/EtOAc); R_f 0.35 (hexane/EtOAc 2:1); ¹H NMR (400 MHz, CDCl₃) δ 8.46 (s, 1H, Ar), 8.02–7.84 (m, 6H, Ar),

7.70–7.66 (m, 1H, Ar), 7.65–7.55 (m, 2H, Ar), 7.46 (t, *J* = 7.8 Hz, 2H, Ar), 4.81 (s, 2H, CH₂);

¹³**C NMR** (100 MHz, CDCl₃) δ 188.1, 135.9, 135.8, 135.7, 134.5, 132.2, 130.8, 129.7, 129.7, 129.7, 129.4, 129.0, 128.2, 127.9, 123.1, 63.7; **HRMS** (ESI): m/z [M + Na]⁺ calcd. for C₁₈H₁₄NaO₃S⁺: 333.0556; found: 333.0554.

N-(4-((2-Oxo-2-phenylethyl)sulfonyl)phenyl)acetamide¹² (2h): colorless solid (62.8 mg, 99%); mp 158.5–160.0 °C (hexane/EtOAc); R_f 0.35 (hexane/EtOAc 1:2); ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.38 (s, 1H, NH), 7.95

 $(\overline{d}, J = 7.4 \text{ Hz}, 2H, \text{Ar}), 7.82-7.76 \text{ (m, 4H, Ar}), 7.66 \text{ (t, } J = 7.4 \text{ Hz}, 1H, \text{Ar}), 7.51 \text{ (t, } J = 7.8 \text{ Hz}, 2H, \text{Ar}), 5.23 \text{ (s, } 2H, \text{CH}_2), 2.10 \text{ (s, } 3H, \text{Me}); {}^{13}C \text{ NMR} (100 \text{ MHz}, \text{DMSO-}d_6) \delta$ 189.1, 169.1, 144.1, 135.8, 134.1, 132.8, 129.4, 129.1, 128.7, 118.4, 62.5, 24.2; **HRMS** (ESI): m/z [M + Na]⁺ calcd. for C₁₆H₁₅NNaO₄S⁺: 340.0614; found: 340.0616.

2-(Methylsulfonyl)-1-phenylethan-1-one (**2i**): colorless solid (37.6 mg, 95%); mp 107.0–108.0 °C (hexane/EtOAc); R_f 0.25 (hexane/EtOAc 2:1); ¹**H NMR** (400 MHz, CDCl₃) δ 8.03–7.96 (m, 2H, Ar), 7.66 (t, J = 7.4 Hz, 1H, Ar), 7.52 (t, J = 7.8 Hz, 2H, Ar), 4.60

(s, 2H, CH₂), 3.15 (s, 3H, Me); ¹³C NMR (100 MHz, CDCl₃) δ 189.4, 135.8, 134.8, 129.4, 129.2, 61.4, 42.0; **HRMS** (ESI): m/z [M + Na]⁺ calcd. for C₉H₁₀NaO₃S⁺: 221.0243; found: 221.0242.

2-(Benzylsulfonyl)-1-phenylethan-1-one¹³ (**2j**): colorless solid (51.5 mg, 94%); mp 109.0–110.0 °C (hexane/EtOAc); R_f 0.45 (hexane/EtOAc 2:1); ¹**H NMR** (400 MHz, CDCl₃) δ 7.98– 7.94 (m, 2H, Ar), 7.65 (t, J = 7.5 Hz, 1H, Ar), 7.56–7.49 (m, 4H,

Ar), 7.42–7.39 (m, 3H, Ar), 4.55 (s, 2H, CH₂), 4.39 (s, 2H, CH₂); ¹³C NMR (100 MHz, CDCl₃) δ 189.7, 136.0, 134.7, 131.2, 129.4, 129.2 (×2), 129.1, 128.0, 60.0, 56.8; **HRMS** (ESI): m/z [M + Na]⁺ calcd. for C₁₅H₁₄NaO₃S⁺: 297.0556; found: 297.0550.

2-(Isopropylsulfonyl)-1-phenylethan-1-one (**2k**): colorless solid (43.0 mg, 95%); mp 61.0–63.0 °C (hexane/EtOAc); R_f 0.35 (hexane/EtOAc 2:1); ¹**H NMR** (400 MHz, CDCl₃) δ 8.03 (d, J = 7.3 Hz, 2H, Ar), 7.65 (d, J = 7.4 Hz, 1H, Ar), 7.52 (t, J = 7.8 Hz,

2H, Ar), 4.58 (s, 2H, CH₂), 3.61–3.50 (m, 1H, CH), 1.46 (d, J = 6.9 Hz, 6H, 2Me); ¹³C **NMR** (100 MHz, CDCl₃) δ 189.4, 136.0, 134.7, 129.5, 129.1, 57.1, 53.8, 15.3; **HRMS** (ESI): m/z [M + Na]⁺ calcd. for C₁₁H₁₄NaO₃S⁺: 249.0556; found: 249.0552.

2-(Methylsulfonyl)-1-(*p***-tolyl)ethan-1-one**¹⁴ (**2l**): colorless solid (39.4 mg, 93%); mp 101.0–103.0 °C (hexane/EtOAc); R_f 0.45 (hexane/EtOAc 1:1); ¹**H NMR** (400 MHz, CDCl₃) δ 7.89 (d, *J* = 8.4 Hz, 2H, Ar), 7.31 (d, *J* = 8.0 Hz, 2H, Ar), 4.57 (s, 2H,

CH₂), 3.13 (s, 3H, Me), 2.43 (s, 3H, Me); ¹³C NMR (100 MHz, CDCl₃) δ 188.8, 146.1, 133.3, 129.8, 129.5, 61.3, 41.9, 21.9; **HRMS** (ESI): m/z [M + Na]⁺ calcd. for C₁₀H₁₂NaO₃S⁺: 235.0399; found: 235.0395.

1-(4-Methoxyphenyl)-2-(methylsulfonyl)ethan-1-one¹⁵

(**2m**): colorless solid (43.3 mg, 95%); mp 138.0–140.0 °C (hexane/EtOAc); R_f 0.30 (hexane/EtOAc 1:1); ¹**H** NMR (400 MHz, CDCl₃) δ 7.97 (d, J = 8.9 Hz, 2H, Ar), 6.97 (d, J = 8.9 Hz,

2H, Ar), 4.54 (s, 2H, CH₂), 3.88 (s, 3H, Me), 3.12 (s, 3H, Me); ¹³C NMR (100 MHz, CDCl₃) δ 187.5, 165.0, 132.0, 128.8, 114.4, 61.3, 55.8, 41.9; **HRMS** (ESI): m/z [M + Na]⁺ calcd. for C₁₀H₁₂NaO₄S⁺: 251.0349; found: 251.0347.

2-(Benzylsulfonyl)-1-(*o***-tolyl)ethan-1-one** (**2n**): colorless solid (50.7 mg, 88%); mp 68.0–70.0 °C (hexane/EtOAc); R_f 0.25 (hexane/EtOAc 4:1); ¹H NMR (400 MHz, CDCl₃) δ 7.66 (d, J = 7.5 Hz, 1H, Ar), 7.55 (dd, J = 6.5, 2.8 Hz, 2H, Ar),

7.48–7.39 (m, 4H, Ar), 7.30 (t, J = 6.7 Hz, 2H, Ar), 4.57 (s, 2H, CH₂), 4.34 (s, 2H, CH₂), 2.58 (s, 3H, Me); ¹³C NMR (100 MHz, CDCl₃) δ 192.2, 140.1, 136.1, 133.1, 132.6, 131.2, 130.2, 129.4, 129.2, 128.1, 126.2, 60.0, 59.0, 21.7; **HRMS** (ESI): m/z [M + Na]⁺ calcd. for C₁₆H₁₆NaO₃S⁺: 311.0712; found: 311.0707.

2-(Benzylsulfonyl)-1-(4-(trifluoromethyl)phenyl)ethan-1-one (20): colorless solid (63.6 mg, 93%); mp 178.0– 180.0 °C (hexane/EtOAc); R_f 0.25 (hexane/EtOAc 4:1); **¹H NMR** (400 MHz, CDCl₃) δ 8.08 (d, *J* = 8.1 Hz, 2H, Ar),

7.78 (d, J = 8.1 Hz, 2H, Ar), 7.57–7.51 (m, 2H, Ar), 7.45–7.39 (m, 3H, Ar), 4.52 (s, 2H, CH₂), 4.41 (s, 2H, CH₂); ¹³C NMR (100 MHz, CDCl₃) δ 189.0, 138.6, 135.8 (q, $J_F = 32.9$ Hz, C), 131.2, 129.7, 129.6, 129.2, 127.7, 126.2 (q, $J_F = 3.7$ Hz, CH), 123.4 (q, $J_F = 273.0$ Hz, CF₃), 60.0, 57.1; ¹⁹F NMR (376 MHz, CDCl₃) δ –63.36; HRMS (ESI): m/z [M + Na]⁺ calcd. for C₁₆H₁₃F₃NaO₃S⁺: 365.0430; found: 365.0433.

2-(Benzylsulfonyl)-1-(4-fluorophenyl)ethan-1-one (**2p**): colorless solid (53.1 mg, 91%); mp 146.0–147.0 °C (hexane/EtOAc); R_f 0.50 (hexane/EtOAc 2:1); ¹H NMR (400 MHz, CDCl₃) δ 8.05–7.95 (m, 2H, Ar), 7.56–7.50 (m,

2H, Ar), 7.45–7.38 (m, 3H, Ar), 7.18 (t, J = 8.5 Hz, 2H, Ar), 4.52 (s, 2H, CH₂), 4.36 (s, 2H, CH₂); ¹³C NMR (100 MHz, CDCl₃) δ 188.1, 166.8 (d, $J_F = 258.1$ Hz, CF), 132.5 (d, $J_F = 3.0$ Hz, C), 132.2 (d, $J_F = 9.8$ Hz, CH), 131.2, 129.5, 129.3, 127.8, 116.4 (d, $J_F = 22.2$ Hz, CH), 60.0, 57.0; ¹⁹F NMR (376 MHz, CDCl₃) δ –101.91; HRMS (ESI): m/z [M + Na]⁺ calcd. for C₁₅H₁₃FNaO₃S⁺: 315.0462; found: 315.0464.

2-(Benzylsulfonyl)-1-(4-nitrophenyl)ethan-1-one (**2q**): colorless solid (61.9 mg, 97%); mp 179.0–181.0 °C (hexane/EtOAc); R_f 0.35 (hexane/EtOAc 2:1); ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.37 (d, *J* = 8.7 Hz, 2H, Ar), 8.26

(d, J = 8.5 Hz, 2H, Ar), 7.42 (br. s, 5H, Ar), 5.12 (s, 2H, CH₂), 4.69 (s, 2H, CH₂); ¹³C NMR (100 MHz, DMSO- d_6) δ 189.2, 150.4, 140.4, 131.3, 130.5, 128.7, 128.6, 127.7, 123.8, 59.4, 59.2; **HRMS** (ESI): m/z [M + Na]⁺ calcd. for C₁₅H₁₃NNaO₅S⁺: 342.0407; found: 342.0409.

4-(2-(Benzylsulfonyl)acetyl)benzonitrile (**2r**): colorless solid (50.8 mg, 85%); mp 141.0–143.0 °C (hexane/EtOAc); R_f 0.30 (hexane/EtOAc 2:1); ¹H NMR (400 MHz, CDCl₃) δ 8.06 (d, J = 8.4 Hz, 2H, Ar), 7.81 (d, J

= 8.4 Hz, 2H, Ar), 7.57–7.50 (m, 2H, Ar), 7.46–7.39 (m, 3H, Ar), 4.51 (s, 2H, CH₂), 4.40 (s, 2H, CH₂); ¹³C NMR (100 MHz, CDCl₃) δ 188.7, 138.8, 132.9, 131.2, 129.7, 129.6, 129.4, 127.5, 117.9, 117.6, 60.1, 57.1; **HRMS** (ESI): m/z [M + Na]⁺ calcd. for C₁₆H₁₃NNaO₃S⁺: 322.0508; found: 322.0505.

4-(2-(Benzylsulfonyl)acetyl)benzaldehyde (2s): colorless solid (58.0 mg, 96%); mp 129.0–131.0 °C (hexane/EtOAc); R_f 0.25 (hexane/EtOAc 2:1); R_f 0.25 (hexane/EtOAc 2:1); ¹H NMR (400 MHz, CDCl₃) δ

10.12 (s, 1H, CH), 8.12 (d, J = 8.3 Hz, 2H, Ar), 8.01 (d, J = 8.3 Hz, 2H, Ar), 7.57–7.50 (m, 2H, Ar), 7.44–7.39 (m, 3H, Ar), 4.53 (s, 2H, CH₂), 4.43 (s, 2H, CH₂); ¹³C NMR (100 MHz, CDCl₃) δ 191.3, 189.3, 140.0, 131.2, 130.1, 129.8, 129.6, 129.3 (×2), 127.7, 60.0, 57.2; HRMS (ESI): m/z [M + Na]⁺ calcd. for C₁₆H₁₄NaO₄S⁺: 325.0505; found: 325.0503.

2-(Benzylsulfonyl)-1-(naphthalen-1-yl)ethan-1-one (2t): colorless solid (54.4 mg, 84%); mp 106.0–108.0 °C (hexane/EtOAc); R_f 0.45 (hexane/EtOAc 2:1); ¹**H** NMR (400 MHz, CDCl₃) δ 8.78 (d, J = 8.4 Hz, 1H, Ar), 8.08 (d, J

= 8.2 Hz, 1H, Ar), 7.96 (d, J = 7.3 Hz, 1H, Ar), 7.91 (d, J = 8.1 Hz, 1H, Ar), 7.71–7.65 (m, 1H, Ar), 7.63–7.57 (m, 3H, Ar), 7.53 (t, J = 7.8 Hz, 1H, Ar), 7.46–7.40 (m, 3H, Ar), 4.64 (s, 2H, CH₂), 4.50 (s, 2H, CH₂); ¹³**C NMR** (100 MHz, CDCl₃) δ 192.2, 135.0, 134.1, 133.8, 131.2, 130.7, 130.4, 129.4, 129.3, 129.1, 128.9, 128.1, 127.1, 125.6, 124.5, 60.1, 59.6; **HRMS** (ESI): m/z [M + Na]⁺ calcd. for C₁₉H₁₆NaO₃S⁺: 347.0712; found: 347.0714.

1-(Adamantan-1-yl)-2-(benzylsulfonyl)ethan-1-one (**2u**): colorless solid (59.8 mg, 90%); mp 122.0–124.0 °C (hexane/EtOAc); R_f 0.35 (hexane/EtOAc 4:1); ¹**H NMR** (400 MHz, CDCl₃) δ 7.50–7.44 (m, 2H, Ar), 7.42–7.36 (m, 3H, Ar),

4.52 (s, 2H, CH₂), 3.88 (s, 2H, CH₂), 2.07 (br. s, 3H, CH), 1.83–1.63 (m, 12H, CH₂); ¹³C **NMR** (100 MHz, CDCl₃) δ 204.7, 131.0, 129.3, 129.1, 128.4, 60.1, 54.3, 47.8, 37.4, 36.3, 27.7; **HRMS** (ESI): m/z [M + Na]⁺ calcd. for C₁₉H₂₄NaO₃S⁺: 355.1338; found: 355.1334.

1-Phenyl-2-(thiophen-2-ylsulfonyl)ethan-1-one¹¹ (**2v**): yellow oil (47.4 mg, 89%); R_f 0.35 (hexane/EtOAc 2:1); ¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, J = 8.3 Hz, 2H, Ar), 7.74 (dd, J = 5.0, 1.5 Hz, 1H, Ar), 7.69 (dd, J = 3.9, 1.4 Hz, 1H, Ar), 7.63 (t, J =

7.4 Hz, 1H, Ar), 7.49 (t, J = 7.8 Hz, 2H, Ar), 7.13 (dd, J = 5.0, 3.8 Hz, 1H, Ar), 4.82 (s, 2H, CH₂); ¹³C NMR (100 MHz, CDCl₃) δ 187.9, 139.6, 135.8, 135.6, 135.1, 134.6, 129.4, 129.1, 128.1, 64.5; **HRMS** (ESI): m/z [M + Na]⁺ calcd. for C₁₂H₁₀NaO₃S₂⁺: 288.9964; found: 288.9966.

1-(Benzo[*d*][1,3]dioxol-5-yl)-2-(benzylsulfonyl)ethan-1one (2w): colorless solid (57.9 mg, 91%); mp 96.0–98.0 °C (hexane/EtOAc); R_f 0.35 (hexane/EtOAc 2:1); ¹H NMR (400 MHz, CDCl₃) δ 7.57–7.50 (m, 3H, Ar), 7.45 (d,

J = 1.6 Hz, 1H, Ar), 7.42–7.37 (m, 3H, Ar), 6.88 (d, J = 8.2 Hz, 1H, Ar), 6.08 (s, 2H, CH₂), 4.52 (s, 2H, CH₂), 4.31 (s, 2H, CH₂); ¹³**C NMR** (100 MHz, CDCl₃) δ 187.4, 153.4, 148.8, 131.3, 130.9, 129.4, 129.2, 128.0, 126.7, 108.5, 108.4, 102.4, 59.9, 56.9; **HRMS** (ESI): m/z [M + Na]⁺ calcd. for C₁₆H₁₄NaO₅S⁺: 341.0454; found: 341.0451.

2-(Benzylsulfonyl)-1-(1-tosyl-1*H***-indol-3-yl)ethan-1-one** (**2x**): yellowish solid (77.5 mg, 83%); mp 216.0–218.0 °C (hexane/EtOAc); R_f 0.40 (hexane/EtOAc 2:1); ¹**H** NMR (400 MHz, CDCl₃) δ 8.36 (s, 1H, Ar), 8.36–8.32 (m, 1H,

Ar), 7.94 (dd, J = 6.7, 2.0 Hz, 1H, Ar), 7.86 (d, J = 8.4 Hz, 2H, Ar), 7.58 (dd, J = 6.5, 2.8 Hz, 2H, Ar), 7.45–7.36 (m, 5H, Ar), 7.29 (d, J = 8.2 Hz, 2H, Ar), 4.52 (s, 2H, CH₂), 4.32 (s, 2H, CH₂), 2.36 (s, 3H, Me); ¹³C NMR (100 MHz, CDCl₃) δ 183.9, 146.4, 135.2, 135.0, 134.2, 131.4, 130.5, 129.4, 129.2, 127.8, 127.6, 127.3, 126.4, 125.4, 123.1, 121.0, 113.4, 59.9, 58.9, 21.8; **HRMS** (ESI): m/z [M + Na]⁺ calcd. for C₂₄H₂₁NNaO₅S₂⁺: 490.0753; found: 490.0748.

2-(Benzylsulfonyl)-1-(1-tosyl-1*H***-pyrrol-3-yl)ethan-1-one** (**2y**): colorless oil (78.4 mg, 94%); R_f 0.40 (hexane/EtOAc 2:1); **¹H NMR** (400 MHz, CDCl₃) δ 7.86–7.76 (m, 3H, Ar), 7.55–7.47 (m, 2H, Ar), 7.41–7.37 (m, 3H, Ar), 7.35 (d, J = 8.1

Hz, 2H, Ar), 7.15 (dd, J = 3.3, 2.1 Hz, 1H, Ar), 6.71 (dd, J = 3.3, 1.7 Hz, 1H, Ar), 4.48 (s, 2H, CH₂), 4.14 (s, 2H, CH₂), 2.43 (s, 3H, Me); ¹³C NMR (100 MHz, CDCl₃) δ 183.7, 146.5, 134.7, 131.3, 130.6, 129.4, 129.2, 128.4, 127.8, 127.6, 126.8, 122.3, 112.6, 59.9, 58.3, 21.9; **HRMS** (ESI): m/z [M + Na]⁺ calcd. for C₂₀H₁₉NNaO₅S₂⁺: 440.0597; found: 440.0594.

1-(Methylsulfonyl)octan-2-one¹⁶ (**2z**): colorless solid (40.0 mg, 97%); mp 43.0–45.0 °C (hexane/EtOAc); R_f 0.35 (hexane/EtOAc 2:1); ¹H NMR (400 MHz, CDCl₃) δ 4.02 (s,

2H, CH₂), 3.03 (s, 3H, Me), 2.68 (t, J = 7.3 Hz, 2H, CH), 1.59 (p, J = 7.3 Hz, 2H, CH), 1.33– 1.23 (m, 6H, CH), 0.90–0.82 (m, 3H, Me); ¹³C NMR (100 MHz, CDCl₃) δ 199.9, 64.6, 45.0, 41.6, 31.6, 28.6, 23.0, 22.5, 14.1; **HRMS** (ESI): m/z [M + Na]⁺ calcd. for C₉H₁₈NaO₃S⁺: 229.0869; found: 229.0866.

4*H***-chromen-4-one (2aa)**: colorless solid (73.6 mg, 82%); mp 204.5–206.5 °C (benzene/EtOAc); R_f 0.30 (benzene/EtOAc 5:1); ¹H NMR (400 MHz, DMSO- d_6) δ 8.64 (s, 1H, Ar), 8.38 (s, 1H, Ar),

7-(2-(Benzylsulfonyl)acetyl)-3-(4-methoxyphenyl)-

8.27 (d, *J* = 8.3 Hz, 1H, Ar), 8.04 (d, *J* = 6.9 Hz, 1H, Ar), 7.57 (d, *J* = 8.8 Hz, 2H, Ar), 7.45–7.41 (m, 5H, Ar), 7.02 (d, *J* = 8.8 Hz, 2H, Ar), 5.17 (s, 2H, CH₂), 4.71 (s, 2H, CH₂),

3.80 (s, 3H, Me); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 189.2, 174.9, 159.2, 155.3, 155.0, 139.8, 131.3, 130.1, 128.7, 128.6, 127.7, 126.9, 126.2, 124.4, 124.2, 123.6, 120.4, 113.7, 59.5, 59.1, 55.2; **HRMS** (ESI): *m*/*z* [M + Na]⁺ calcd. for C₂₅H₂₀NaO₆S⁺: 471.0873; found: 471.0856.

(8*R*,9*S*,13*S*,14*S*)-3-(2-(Benzylsulfonyl)acetyl)-13-methyl-6,7,8,9,11,12,13,14,15,16-decahydro-17*H*-cyclopenta[*a*]phenanthren-17-one (2ab): colorless solid (77.4 mg, 86%); colorless oil (77.4 mg, 86%); R_f 0.25 (hexane/EtOAc 2:1); ¹H NMR

(400 MHz, CDCl₃) δ 7.76–7.67 (m, 2H, Ar), 7.54 (dd, J = 6.4, 2.8 Hz, 2H, Ar), 7.46–7.37 (m, 4H, Ar), 4.53 (s, 2H, CH₂), 4.36 (s, 2H, CH₂), 3.05–2.87 (m, 2H, CH), 2.52 (dd, J = 18.7, 8.7 Hz, 1H, CH), 2.48–2.30 (m, 2H, CH), 2.21–2.03 (m, 3H, CH), 2.03–1.96 (m, 1H, CH), 1.68–1.44 (m, 6H, CH), 0.92 (s, 3H, Me); ¹³C NMR (100 MHz, CDCl₃) δ 220.4, 189.4, 147.6, 137.7, 133.7, 131.2, 129.9, 129.3, 129.2, 128.0, 126.7, 126.2, 59.9, 56.7, 50.6, 48.0, 44.9, 37.8, 35.9, 31.6, 29.4, 26.3, 25.6, 21.7, 13.9; **HRMS** (ESI): m/z [M + Na]⁺ calcd. for C₂₇H₃₀NaO₄S⁺: 473.1757; found: 473.1747.

2-(Morpholinosulfonyl)-1-phenylethan-1-one¹⁷ (**2ac**): colorless solid (45.8 mg, 85%); mp 130.5–132.5 °C (hexane/EtOAc); R_f 0.50 (hexane/EtOAc 1:1); ¹**H NMR** (400 MHz, CDCl₃) δ 8.03 (d, *J* = 7.3 Hz, 2H, Ar), 7.65 (t, *J* = 7.4Hz, 1H, Ar), 7.52 (t, *J* =

7.8 Hz, 2H, Ar), 4.57 (s, 2H, CH₂), 3.73–3.71 (m, 4H, CH₂), 3.37–3.35 (m, 4H, CH₂); ¹³C **NMR** (100 MHz, CDCl₃) δ 189.2, 135.9, 134.6, 129.5, 129.1, 66.7, 57.5, 46.3; **HRMS** (ESI): m/z [M + Na]⁺ calcd. for C₁₂H₁₅NNaO₄S⁺: 292.0614; found: 292.0622.

1,1'-(1,4-Phenylene)bis(2-(benzylsulfonyl)ethan-1-one) (**2ad**): colorless solid (88.5 mg, 94%); mp 227.0–229.0 °C (DCM); R_f 0.40 (benzene/EtOAc 3:1); ¹H NMR (400 MHz, DMSO- d_6) δ 8.18 (s, 4H, Ar), 7.44–7.39 (m, 10H,

Ar), 5.10 (s, 4H, CH₂), 4.69 (s, 4H, CH₂); ¹³C NMR (100 MHz, DMSO- d_6) δ 189.7, 139.6, 131.3, 129.4, 128.7, 128.6, 127.8, 59.4, 59.0; **HRMS** (ESI): m/z [M + Na]⁺ calcd. for C₂₄H₂₂NaO₆S₂⁺: 493.0750; found: 493.0758.

2-(Benzylsulfonyl)-1-(2-hydroxyphenyl)ethan-1-one (**2ae**): colorless solid (48.1 mg, 93%); mp 103.0–105.0 °C (hexane/EtOAc); R_f 0.30 (hexane/EtOAc 2:1); ¹**H NMR** (400 MHz, CDCl₃) δ 11.74 (s, 1H, OH), 7.65 (dd, J = 8.1, 1.2 Hz, 1H), 7.58–7.52 (m, 3H, Ar), 7.43–7.40

(m, 3H, Ar), 7.04 (d, J = 8.3 Hz, 1H, Ar), 6.95 (t, J = 7.6 Hz, 1H, Ar), 4.54 (s, 2H, CH₂), 4.40 (s, 2H, CH₂); ¹³C NMR (100 MHz, CDCl₃) δ 194.6, 163.6, 138.4, 131.3, 131.2, 129.6, 129.3, 127.7, 119.8, 119.5, 119.1, 60.4, 56.8; **HRMS** (ESI): m/z [M + Na]⁺ calcd. for C₁₅H₁₄NNaO₄S⁺: 313.0505; found: 313.0507.

4.2.One-pot Synthesis of Quinoline 4

Ph₃PAuNTf₂ (4.4 mg, 6.0 μ mol, 3 mol %) was added to the solution of 1-methyl-4-((phenylethynyl)sulfonyl)benzene (**1a**, 51.3 mg, 0.2 mmol) and water (36 μ L, 2.0 mmol, 10 equiv) in tetrahydrofuran (1.0 mL). The resulting mixture was stirred at 60 °C for 3 h. After completion, all volatile components were removed in vacuum. Then chlorobenzene (1.0 mL), (2-aminophenyl)(phenyl)methanone (**3**, 59.2 mg, 0.3 mmol, 1.5 equiv), and triflic acid (6.0 mg, 40 μ mol, 20 mol %) were added in this sequence. The resulting mixture was stirred at 150 °C for 10 h. Finally, all volatile components were removed in vacuum and the residue was purified by silica gel chromatography eluting with hexane/EtOAc to afford quinoline **4**.

2,4-Diphenyl-3-tosylquinoline¹⁸ (**4**): colorless solid (82.7 mg, 95%); mp 181.0–182.0 °C (hexane/EtOAc); R_f 0.60 (hexane/EtOAc 2:1); ¹**H NMR** (400 MHz, CDCl₃) δ 8.18 (d, J = 8.4 Hz, 1H, Ar), 7.85–7.77 (m, 1H, Ar), 7.59–7.53 (m, 2H, Ar), 7.51–7.34 (m, 8H, Ar), 7.27 (d, J = 7.1

Hz, 2H, Ar), 6.97 (d, J = 8.3 Hz, 2H, Ar), 6.88 (d, J = 8.2 Hz, 2H, Ar), 2.30 (s, 3H, Me); ¹³C **NMR** (100 MHz, CDCl₃) δ 158.0, 151.4, 147.7, 143.0, 141.1, 139.3, 135.1, 133.5, 132.2, 130.3, 129.7, 129.6, 129.0, 128.6, 128.6, 127.9, 127.8, 127.7, 127.5, 127.3, 126.8, 21.6; **HRMS** (ESI): m/z [M + Na]⁺ calcd. for C₂₈H₂₁NNaO₂S⁺: 458.1185; found: 458.1177.

4.3.One-pot Synthesis of Benzimidazole 6

Ph₃PAuNTf₂ (4.4 mg, 6.0 μ mol, 3 mol %) was added to the solution of 1-methyl-4-((phenylethynyl)sulfonyl)benzene (**1a**, 51.3 mg, 0.2 mmol) and water (36 μ L, 2.0 mmol, 10 equiv) in tetrahydrofuran (1.0 mL). The resulting mixture was stirred at 60 °C for 3 h. After completion, all volatile components were removed in vacuum. Then acetic acid (1.0 mL) and *o*-phenylendiamine (**5**, 38.2 mg, 0.2 mmol, 1.0 equiv) were added in this sequence. The resulting mixture was stirred at 120 °C for 10 h. Finally, all volatile components were removed in vacuum and the residue was purified by silica gel chromatography eluting with hexane/EtOAc to afford benzimidazole **6**.

2-Phenyl-1*H***-benzo[***d***]imidazole¹⁹ (6): colorless solid (35.3 mg, 91%); mp 289.0–291.0 °C (hexane/EtOAc); R_f 0.30 (hexane/EtOAc 2:1); ¹H NMR (400 MHz, DMSO-***d***₆) \delta 12.91 (br.**

s, 1H, NH), 8.23–8.15 (m, 2H, Ar), 7.69–7.44 (m, 5H, Ar), 7.21 (dq, J = 6.9, 3.8 Hz, 2H, Ar); ¹³C NMR (100 MHz, DMSO- d_6) δ 151.2, 130.2, 129.8, 128.9, 126.4, 122.1 (two signals are merged with others); **HRMS** (ESI): m/z [M + H]⁺ calcd. for C₁₃H₁₁N₂⁺: 195.0917; found: 195.0921.

4.4.One-pot Synthesis of Triazole 8

Ph₃PAuNTf₂ (4.4 mg, 6.0 μ mol, 3 mol %) was added to the solution of 1-methyl-4-((phenylethynyl)sulfonyl)benzene (**1a**, 51.3 mg, 0.2 mmol) and water (36 μ L, 2.0 mmol, 10 equiv) in tetrahydrofuran (1.0 mL). The resulting mixture was stirred at 60 °C for 3 h. After completion, all volatile components were removed in vacuum. Then DMSO (1.0 mL), 1-azido-4-methoxybenzene (**7**, 32.8 mg, 0.22 mmol, 1.1 equiv) and pyrrolidine (0.7 mg, 10 μ mol, 5 mol %) were added in this sequence. The resulting mixture was stirred at room temperature for 24 h. Finally, all volatile components were removed in vacuum and the residue was purified by silica gel chromatography eluting with hexane/EtOAc to afford triazole **8**.

1-(4-Methoxyphenyl)-5-phenyl-4-tosyl-1*H*-1,2,3-triazole²⁰

(8): colorless solid (78.6 mg, 97%); mp 198.0–199.0 °C (hexane/EtOAc); R_f 0.35 (hexane/EtOAc 2:1); ¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, J = 8.2 Hz, 2H, Ar), 7.45 (t, J = 7.4 Hz,

1H, Ar), 7.38 (t, J = 7.5 Hz, 2H, Ar), 7.26–7.24 (m, 4H, Ar), 7.12 (d, J = 9.0 Hz, 2H, Ar), 6.83 (d, J = 9.0 Hz, 2H, Ar), 3.78 (s, 3H, Me), 2.39 (s, 3H, Me); ¹³C NMR (100 MHz, CDCl₃) δ 160.5, 146.0, 144.9, 138.6, 137.9, 130.6, 130.5, 129.8, 128.6, 128.4, 128.3, 126.6, 124.6, 114.6, 55.7, 21.7; HRMS (ESI): m/z [M + Na]⁺ calcd. for C₂₂H₁₉N₃NaO₃S⁺: 428.1039; found: 428.1034.

4.5. One-pot Propargylation of 2a. Synthesis of Furane 11 and Diketone 12

Ph₃PAuNTf₂ (4.4 mg, 6.0 μ mol, 3 mol %) was added to the solution of 1-methyl-4-((phenylethynyl)sulfonyl)benzene (**1a**, 51.3 mg, 0.2 mmol) and water (36 μ L, 2.0 mmol, 10 equiv) in tetrahydrofuran (1.0 mL). The resulting mixture was stirred at 60 °C for 3 h. After completion, all volatile components were removed in vacuum. Then acetone (1.0 mL), propargyl bromide (**9**, 80% wt. solution in toluene, 32.7 mg, 0.22 mmol, 1.1 equiv), and K₂CO₃ (82.8 mg, 0.6 mmol, 3 equiv) were added in this sequence. The resulting mixture was stirred at 60 °C for 8 h. Finally, all volatile components were removed in vacuum and the residue was purified by silica gel chromatography eluting with hexane/EtOAc to afford **10**.

Ph₃PAuNTf₂ (3.7 mg, 5.0 μ mol, 5 mol %) was added to the solution of **10** (31.2 mg, 0.1 mmol) in dry toluene (1.0 mL). The resulting mixture was stirred at room temperature for 48 h. After completion, all the solvent was removed in vacuum and the residue was purified by silica gel chromatography eluting with hexane/EtOAc to afford **11** and **12**.

1-Phenyl-2-tosylpent-4-yn-1-one²¹ (**10**): colorless solid (53.0 mg, 85%); mp 110.0–112.0 °C (hexane/EtOAc); R_f 0.30 (hexane/EtOAc 4:1); ¹**H NMR** (400 MHz, CDCl₃) δ 7.96 (d, *J* = 7.3 Hz, 2H, Ar), 7.66–7.56 (m, 3H, Ar), 7.47 (t, *J* =

7.8 Hz, 2H, Ar), 7.30 (d, J = 8.1 Hz, 2H, Ar), 5.26 (dd, J = 8.6, 6.1 Hz, 1H, CH), 2.97 (t, J = 2.7 Hz, 1H, CH), 2.95 (d, J = 2.7 Hz, 1H, CH), 2.42 (s, 3H, Me), 1.89 (t, J = 2.7 Hz, 1H, CH); ¹³C **NMR** (100 MHz, CDCl₃) δ 191.0, 146.0, 137.0, 134.2, 133.0, 129.9, 129.8, 129.3, 128.9, 78.4, 71.3, 68.4, 21.8, 18.4; **HRMS** (ESI): m/z [M + Na]⁺ calcd. for C₁₈H₁₆NaO₃S⁺: 335.0712; found: 335.0707.

5-Methyl-2-phenyl-3-tosylfuran²¹ (**11**): yellowish oil (40.6 mg, 65%); R_f 0.35 (hexane/EtOAc 4:1); ¹H NMR (400 MHz, CDCl₃) δ 7.85–7.83 (m, 2H, Ar), 7.68 (d, J = 8.4 Hz, 2H, Ar), 7.43–7.38 (m, 3H, Ar), 7.20 (d, J = 8.0 Hz, 2H, Ar), 6.42 (d, J = 1.0 Hz, 1H, Ar), 2.35 (s, 3H, Me),

1.89 (d, J = 0.8 Hz, 3H, Me); ¹³C NMR (100 MHz, CDCl₃) δ 153.5, 151.7, 144.1, 139.4, 129.7, 129.7, 128.7, 128.6, 128.3, 127.2, 124.6, 108.5, 21.6, 13.5; **HRMS** (ESI): m/z [M + Na]⁺ calcd. for C₁₈H₁₆NaO₃S⁺: 335.0712; found: 335.0709.

1-Phenyl-2-tosylpentane-1,4-dione²¹ (**12**): yellowish oil (19.8 mg, 30%); R_f 0.35 (hexane/EtOAc 2:1); ¹**H NMR** (400 MHz, CDCl₃) δ 7.91 (d, J = 7.3 Hz, 2H, Ar), 7.58–7.54 (m, 3H, Ar), 7.41 (t, J = 7.8 Hz, 2H, Ar), 7.24 (d, J = 8.1 Hz, 2H, Ar), 5.51 (dd, J = 10.8, 3.0 Hz, 1H, CH),

3.49 (dd, J = 18.1, 10.8 Hz, 1H, CH), 3.29 (dd, J = 18.1, 3.0 Hz, 1H, CH), 2.40 (s, 3H, Me), 2.16 (s, 3H, Me); ¹³C NMR (100 MHz, CDCl₃) δ 203.9, 191.8, 145.7, 136.8, 133.8, 133.8, 129.8, 129.5, 129.3, 128.6, 65.8, 42.0, 29.7, 21.8; **HRMS** (ESI): m/z [M + Na]⁺ calcd. for C₁₈H₁₈Na₃O₄S⁺: 353.0818; found: 353.0824.

5 References

- A. Y. Dubovtsev, V. V Zvereva, N. V Shcherbakov, D. V Dar'in, A. S. Novikov and V.
 Y. Kukushkin, Acid-catalyzed [2 + 2 + 2] cycloaddition of two cyanamides and one ynamide: highly regioselective synthesis of 2{,}4{,}6-triaminopyrimidines, *Org. Biomol. Chem.*, 2021, **19**, 4577–4584.
- 2 Z. Wu, Y. Xu, H. Zhang, X. Wu and C. Zhu, Radical-mediated sulforyl alkynylation{,} allylation{,} and cyanation of propellane, *Chem. Commun.*, 2021, **57**, 6066–6069.
- 3 X. Zeng, S. Liu, G. B. Hammond and B. Xu, Divergent Regio- and Stereoselective Goldcatalyzed Synthesis of α-Fluorosulfones and β-Fluorovinylsulfones from Alkynylsulfones, *Chem. Eur. J.*, 2017, 23, 11977–11981.
- W. Song, N. Zheng, M. Li, K. Dong, J. Li, K. Ullah and Y. Zheng, Regiodivergent Rhodium(I)-Catalyzed Azide–Alkyne Cycloaddition (RhAAC) To Access Either Fully Substituted Sulfonyl-1,2,3-triazoles under Mild Conditions, *Org. Lett.*, 2018, 20, 6705– 6709.
- D. Qi, W. Dong, Z. Peng, Y. Zhang and D. An, Mukaiyama reagent-promoted metal-free preparation of alkynyl sulfones and phosphonates under mild conditions, *Tetrahedron*, 2019, **75**, 130427.
- S. Biswas, B. F. Van Steijvoort, M. Waeterschoot, N. R. Bheemireddy, G. Evano and B.
 U. W. Maes, Expedient Synthesis of Bridged Bicyclic Nitrogen Scaffolds via Orthogonal Tandem Catalysis, *Angew. Chem. Int. Ed.*, 2021, 60, 21988–21996.
- L. Capaldo and D. Ravelli, Decatungstate as Direct Hydrogen Atom Transfer
 Photocatalyst for SOMOphilic Alkynylation, *Org. Lett.*, 2021, 23, 2243–2247.
- W. Xu, Y. Chen, A. Wang and Y. Liu, Benzofurazan N-Oxides as Mild Reagents for the Generation of α-Imino Gold Carbenes: Synthesis of Functionalized 7-Nitroindoles, *Org. Lett.*, 2019, 21, 7613–7618.
- M. Chen, N. Sun, H. Chen and Y. Liu, Dioxazoles, a new mild nitrene transfer reagent in gold catalysis: highly efficient synthesis of functionalized oxazoles, *Chem. Commun.*, 2016, 52, 6324–6327.
- 10 L. Wang, W. Wei, D. Yang, H. Cui, H. Yue and H. Wang, Direct cross-coupling of aryl alkynyliodines with arylsulfinic acids leading to alkynyl sulfones under catalyst-free conditions, *Tetrahedron Lett.*, 2017, **58**, 4799–4802.
- Y.-S. Xiong, J. Weng and G. Lu, Manganese(III)-Mediated and -Catalyzed Decarboxylative Hydroxysulfonylation of Arylpropiolic Acids with Sodium Sulfinates in Water, *Adv. Synth. Catal.*, 2018, 360, 1611–1616.

- C. Liu, L. Ding, G. Guo and W. Liu, Oxysulfonylation of Alkenes with Sulfonyl Hydrazides under Transition-Metal-Free Conditions, *Eur. J. Org. Chem.*, 2016, 2016, 910–912.
- 13 G. Chit Tsui, Q. Glenadel, C. Lau and M. Lautens, Rhodium(I)-Catalyzed Addition of Arylboronic Acids to (Benzyl-/Arylsulfonyl)acetonitriles: Efficient Synthesis of (Z)-β-Sulfonylvinylamines and β-Keto Sulfones, Org. Lett., 2010, 13, 208–211.
- 14 Q. Liu, F. Liu, H. Yue, X. Zhao, J. Li and W. Wei, Photocatalyst-Free Visible Light-Induced Synthesis of β-Oxo Sulfones via Oxysulfonylation of Alkenes with Arylazo Sulfones and Dioxygen in Air, *Adv. Synth. Catal.*, 2019, **361**, 5277–5282.
- 15 X. Shi, X. Ren, Z. Ren, J. Li, Y. Wang, S. Yang, J. Gu, Q. Gao and G. Huang, Iron(III)-Catalyzed Aerobic Oxidation and Cleavage/Formation of a C–S Bond, *Eur. J. Org. Chem.*, 2014, **2014**, 5083–5088.
- 16 A. R. Maguire and D. G. Lowney, Asymmetric reduction of 1-methylsulfonylalkan-2-ones with baker's yeast, *J. Chem. Soc. Perkin Trans.* 1, 1997, 235–238.
- Q. Luo, R. Mao, Y. Zhu and Y. Wang, Photoredox-Catalyzed Generation of Sulfamyl Radicals: Sulfonamidation of Enol Silyl Ether with Chlorosulfonamide, *J. Org. Chem.*, 2019, 84, 13897–13907.
- 18 C.-K. Chan, C.-Y. Lai, W.-C. Lo, Y.-T. Cheng, M.-Y. Chang and C.-C. Wang, p-TsOHmediated synthesis of substituted 2{,}4-diaryl-3-sulfonylquinolines from functionalized 2aminobenzophenones and aromatic β-ketosulfones under microwave irradiation, *Org. Biomol. Chem.*, 2020, **18**, 305–315.
- 19 G. Bai, X. Lan, X. Liu, C. Liu, L. Shi, Q. Chen and G. Chen, An ammonium molybdate deposited amorphous silica coated iron oxide magnetic core–shell nanocomposite for the efficient synthesis of 2-benzimidazoles using hydrogen peroxide, *Green Chem.*, 2014, 16, 3160–3168.
- 20 M. T. Saraiva, G. P. Costa, N. Seus, R. F. Schumacher, G. Perin, M. W. Paixão, R. Luque and D. Alves, Room-Temperature Organocatalytic Cycloaddition of Azides with β-Keto Sulfones: Toward Sulfonyl-1,2,3-triazoles, *Org. Lett.*, 2015, **17**, 6206–6209.
- M.-Y. Chang, Y.-C. Cheng and Y.-J. Lu, Bi(OTf)3-Mediated Cycloisomerization of γ Alkynyl Arylketones: Application to the Synthesis of Substituted Furans, *Org. Lett.*, 2015, 17, 1264–1267.

6 NMR Spectra

10 200

¹H NMR (400 MHz, CDCl₃) of **1e**

¹H NMR (400 MHz, CDCl₃) of 1v

¹H NMR (400 MHz, CDCl₃) of 10

$^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR (100 MHz, CDCl₃) of 1p

1 H NMR (400 MHz, CDCl₃) of **1t**

¹H NMR (400 MHz, CDCl₃) of 1w

¹H NMR (400 MHz, CDCl₃) of 1ae

¹H NMR (400 MHz, CDCl₃) of **1m**

,

SI-46

.

¹H NMR (400 MHz, CDCl₃) of **1ab**

¹H NMR (400 MHz, CDCl₃) of **2b**

¹H NMR (400 MHz, CDCl₃) of **2d**

1 H NMR (400 MHz, CDCl₃) of **2g**

¹H NMR (400 MHz, DMSO-*d*₆) of **2h**

¹H NMR (400 MHz, CDCl₃) of 2k

¹H NMR (400 MHz, CDCl₃) of **2n**

¹H NMR (400 MHz, CDCl₃) of $\mathbf{2p}$

$^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR (100 MHz, CDCl₃) of $\mathbf{2p}$

50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -250

1 H NMR (400 MHz, CDCl₃) of **2t**

¹H NMR (400 MHz, CDCl₃) of **2w**

SI-77

¹H NMR (400 MHz, DMSO-*d*₆) of **2aa**

¹H NMR (400 MHz, CDCl₃) of 2ac

¹H NMR (400 MHz, CDCl₃) of 4

¹H NMR (400 MHz, CDCl₃) of 8

¹H NMR (400 MHz, CDCl₃) of $\mathbf{10}$

SI-86

¹H NMR (400 MHz, CDCl₃) of **12**

SI-88

7 XRD Single Crystal Structures of 2q

The crystal was prepared by slow evaporation of solutions of **2q** in acetonitrile at room temperature. For single crystal X-ray diffraction experiment the crystals were fixed on a micro mount and placed on a SuperNova, Single source at offset/far, HyPix3000 diffractometer using Cu Kα monochromated radiation. The crystals were kept at 100(2) K during data collection. The structures have been solved by ShelXT [G. M. Sheldrick, *Acta Crystallogr. Sect. A* 2015, *71*, 3-8] structure solution programs using Intrinsic Phasing, respectively, and refined by means of the SHELXL program [G. M. Sheldrick, *Acta Crystallogr. Sect. C* 2015, *71*, 3-8] incorporated in the OLEX2 program package [O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, *J. Appl. Cryst.*, 2009, *42*, 339-341].

Crystal data and structure refinement

Bond precision:		C-C = 0.0018 A		Wavelength=1.54184	
Cell:	a=6.5529(1) b=	7.7286(1)	c=27.932	24(2)
	alpha=90	be	ta=93.449(1)	gamma=	90
Temperature:	: 100 K				
	(Calculated			Reported
Volume	1	412.07(3)			1412.07(3)
Space group	F	? 21/n			P 1 21/n 1
Hall group	-	P 2yn			-P 2yn
Moiety form	ula C	C15 H13 N	O5 S		C15 H13 N O5 S
Sum formula	. (C15 H13 N	O5 S		C15 H13 N O5 S
Mr	3	19.32			319.32
Dx,g cm-3	1	.502			1.502
Z	4				4
Mu (mm-1)	2				2.272
F000	6	64.0			664.0
F000'	6	67.45			
h,k,lmax	8	,9,35			8,9,35
Nref	3	076			3009
Tmin,Tmax	C	.643,0.893			0.794,1.000
Tmin'	C	0.578			
Correction m AbsCorr = M	ethod= # R IULTI-SCA	eported T I N	.imits: Tmin=0.	794 Tmax	x=1.000
Data completeness= 0.978 Theta(max)= 79.832					
R(reflections)= 0.0319(2881)				wR2(reflections)= 0.0878(3009)	
S = 1.088		Npar= 1	99		
Molecular str	ructure of 2	q (50% pro	bability amplitu	ide displac	cement ellipsoids).

8 Calculations of Atom-economy

Calculations of atom-economy are given for equivalent quantities of reagents that are needed for a full material balance. Also, it is assumed that all chemical reactions proceed quantitatively, auxiliary reagents and additives are not taken into account.

Our method 1:

Our method 2:

Yavari's method [I. Yavari and S. Shaabanzadeh, Electrochemical Synthesis of β -Ketosulfones from Switchable Starting Materials, *Org. Lett.*, 2020, **22**, 464–467]:

