Supporting Information

Efficient utilization of carbon to produce aromatic valencene in Saccharomyces cerevisiae using mannitol as substrate

Chaoyi Zhu^a, Xia You^a, Tao Wu^a, Wen Li^a, Hefeng Chen^a, Yaping Cha^a, Min Zhuo^a, Bo Chen^b*, and Shuang Li^a*

^aSchool of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China

^bBeijing Evolyzer Co., Ltd., Beijing 101300, China

*Corresponding authors:

Shuang Li, School of Biology and Biological Engineering, South China University of Technology, Higher Education Mega Center, Guangzhou 510006, China, E-mail: shuangli@scut.edu.cn, Tel/Fax: +86 20 3938 0629

Bo Chen, Beijing Evolyzer Co., Ltd., 28 Yuhua Rd., Airport Industrial Zone B,

Beijing 101300, China, Email: chenbo@evolyzer.com, Tel: +86 10 6457 4198

Contents

Fig. S1 Optimal flux distribution for valencene production in <i>S. cerevisiae</i>
Fig. S2 Batch fermentation profiles of the mannitol-assimilating strain during
valencene production4
Fig. S3 The assimilation of mannitol requires for respiration5
Fig. S4 The transcriptional levels of the gene TDH3 of BN-01A and BN-91A on glucose
and mannitol compared to those in BN-00 on glucose6
Fig. S5 The transcriptional patterns of genes involving in MVA pathway of the TUP1
site mutant strains BN-01A and BN-01M and their parental strain BN-007
Table S1 Strains used in this study
Table S2 Plasmids used or constructed in this study10
Table S3 Primers used in this study
Table S4 Possible binding site of the transcriptional factors GIS1 in the upstream of the
genes involved in mannitol assimilation17
Notes and references

Fig. S1 Optimal flux distribution for valencene production in *S. cerevisiae*. A comparison of the theoretical flux distributions for maximum valencene yield on glucose (upper values) and mannitol (lower values). The values indicated the relative molar fluxes (mmol/gDCW/h, DCW = dry cell weight) normalized to glucose or mannitol uptake. Green and yellow reactions respectively represented the active reactions on glucose and mannitol metabolism, while grey reactions are the inactive ones. The metabolites presented in mitochondria, cytoplasm and extracellular were distinguished by the suffixes of "m", "c", "e".

Fig. S2 Batch fermentation profiles of the mannitol-assimilating strain during valencene production. A. GC-FID chromatogram patterns of the products of BN-91A on glucose and mannitol as well as the standard sample. Peak 1 and 2 represented the internal standard isolongifolene and valencene, respectively. **B&C** Profiles of the strain BN-01A on glucose (B) and mannitol (C) medium. **D&E** Profiles of the strain BN-91A on glucose (D) and mannitol (E). Experiments were performed in triplicate, and error bars represent standard deviations.

Fig. S3 The assimilation of mannitol requires for respiration. Growth (A) and valencene production (B) of the yeast BN-01A in the absence (gray column) or presence (black column) of 4 mg/mL chloramphenicol both under glucose and mannitol condition. The *S. cerevisiae* show a drop in respiratory activity in the presence of chloramphenicol, the inhibitor of the formation of mitochondrial enzymes in *S. cerevisiae*¹. Experiments were performed in triplicate, and error bars represent standard deviations.

Fig. S4 The transcriptional levels of the gene TDH3 of BN-01A and BN-91A on glucose and mannitol compared to those in BN-00 on glucose. *TDH3*, a gene coding glyceraldehyde-3-phosphate dehydrogenase on chromosome, were controlled by the same promoter P_{TDH3} with *CnVS*. The transcriptional level was quantified by RT-qPCR analysis and normalized to the *ACT1* gene. The transcriptional level of BN-00 on glucose was set to 1 as a control. Mean values and standard deviations of biological triplicates are shown.

Table S1 Strains used in this study

Strain	Description	Source
E. coli		
DUS	F ⁻ ϕ 80 lacZ Δ M15 Δ (lacZYA-argF) U169 recA1 endA1 hsdR17 (r _K ⁻ , m _K ⁺) phoA	Invitrogen
Dilbu	supE44 λ ⁻ thi-1 gyrA96 relA1	mvurogen
S. cerevisiae		
BJ5464	MATα ura3-52 trp1 leu2 Δ 1 his3 Δ 200 pep4::HIS3 prb1 Δ 1.6R can1 GAL	ATCC [®] 208288 TM , ²
BN-00	BJ5464, containing YEplac181-P _{TDH3} -CnVS-T _{ADH1}	3
BN-01A	Derived from BN-00, screened through ALE, TUP1 R391X	This study
BN-01M	Derived from BN-00, TUP1 C1117T by site-specific mutagenesis	This study
BN-01MG	Derived from BN-01M, GIS1 T1036del by site-specific mutagenesis	This study
BN-91A	Derived from BN-01A	This study
BN-911A	BN-91A, <i>↓ERG9</i>	This study

BN-912A	BN-911A, $\Delta ROX1$::P _{TEF1} - <i>tHMG1</i> -T _{CYC1} -P _{TDH3} - <i>ERG12</i> -T _{ADH1}	This study
BN-913A	BN-912A, $\Delta BTS1$::P _{TEF1} - <i>tHMG1</i> -T _{CYC1} -P _{PDC1} - <i>CnVS</i> -T _{SAG1}	This study
BN-914A	BN-913A, ΔHO :: P _{SED1} -HXT13-T _{SAG1} -P _{CDC19} -DSF1-T _{ENO2}	This study
BN-915A	BN-914A, $\Delta ATG14$::P _{PGK1} -tPOS5-T _{ENO2} -P _{PDC1} -CnVS-T _{SAG1}	This study
BN-915A(+)	BN-915A, $\Delta YPL062W$:: PURA3-URA3-TURA3-PTRP1-TRP1-TTRP1	This study

 Table S2 Plasmids used or constructed in this study

Plasmid	Description	Reference
YEplac181	S. cerevisiae-E. coli shuttle vector, High-copy (2 μ), LEU2, Amp ^R	
YEplac181-CnVS	YEplac181 derived, P _{TDH3} -CnVS-T _{ADH1}	3
p426	p426-P _{SNR52} -T _{SUP4} , 2μ ori, <i>URA3</i> , <i>Amp</i> ^R	Addgene
P426-Cas9	p426 derived, P _{SNR52} -T _{SUP4} -P _{TEF1} -Cas9-T _{CYC1}	This study
P426-TUP1	P426-Cas9 derived, P _{SNR52} -gRNA.TUP1-T _{SUP4} -P _{TEF1} -Cas9-T _{CYC1}	This study
P426-GIS1	P426-Cas9 derived, P _{SNR52} - gRNA.GIS1-T _{SUP4} -P _{TEF1} -Cas9-T _{CYC1}	This study
p414-Cas9	p414-P _{TEF1} -Cas9-T _{CYC1} , CEN/ARS, TRP1, Amp ^R	Addgene
P426-CL	p426 derived, p426-loxP-Ori-loxP-P _{GAL1} -Cre-T _{CYC1} -P _{SNR52} -T _{SUP4}	3
P426-ERG9	p426-CL derived, P _{SNR52} -gRNA. <i>ERG9</i> -T _{SUP4}	3
P426-BTS1	p426-CL derived, P _{SNR52} -gRNA.BTS1-T _{SUP4}	3
P426-ROX1	p426-CL derived, P _{SNR52} -gRNA.ROX1-T _{SUP4}	3

P426- YPL062W	p426-CL derived, P _{SNR52} -gRNA. YPL062W-T _{SUP4}	3
P426-HO	p426-CL derived, P _{SNR52} -gRNA.HO-T _{SUP4}	This study
P426-ATG14	p426-CL derived, P _{SNR52} -gRNA.ATG14-T _{SUP4}	This study
YEplac181-tHMG1-ERG12	YEplac181 derived, P _{TEF1} - <i>tHMG1</i> -T _{CYC1} -P _{TDH3} - <i>ERG12</i> -T _{ADH1}	This study
YEplac181-tHMG1-CnVS	YEplac181 derived, P _{TEF1} - <i>tHMG1</i> -T _{CYC1} -P _{PDC1} - <i>CnVS</i> -T _{SAG1}	This study
YEplac181-HXT13-DSF1	YEplac181 derived, P _{SED1} -HXT13-T _{SAG1} -P _{CDC19} -DSF1-T _{ENO2}	This study
YEplac181-POS5-CnVS	YEplac181 derived, P _{PGK1} -POS5-T _{ENO2} -P _{PDC1} -CnVS-T _{SAG1}	This study
YEplac181-tPOS5-CnVS	YEplac181 derived, P _{PGK1} - <i>tPOS5</i> -T _{ENO2} -P _{PDC1} - <i>CnVS</i> -T _{SAG1}	This study
YEplac181-URA3-TRP1	YEplac181 derived, PURA3-URA3-TURA3-PTRP1-TRP1-TTRP1	This study

Table S3 Primers used in this study.

Primer	Sequence (5'-3')	Description
ACT1-F	GTCGGTAGACCAAGACAC	
ACT1-R	AGAAGGTATGATGCCAGA	Primers for Real-
HXT13-F	ATAGCGATGGAGATGT	time quantitative
HXT13-R	TCCCCGTTTATGACTT	PCR
HXT15-F	GAGGCCTGTGTCTCCATCGCC	
HXT15-R	CACAAGAATACCTGTGATCAAACG	
HXT17-F	TAACACTGCACAATGGAGAGTCC	
HXT17-R	TGAGTACCCATGGATCCTCTGG	
DSF1-F	TGTTGCTGGCTGGTTCCGTTAC	
DSF1-R	GCGGCTGCCTTCAAGGTTGG	
YNR071C-F	AGGCGTCCCCTGTTGAGAATCC	

Y	NR071C-R	CGTTAGGGTTGGGCTGTGTGTG	
Cı	nVS-F	CTGAAGAAGCCACATA	
Cı	nVS-R	AATCAAGACGGCACTA	
A	LG9-F	ATCGTGAAATTGCAGGCAGCTTGG	
A	LG9-R	CATGGCAACGGCAGAAGGCAATAA	
TI	DH3-F	ATCATCCCATCCTCC	
TI	DH3-R	GACTCTGAAAGCCATAC	
Ca	as9-F	CTAAAGGGAACAAAAGCTGGCATAGCTTCAAAATGTTTCTA	
Ca	as9-R	ATACATTATCTTTTCAAAGAGCAAATTAAAGCCTTCGAGCGTCC	For creation of
gF	RNA-F	GCTCGAAGGCTTTAATTTGCTCTTTGAAAAGATAATGTATGAT	TUP1 and GIST
gF	RNA-R	AGAAACATTTTGAAGCTATGCCAGCTTTTGTTCCCTTTAGT	mutant
Tc	ong-F	TAATAATGGTTTCTTAGTATGA	
Tc	ong-R	ACTAAGAAACCATTATTATCAT	

gRNA.TUP1-F	AAATAACACCACCACGTCCAGTTTTAGAGCTAGAAATA	
gRNA.TUP1-R	TGGACGTGGTGGTGTTATTTGATCATTTATCTTTCACTGC	
gRNA.GIS1-F	TCTAATGAGTCGGAGCAACGGTTTTAGAGCTAGAAATA	
gRNA.GIS1-R	CGTTGCTCCGACTCATTAGAGATCATTTATCTTTCACTGC	
donor. TUP1-F	CTGACGATTCTGCTGCCAATAACCATtGAAATTCGATCACTGAAAATA	
	ACACCACCACG	
donor. TUP1-R	TTGTGGTGGTAGTAGTGGTTGTCATTGTATTGTTATCgGTGGACGTGGT	
	GGTGTTATTT	
donor. GIS1-F	AAATGCGGCTGTGGAAACAAGAAGGAAGAGCGAAAATCTGGTCCGT	
	TTTCAAATTTATC	
donor. GIS1-R	TATCAGTAATGGAGCtTCGTTGCTCCGCTCATTAGAATCATAAGATAAA	
	TTTGAAAACG	
donor. ERG9-F	CTCTGACTCAGTACATTTCATAGCCCATCTTCAACAACAATACCGACT	
	TATCGGAAGGC	For optimization
donor. ERG9-R	GCTCGTTTAGGCACTAAACCCAAAACCGATAACGCCTTCCGATAAGT	of the metabolic
	CGGTATTGTT	

donor. ROX1_tHMG1-R	TGGACCGCTCAAGGTGTGGAAATACCCCATAATTCAAACAGCAAATT	pathway in
	AAAGCCTTCGA	Strain DN 01 A
donor. ROX1_ERG12-F	AGACCCAAGAACGCATTTATTCTGTTCAGACAGCACTACCCATAGGG	Sualli DIN-91A
	TAGGGGAATTT	
donor. BTS1_tHMG1-R	TTATAAGGTTTTGAAATCAAGCTTTCATTTTGGCTtcaAAAACGACGGC	
	CAGTGAATTC	
donor. BTS1_CnVS-F	GTCTGGAAAATCAATGGAGGCCAAGATAGATGAGCCACACAGGAAA	
	CAGCTATGACCAT	
donor HO HYT13 P	GCCAGTTAAAGGACCAGAGTGTATAAAATGTGGCGGAATCTGAATTC	
donoi. 110_117113-K	GAGCTCGGTAC	
donor HO DSE1 F	GCGCGCACCTGCGTTGTTACCACAACTCTTATGAGGCCCGAACAATT	
	TCACAGGAA	
donor ATG14 (t)POS5 P	AATAGTCTCATGAAGTTAGATGTTTTACGAATGAAAAAGATGAATTCG	
donoi. Ai 014_(i)i 055-K	AGCTCGGTAC	
donor ATG14 CnVS-F	TCCTTTTACTATAAATCCGCTCATTTAGCTGTTCTATCCTAGCTATGAC	
uonol. AI 014_0175-F	CATGATTAC	

doman 062 LIDA2 E	AGGAACTGCCGTCACATACGACACTGCCCCTCACGTAAGGGCAGAG
donor. 002_0KA3-F	CTTTTCAATTCAT
	CCCCGAATTTATTACGAATTTGCCCACATGGTCGGTGGAGCTCAGGC
	AAGTGCACAAAC

Table S4 Possible binding site of the transcriptional factors GIS1 in the upstream of the genes involved in mannitol assimilation

Transcriptional factor Gene	GIS1
HXT13	-213217, -516520, -794798
HXT15	-712716
HXT17	-690694
DSF1	-871875
MANI	-198202
YNR071C	-493497

The first base upstream the initiation codon (ATG) was indicated as the site -1, and so on.

Notes and references

- 1. M. Huang, D. R. Biggs, G. D. Clark-Walker and A. W. Linnane, *Biochim. Biophys. Acta, Nucleic Acids Protein Synth.*, 1966, **114**, 434-436.
- 2. E. W. Jones, *Methods Enzymol.*, 1991, **194**, 428-453.
- 3. H. Chen, C. Zhu, M. Zhu, J. Xiong, H. Ma, M. Zhuo and S. Li, *Microb. Cell Fact.*, 2019, **18**, 195.