Catalyst- and oxidant-free electrooxidative site-selective [3/4+2] annulation to fused polycyclic heteroaromatics

Wenjing Guan¹, Ke Ying¹, Chengcheng Yuan¹, Jinlin Hang¹, Chengkou Liu¹,

Xiangxing Huang¹, Zheng Fang¹ & Kai Guo^{1,2*}

¹College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University,

Nanjing, 211816, China. E-mail: guok@njtech.edu.cn.

²State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China.

	Contents	Page
1	General Information	S2
2	General Material Information for Electrolysis Setup	S2
3	General Procedure for the Electrochemical Annulation	S3
4	Gram-Scale Synthesis of 3	S3-S4
5	Mechanistic Studies	S4-S7
6	X-ray Crystallography Studies of Product 23	S7-S8
7	Synthesis of Substrates	S8-S10
8	Characterization Data for Electrolysis Products	S10-S33
9	References	S34
10	NMR Spectra for Electrolysis Products and 50	S35-S85

Table of Contents

1, General Information

Commercially available reagents and solvents are of reagent grade quality without further purification. Flash column chromatography is performed using silicycle silica gel (200-300 mesh). Analytical thin-layer chromatography (TLC) is performed on 0.2 mm coated silica gel plates (HSGF 254) and visualized using a UV lamp (254 nm). ¹H NMR and ¹³C NMR are recorded on magnet system 400'54 ascend purchased from Bruker Biospin AG. HRMS (ESI) spectra are recorded on Agilent Q-TOF 6520.

Electrochemical oxidative [3+2] or [4+2] annulation was carried out in an undivided cell equipped with a carbon cloth anode and a platinum plate cathode under the open air. The carbon cloth, graphite rod (Ø 6 mm) and platinum plate were purchased from Shanghai Jing Chong Electronic Technology Development Co., Ltd. Reticulated vitreous carbon (RVC) was purchased from Gaoss Union (Tianjin) Photoelectric Technology Co., Ltd. And, electrolysis was conducted under an AXIOMET AX3003P potentiostat in constant current mode. Cyclic voltammogram experiments were investigated using a Metrohm Autolab PGSTAT204 workstation and Nova 2.0 software.

2. General Material Information for Electrolysis setup

Figure S1 Picture of DIY electrolysis setup

The DIY electrolysis setup used is shown in Fig. S1.

3、General Procedure for the Electrochemical Annulationlkynes

In an undivided cell equipped with a carbon cloth (35 mm x 15 mm) anode and a Pt (10 mm x 10 mm x 0.1 mm) cathode, imidazo[1,2-*a*]pyridine (0.2 mmol), ethynylbenzene (1.2 mmol), "Bu₄NBF₄ (0.2 mmol, 65.8 mg) were dissolved in 3 mL ACN and 7 mL EtOH. The mixture above was stirred and electrolyzed at a constant current of 8 mA for 1.5-2 h under the open air. The reaction solution was diluted with ethyl acetate (50 mL) and washed with H₂O (50 mL). The separated organic layer was dried over anhydrous Na₂SO₄ and filtered. The filtrate was concentrated under reduced pressure to give the crude product, which was purified by column chromatographic separation (petroleum ether/ethyl acetate: 250/1 to 5/1) to obtain the desired product.

4、Gram-Scale Synthesis of 3

The imidazo[1,2-*a*]pyridine **1** (3 mmol, 0.58 g), ^{*n*}Bu₄NBF₄ (2 mmol, 0.658 g), 1-ethynyl-4-methoxybenzene **2** (18 mmol, 2.38 g), ACN (50 mL) and EtOH (50 mL) was added in a 150 mL beaker, which was equipped with a stir bar, a carbon cloth (100 mm × 50 mm) anode and a platinum plate (20 mm × 20 mm × 0.1 mm) cathode. The solution was stirred and electrolyzed at a constant current of 80 mA for 4 h under the open air. The reaction solution was diluted with ethyl acetate (200 mL) and washed with brine (200 mL) and H₂O (200 mL). The separated organic layer was dried over anhydrous Na_2SO_4 and filtered. The filtrate was concentrated under reduced pressure to give the crude product, which was purified by column chromatographic separation (petroleum ether/ethyl acetate = 20/1, 0.42 g, 43%).

5 Mechanistic Studies

5-1、Radical-trapping experiments

5-1-1, TEMPO was added

In an undivided cell equipped with a carbon cloth (35 mm x 15 mm) anode and a Pt (10 mm x 10 mm x 0.1 mm) cathode, 2-phenylimidazo[1,2-*a*]pyridine **1** (0.2 mmol, 38.9 mg), 1-ethynyl-4-methoxybenzene **2** (1.2 mmol, 158.6 mg), *ⁿ*Bu₄NBF₄ (0.2 mmol, 65.8 mg) and TEMPO (0.4 mmol, 62.5 mg) were dissolved in 3 mL ACN and 7 mL EtOH. The mixture above was stirred and electrolyzed at a constant current of 8 mA for 1.5 h under the open air. No desired product was detected.

5-1-2 BHT was added

In an undivided cell equipped with a carbon cloth (35 mm x 15 mm) anode and a Pt (10 mm x 10 mm x 0.1 mm) cathode, 2-phenylimidazo[1,2-*a*]pyridine **1** (0.2 mmol, 38.9 mg), 1-ethynyl-4-methoxybenzene **2** (1.2 mmol, 158.6 mg), $^{n}Bu_4NBF_4$ (0.2 mmol, 65.8 mg) and BHT (0.4 mmol, 88.2 mg) were dissolved in 3 mL ACN and 7 mL EtOH. The mixture above was stirred and electrolyzed at a constant current of 8

mA for 2.5 h under the open air. No desired product was detected. Moreover, the corresponding radical trapping product **50** was generated.

The reaction solution was diluted with ethyl acetate (50 mL) and washed with brine (50 mL) and H₂O (50 mL). The separated organic layer was dried over anhydrous Na₂SO₄ and filtered. The filtrate was concentrated under reduced pressure to give the crude product, which was purified by column chromatographic separation (petroleum ether/ethyl acetate = 5/1) to obtain the radical trapping product **50** (21.4 mg, 26%).

2,6-di-*tert*-butyl-4-((2-phenylimidazo[1,2-*a*]pyridin-3-yl)methylene)cyclohexa-2,5dien-1-one (**50**):¹

Orange oil; Eluent: petroleum ether/ethyl acetate 5:1; 21.4 mg, 26%;

¹H NMR (400 MHz, Chloroform-*d*) δ 8.16 (d, *J* = 6.9 Hz, 1H), 7.81 (d, *J* = 7.0 Hz, 2H), 7.76 (d, *J* = 9.0 Hz, 1H), 7.46 - 7.30 (m, 4H), 7.13 - 7.07 (m, 2H), 7.00 - 6.92 (m, 1H), 6.89 (d, *J* = 2.5 Hz, 1H), 1.35 (s, 9H), 0.95 (s, 9H); HRMS (ESI-TOF) Calcd for C₂₈H₃₁N₂O [M+H]⁺: 411.2431; found: 411.2422.

5-2 Isotope labeling experiments:

In an undivided cell equipped with a carbon cloth (35 mm x 15 mm) anode and a Pt (10 mm x 10 mm x 0.1 mm) cathode, 2-phenylimidazo[1,2-*a*]pyridine **1** (0.2 mmol, 38.9 mg), 1-ethynyl-4-methoxybenzene **2** (1.2 mmol, 158.6 mg), *ⁿ*Bu₄NBF₄ (0.2

mmol, 65.8 mg) were dissolved in 3 mL CD₃CN-d3 and 7 mL EtOD-d6. The mixture above was stirred and electrolyzed at a constant current of 8 mA for 40 min under the N₂ atmosphere. No H/D change was detected.

In an undivided cell equipped with a carbon cloth (35 mm x 15 mm) anode and a Pt (10 mm x 10 mm x 0.1 mm) cathode, 2-phenylimidazo[1,2-*a*]pyridine 1 (0.2 mmol, 38.9 mg), $^{n}Bu_{4}NBF_{4}$ (0.2 mmol, 65.8 mg) were dissolved in 3 mL CD₃CN-*d*3 and 7 mL EtOD-*d*6. The mixture above was stirred and electrolyzed at a constant current of 8 mA for 40 min under the N₂ atmosphere. No H/D change was detected.

5-3、Cyclic voltammetry experiments

The undivided cell was equipped with glassy-carbon disk working electrode (diameter, 3.0 mm) and Pt wire auxiliary electrode. The Ag/AgCl was used as reference electrode. The scan range was 0.0 V to 2 V. The scan rate was 100 mVs⁻¹ (Fig. **S2**). ACN (3 mL) and EtOH (7 mL) containing ^{*n*}Bu₄NBF₄ (0.2 mmol, 65.8 mg) was poured into the electrochemical cell in all experiments.

Figure S2 Cyclic voltammetry experiments of substrates

100 mVs-1: (black) blank; (red) 2-phenylimidazo[1,2-*a*]pyridine **1** (0.2 mmol, 38.9 mg); (blue) 1-ethynyl-4-methoxybenzene **2** (1.2 mmol, 158.6 mg); (green) 2-phenyl imidazo[1,2-a]pyridine **1** (0.2 mmol, 38.9 mg) and 1-ethynyl-4-methoxybenzene **2** (1.2 mmol, 158.6 mg).

6 X-ray Crystallography Studies of Product 23

Single crystal suitable for X-ray diffraction was obtained by slow evaporation of a saturated solution of compound **23** (cyclohexane/CH₂Cl₂) in a loosely capped vial.

Figure S3 Structure of 23 by X-Ray crystallographic (CCDC = 2132237)

Table S1 Crystal data and structure refinement for 23

Empirical formula	$C_{23}H_{18}N_2O$
Formula weight	338.39
Temperature/K	193
Crystal system	triclinic
Space group	P-1
a/Å	8.1325(4)
b/Å	9.3708(5)
c/Å	11.6459(7)
$lpha/^{\circ}$	74.368(2)
β/°	81.158(2)

$\gamma/^{\circ}$	83.467(2)	
Volume/Å ³	842.08(8)	
Z	2	
pcalcg/cm ³	1.335	
µ/mm ⁻¹	0.083	
F(000)	356.0	
Crystal size/mm ³	0.12 imes 0.1 imes 0.1	
Radiation	MoKa ($\lambda = 0.71073$)	
2Θ range for data collection/°	5.04 to 60.044	
Index ranges	$-11 \le h \le 11, -11 \le k \le 13, -14 \le l \le 16$	
Reflections collected	9842	
Independent reflections	4853 [Rint = 0.0425, Rsigma = 0.0623]	
Data/restraints/parameters	4853/0/237	
Largest diff. peak/hole / e Å ⁻³	0.28/-0.21	

7、Synthesis of Substrates

7-1

General procedure for the synthesis 2-phenylimidazo[1,2-*a*]pyridine (S-3):²

Substituted 2-aminopyridine (5 mmol, 1 eq), acetophenone (10 mmol, 2 eq), CuI (0.25 mmol, 5 mol%, 47 mg), BF₃·Et₂O (0.5 mmol, 10 mol%, 70.96 mg) and H₂O (2 mL) was placed in an oven-dried round bottom flask equipped with a magnetic stir bar. The reaction mixture was stirred at 65 °C for 24 hours under O₂. After S-1 was consumed, the reaction solution was diluted with ethyl acetate (150 mL) and washed

with brine (150 mL) and H₂O (150 mL). The separated organic layer was dried with anhydrous Na_2SO_4 and filtered. The filtrate was concentrated under reduced pressure to obtain a crude product, which was separated by column chromatography (eluent: petroleum ether = 3 : 1) to give the desired product **S-3**.

7-2

Step 1: General procedure for the synthesis of (*E*)-4-phenylbut-3-en-2-one (S-6):³

Substituted benzaldehyde (36 mmol, 1 eq), acetone (5 mL) and H₂O (5 mL) was placed in an oven-dried round bottom flask equipped with a magnetic stir bar, then add a 1% aqueous solution of sodium hydroxide (10 mL) slowly to the reaction mixture. The reaction mixture was stirred at 65 °C. After **S-6** was consumed, the reaction solution was diluted with ethyl acetate (150 mL) and washed with brine (150 mL) and H₂O (150 mL). The separated organic layer was dried with anhydrous Na₂SO₄ and filtered. The filtrate was concentrated under reduced pressure to obtain a crude product, which was separated by column chromatography (eluent: petroleum ether = 100 : 1) to give the desired product **S-6**.

Step 2: General procedure for the synthesis of substrates S-7:²

2-aminopyridine (5 mmol, 1 eq, 470 mg), (*E*)-4-phenylbut-3-en-2-one (10 mmol, 2 eq), CuI (0.25 mmol, 5 mol%, 47 mg), BF₃·Et₂O (0.5 mmol, 10 mol%, 70.96 mg) and H₂O (2 mL) was placed in an oven-dried round bottom flask equipped with a magnetic stir bar. The reaction mixture was stirred at 65 °C for 24 hours under O₂. After S-1 was consumed, the reaction solution was diluted with ethyl acetate (150 mL)

S9

and washed with brine (150 mL) and H_2O (150 mL). The separated organic layer was dried with anhydrous Na_2SO_4 and filtered. The filtrate was concentrated under reduced pressure to obtain a crude product, which was separated by column chromatography (eluent: petroleum ether = 3 : 1) to give the desired product S-7.

8、 Characterization Date for Electrolysis Products

6-(4-methoxyphenyl)-1-phenylimidazo[5,1,2-*cd*]indolizine (**3**):

Light yellow oil; Eluent:petroluem ether/ethyl acetate 25:1; 46.7 mg, 72%; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.41 (d, *J* = 7.1 Hz, 2H), 8.11 (d, *J* = 7.6 Hz, 1H), 8.03 (d, *J* = 8.0 Hz, 1H), 7.94 (t, *J* = 7.8 Hz, 1H), 7.89 (s, 1H), 7.86 - 7.78 (m, 2H), 7.58 (t, *J* = 7.5 Hz, 2H), 7.48 (t, *J* = 7.4 Hz, 1H), 7.12 - 7.04 (m, 2H), 3.90 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 159.35, 149.35, 140.55, 134.06, 131.32, 130.89, 129.89, 129.21, 128.83, 128.25, 127.62, 126.96, 124.88, 114.83, 114.28, 113.63, 111.78, 55.55; HRMS (EI-TOF) Calcd for C₂₂H₁₇N₂O [M+H]⁺: 325.1335; found: 325.1338.

5-(4-methoxyphenyl)naphtho[1',2':4,5]imidazo[1,2-*a*]pyridine (**4**): Brown solid; Eluent:petroluem ether/ethyl acetate 5:1; 20.8 mg, 8%; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.94 (d, *J* = 8.1 Hz, 1H), 8.51 (d, *J* = 6.8 Hz, 1H), 8.02 (d, *J* = 8.5 Hz, 1H), 7.93 (d, *J* = 9.2 Hz, 1H), 7.84 (s, 1H), 7.76 - 7.70 (m, 1H), 7.56 (t, J = 7.7 Hz, 1H), 7.48 (dd, J = 9.0, 2.8 Hz, 3H), 7.16 -7.03 (m, 2H), 6.98 (t, J = 6.7 Hz, 1H), 3.92 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 159.20, 146.86, 135.35, 133.30, 132.16, 131.53, 131.17, 130.11, 128.34, 127.97, 126.54, 126.32, 124.59, 123.86, 123.50, 117.75, 113.93, 111.95, 110.87, 55.54; HRMS (EI-TOF) Calcd for C₂₂H₁₇N₂O [M+H]⁺: 325.1335; found: 325.1334.

6-(4-methoxyphenyl)-1-(p-tolyl)imidazo[5,1,2-*cd*]indolizine (5):

Yellow solid; Eluent: petroluem ether/ethyl acetate 20:1; 55.5 mg, 82%;

¹H NMR (400 MHz, Chloroform-*d*) δ 8.29 (d, J = 7.8 Hz, 2H), 8.08 (d, J = 7.6 Hz, 1H), 7.99 (d, J = 7.9 Hz, 1H), 7.92 (t, J = 7.8 Hz, 1H), 7.87 (s, 1H), 7.85 - 7.77 (m, 2H), 7.37 (d, J = 7.8 Hz, 2H), 7.11 - 7.03 (m, 2H), 3.90 (s, 3H), 2.46 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 159.31, 149.63, 140.58, 140.23, 131.27, 131.04, 130.77, 129.98, 128.83, 128.20, 127.72, 126.88, 124.71, 114.82, 114.26, 113.44, 111.42, 55.56, 21.70; HRMS (EI-TOF) Calcd for C₂₃H₁₉N₂O [M+H]⁺: 339.1429; found: 339.1500.

1-(4-fluorophenyl)-6-(4-methoxyphenyl)imidazo[5,1,2-*cd*]indolizine (**6**): Yellow solid; Eluent: petroluem ether/ethyl acetate 15:1; 40.4 mg, 59%; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.33 (t, *J* = 5.4 Hz, 2H), 8.04 (d, *J* = 7.6 Hz, 1H), 7.97 (d, *J* = 7.8 Hz, 1H), 7.89 (t, *J* = 7.8 Hz, 1H), 7.76 (d, *J* = 8.8 Hz, 1H), 7.23 (d, *J* = 8.0 Hz, 3H), 7.08 - 7.02 (m, 3H), 3.89 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 165.10, 162.61, 159.35, 148.23, 140.48, 131.33, 130.83, 130.35, 129.99 (d, J = 9.1 Hz), 128.76, 127.50, 126.96, 124.51, 116.35, 116.13, 114.80, 113.92, 113.60, 111.68, 55.52; ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -110.73; HRMS (EI-TOF) Calcd for C₂₂H₁₆FN₂O [M+H]⁺: 343.1241; found: 343.1250.

1-(4-chlorophenyl)-6-(4-methoxyphenyl)imidazo[5,1,2-*cd*]indolizine (7): Yellow solid; Eluent: petroluem ether/ethyl acetate 15:1; 55.3 mg, 77%; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.33 - 8.26 (m, 2H), 8.10 (d, J = 7.6 Hz, 1H), 8.02 (d, J = 8.0 Hz, 1H), 7.94 (t, J = 7.8 Hz, 1H), 7.83 (s, 1H), 7.80 (d, J = 8.7 Hz, 2H), 7.55 - 7.48 (m, 2H), 7.12 - 7.03 (m, 2H), 3.90 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 159.48, 147.75, 140.37, 135.84, 132.48, 131.79, 131.03, 129.47, 129.35, 128.87, 127.41, 127.28, 124.73, 114.87, 114.06, 113.91, 112.00, 55.57; HRMS (EI-TOF) Calcd for C₂₂H₁₆ClN₂O [M+H]⁺: 359.0946; found: 359.0953.

1-(4-bromophenyl)-6-(4-methoxyphenyl)imidazo[5,1,2-cd]indolizine (8):

Yellow solid; Eluent: petroluem ether/ethyl acetate 15:1; 54.4 mg, 67%;

¹H NMR (400 MHz, Chloroform-*d*) δ 8.25 (d, J = 8.5 Hz, 2H), 8.12 (d, J = 7.6 Hz, 1H), 8.03 (d, J = 8.0 Hz, 1H), 7.96 (t, J = 7.8 Hz, 1H), 7.85 (s, 1H), 7.83 - 7.79 (m, 2H), 7.72 - 7.65 (m, 2H), 7.12 - 7.04 (m, 2H), 3.91 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 159.50, 147.83, 140.41, 132.97, 132.44, 131.84, 131.08, 129.60, 128.90, 127.43, 127.30, 124.77, 124.21, 114.89, 114.10, 113.95, 112.05, 55.59;

1-(4-iodophenyl)-6-(4-methoxyphenyl)imidazo[5,1,2-*cd*]indolizine (**9**): Yellow solid; Eluent: petroluem ether/ethyl acetate 15:1; 79.25 mg, 88%; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.13 - 8.10 (m, 2H), 8.09 (s, 1H), 8.02 (d, *J* = 8.0 Hz, 1H), 7.95 (t, *J* = 7.8 Hz, 1H), 7.89 (d, *J* = 8.3 Hz, 2H), 7.83 (s, 1H), 7.82 - 7.77 (m, 2H), 7.11 - 7.04 (m, 2H), 3.91 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 159.50, 147.89, 140.36, 138.37, 133.49, 131.84, 131.07, 129.68, 128.89, 127.41, 127.31, 124.78, 114.88, 114.08, 113.98, 112.07, 96.14, 55.59; HRMS (EI-TOF) Calcd for C₂₂H₁₆IN₂O [M+H]⁺: 451.0302; found: 451.0292.

1-([1,1'-biphenyl]-4-yl)-6-(4-methoxyphenyl)imidazo[5,1,2-*cd*]indolizine (10):
Yellow solid; Eluent: petroluem ether/ethyl acetate 20:1; 44.85 mg, 56%;
¹H NMR (400 MHz, Chloroform-*d*) δ 8.46 (d, *J* = 6.9 Hz, 2H), 8.10 (d, *J* = 6.4 Hz, 1H), 8.04 (d, *J* = 8.0 Hz, 1H), 7.99 - 7.92 (m, 1H), 7.91 (s, 1H), 7.85 - 7.77 (m, 4H), 7.70 (d, *J* = 5.5 Hz, 2H), 7.54 - 7.44 (m, 2H), 7.39 (t, *J* = 7.4 Hz, 1H), 7.11 - 7.05 (m, 2H), 3.90 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 159.44, 148.57, 142.66, 140.51, 140.35, 132.70, 131.60, 130.94, 129.05, 128.87, 128.69, 127.89, 127.76, 127.52, 127.23, 124.85, 114.86, 114.31, 113.76, 111.66, 55.57; HRMS (EI-TOF) Calcd for C₂₈H₂₁N₂O [M+H]⁺: 401.1648; found: 401.1676.

6-(4-methoxyphenyl)-1-(4-(trifluoromethyl)phenyl)imidazo[5,1,2-*cd*]indolizine (**11**): Yellow solid; Eluent:petroluem ether/ethyl acetate 20:1; 42.4 mg, 54%; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.49 (d, J = 8.0 Hz, 2H), 8.14 (d, J = 7.6 Hz, 1H), 8.08 (d, J = 8.1 Hz, 1H), 7.99 (t, J = 7.8 Hz, 1H), 7.88 (s, 1H), 7.85 - 7.78 (m, 4H), 7.13 - 7.06 (m, 2H), 3.91 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 159.64, 146.80, 137.29, 132.51, 131.32, 128.95, 128.32, 127.61, 127.21, 126.18 (q, J = 4.1Hz), 125.16, 114.93, 114.34, 114.15, 112.63, 55.59; ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -62.64; HRMS (EI-TOF) Calcd for C₂₃H₁₆F₃N₂O [M+H]⁺: 393.1209; found: 393.1210.

3-methoxy-5-(4-methoxyphenyl)naphtho[1',2':4,5]imidazo[1,2-*a*]pyridine (**12**): Yellow solid; Eluent: petroluem ether/ethyl acetate 20:1; 34.75 mg, 49%; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.35 (d, *J* = 8.8 Hz, 2H), 8.07 (d, *J* = 7.5 Hz, 1H), 7.97 (d, *J* = 7.9 Hz, 1H), 7.91 (t, *J* = 7.8 Hz, 1H), 7.85 (s, 1H), 7.83 - 7.78 (m, 2H), 7.08 (t, *J* = 8.3 Hz, 4H), 3.91 (s, 3H), 3.90 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 161.28, 159.28, 149.54, 140.66, 132.30, 130.79, 130.64, 129.78, 129.02, 128.80, 127.79, 126.83, 126.74, 124.39, 114.82, 114.71, 114.10, 113.24, 110.98, 55.57; HRMS (EI-TOF) Calcd for C₂₃H₁₉N₂O₂ [M+H]⁺: 355.1441; found: 355.1446.

6-(4-methoxyphenyl)-1-(4-(trifluoromethoxy)phenyl)imidazo[5,1,2-*cd*]indolizine (**13**): Yellow solid; Eluent: petroluem ether/ethyl acetate 20:1; 46.5 mg, 57%; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.45 - 8.38 (m, 2H), 8.12 (d, J = 7.6 Hz, 1H), 8.04 (d, J = 8.0 Hz, 1H), 7.96 (t, J = 7.8 Hz, 1H), 7.85 (s, 1H), 7.84 - 7.78 (m, 2H), 7.41 (d, J = 8.8 Hz, 2H), 7.12 - 7.05 (m, 2H), 3.91 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 159.51, 150.31, 147.54, 140.45, 132.75, 131.89, 131.10, 129.63, 128.90, 127.34 (d, J = 14.2 Hz), 124.79, 121.93, 121.56, 114.89, 114.04, 113.96, 112.14, 55.58; ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -57.60; HRMS (EI-TOF) Calcd for C₂₃H₁₆F₃N₂O₂ [M+H]⁺: 409.1158; found: 409.1156.

methyl 4-(6-(4-methoxyphenyl)imidazo[5,1,2-*cd*]indolizin-1-yl)benzoate (**14**): Yellow solid; Eluent: petroluem ether/ethyl acetate 20:1; 42.9 mg, 56%; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.45 (d, *J* = 8.1 Hz, 2H), 8.21 (d, *J* = 8.0 Hz, 2H), 8.14 (d, *J* = 7.5 Hz, 1H), 8.08 (d, 1H), 7.99 (t, *J* = 7.8 Hz, 1H), 7.90 (s, 1H), 7.82 (d, *J* = 8.2 Hz, 2H), 7.08 (d, *J* = 8.2 Hz, 2H), 3.97 (s, 3H), 3.91 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 166.87, 159.63, 146.94, 140.11, 137.87, 132.57, 131.31, 130.96, 130.48, 128.95, 128.00, 127.72, 127.18, 126.40, 125.25, 114.92, 114.36, 112.51, 55.58, 52.42; HRMS (EI-TOF) Calcd for C₂₄H₁₉N₂O₃ [M+H]⁺: 383.139; found: 383.1394.

4-(6-(4-methoxyphenyl)imidazo[5,1,2-*cd*]indolizin-1-yl)benzonitrile (**15**): Orange solid; Eluent: petroluem ether/ethyl acetate 15:1; 58.0 mg, 83%; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.44 (d, *J* = 8.3 Hz, 2H), 8.15 (d, *J* = 7.5 Hz, 1H), 8.08 (d, *J* = 8.1 Hz, 1H), 7.99 (t, *J* = 7.8 Hz, 1H), 7.85 (s, 1H), 7.81 (dd, *J* = 8.6, 1.8 Hz, 4H), 7.12 - 7.06 (m, 2H), 3.91 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 159.69, 146.18, 140.43, 138.38, 132.90, 132.79, 131.42, 128.95, 128.38, 127.71, 127.10, 125.43, 118.93, 114.95, 114.57, 113.97, 113.04, 112.67, 55.59; HRMS (EI-TOF) Calcd for C₂₃H₁₆N₃O [M+H]⁺: 372.1107; found: 372.1123.

6-(4-methoxyphenyl)-1-(*o*-tolyl)imidazo[5,1,2-*cd*]indolizine (**16**): Yellow solid; Eluent: petroluem ether/ethyl acetate 20:1; 31.2 mg, 23%; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.51 (d, *J* = 6.9 Hz, 1H), 7.96 (d, *J* = 9.3 Hz, 1H), 7.87 (d, *J* = 8.9 Hz, 2H), 7.51 (d, *J* = 7.0 Hz, 1H), 7.50 - 7.45 (m, 2H), 7.45 - 7.40 (m, 2H), 7.10 - 7.03 (m, 2H), 6.96 (t, *J* = 6.8 Hz, 1H), 3.92 (s, 3H), 3.43 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 159.13, 146.17, 136.52, 135.65, 134.19, 132.34, 131.60, 128.83, 127.26, 126.28, 125.40, 124.81, 124.11, 118.41, 113.88, 111.52, 110.97, 55.55, 24.38; HRMS (EI-TOF) Calcd for C₂₃H₁₉N₂O [M+H]⁺: 339.1492; found: 339.1492.

6-(4-methoxyphenyl)-1-(*m*-tolyl)imidazo[5,1,2-*cd*]indolizine (**17**): Yellow solid; Eluent: petroluem ether/ethyl acetate 20:1; 48.8 mg, 72%; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.25 (s, 1H), 8.19 (d, *J* = 7.6 Hz, 1H), 8.12 (d, *J* = 7.7 Hz, 1H), 8.05 (d, *J* = 8.0 Hz, 1H), 7.96 (t, *J* = 7.8 Hz, 1H), 7.91 (s, 1H), 7.86 - 7.80 (m, 2H), 7.47 (t, *J* = 7.7 Hz, 1H), 7.30 (d, *J* = 8.1 Hz, 1H), 7.13 - 7.05 (m, 2H), 3.91 (s, 3H), 2.51 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 159.43, 140.30, 139.04, 131.52, 130.96, 130.91, 129.16, 128.90, 128.80, 127.59, 127.18, 125.60, 124.81, 114.87, 114.49, 113.72, 111.66, 55.58, 21.66; HRMS (EI-TOF) Calcd for C₂₃H₁₉N₂O [M+H]⁺: 339.1492; found: 339.1500.

3-(6-(4-methoxyphenyl)imidazo[5,1,2-*cd*]indolizin-1-yl)benzonitrile(**18**): Orange solid; Eluent: petroluem ether/ethyl acetate 15:1; 47.6 mg, 68%; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.66 - 8.58 (m, 2H), 8.16 (d, *J* = 7.5 Hz, 1H), 8.08 (d, *J* = 8.1 Hz, 1H), 8.00 (t, *J* = 7.8 Hz, 1H), 7.88 (s, 1H), 7.86 - 7.79 (m, 2H), 7.73 (d, *J* = 7.7 Hz, 1H), 7.67 (t, *J* = 7.7 Hz, 1H), 7.13 - 7.05 (m, 2H), 3.91 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 159.66, 140.31, 135.41, 132.72, 132.64, 132.05, 131.52, 131.37, 130.08, 128.94, 127.66, 127.13, 124.91, 118.72, 114.94, 114.46, 113.90, 113.52, 112.77, 55.59; HRMS (EI-TOF) Calcd for C₂₃H₁₆N₃O [M+H]⁺: 350.1288; found: 350.1292.

tert-butyl(4-(6-(4-methoxyphenyl)imidazo[5,1,2-*cd*]indolizin-1-yl)phenyl)carbamate (19)

Yellow solid; Eluent: petroluem ether/ethyl acetate 20:1; 34.3 mg, 39%;

¹H NMR (400 MHz, Chloroform-*d*) δ 8.32 (d, J = 6.1 Hz, 2H), 8.08 (d, J = 7.5 Hz, 1H), 7.97 (d, J = 22.1 Hz, 2H), 7.85 (s, 1H), 7.80 (d, J = 8.2 Hz, 2H), 7.58 (s, 2H), 7.07 (d, J = 8.1 Hz, 2H), 6.81 (s, 1H), 3.90 (s, 3H), 1.55 (s, 9H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 159.40, 152.63, 148.39, 140.34, 140.03, 131.44, 130.81, 129.22, 128.85, 128.05, 127.49, 127.33, 124.28, 118.80, 114.85, 114.32, 113.61, 111.16, 81.13, 55.56, 28.47; HRMS (EI-TOF) Calcd for C₂₇H₂₆N₃O₃ [M+H]⁺: 440.1969; found: 440.1961.

1-(4-(benzyloxy)phenyl)-6-(4-methoxyphenyl)imidazo[5,1,2-*cd*]indolizine (**20**) Yellow solid; Eluent: petroluem ether/ethyl acetate 20:1; 38.8 mg, 45%; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.31 (s, 2H), 8.05 (d, *J* = 7.8 Hz, 2H), 7.93 (d, *J*

= 7.1 Hz, 1H), 7.79 (t, J = 10.6 Hz, 3H), 7.44 (d, J = 19.6 Hz, 4H), 7.36 (d, J = 7.3 Hz, 1H), 7.13 (d, J = 7.7 Hz, 2H), 7.06 (d, J = 7.8 Hz, 2H), 5.15 (s, 2H), 3.89 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 160.72, 159.47, 147.71, 139.36, 136.63, 131.72, 130.80, 129.99, 128.81, 128.29, 127.68, 127.26, 125.66, 123.81, 115.68, 114.85, 114.43, 113.73, 110.81, 70.28, 55.55; HRMS (EI-TOF) Calcd for C₂₉H₂₃N₂O₂ [M+H]⁺: 431.1754; found: 431.1754.

6-(4-methoxyphenyl)-1-(thiophen-2-yl)imidazo[5,1,2-*cd*]indolizine (**21**) Yellow solid; Eluent: petroluem ether/ethyl acetate 15:1; 59.5 mg, 45%; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.09 (d, *J* = 7.5 Hz, 1H), 8.01 - 7.95 (m, 2H), 7.92 (t, *J* = 7.8 Hz, 1H), 7.81 (d, *J* = 9.1 Hz, 3H), 7.53 (d, *J* = 5.0 Hz, 1H), 7.27 - 7.21 (m, 1H), 7.11 - 7.04 (m, 2H), 3.90 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 159.42, 140.42, 131.34, 130.93, 129.05, 128.86, 128.66, 128.60, 128.05, 127.55, 127.27, 123.98, 117.34, 114.86, 113.75, 113.29, 111.49, 55.57; HRMS (EI-TOF) Calcd for C₂₀H₁₅N₂O₅ [M+H]⁺: 331.09; found: 331.0894.

6-(4-methoxyphenyl)imidazo[5,1,2-*cd*]indolizine (22)

Light yellow oil; Eluent: petroluem ether/ethyl acetate 10:1; 41.3 mg, 83%; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.54 (s, 1H), 8.19 (d, *J* = 7.6 Hz, 1H), 8.12 (d, *J* = 8.1 Hz, 1H), 8.00 (t, *J* = 7.9 Hz, 1H), 7.84 - 7.76 (m, 2H), 7.73 (s, 1H), 7.12 - 7.04 (m, 2H), 3.90 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 159.41, 137.43, 133.12, 131.67, 131.36, 128.93, 127.58, 126.45, 114.85, 114.16, 113.87, 112.78, 55.57; HRMS (EI-TOF) Calcd for C₁₆H₁₃N₂O [M+H]⁺: 249.1022; found: 249.1022.

6-(4-methoxyphenyl)-5-methyl-1-phenylimidazo[5,1,2-*cd*]indolizine (23):
Yellow solid; Eluent: petroluem ether/ethyl acetate 20:1; 62.3 mg, 92%;
¹H NMR (400 MHz, Chloroform-*d*) δ 8.36 (d, *J* = 7.0 Hz, 2H), 7.87 (d, *J* = 8.1 Hz, 1H), 7.63 (s, 1H), 7.61 (d, *J* = 8.2 Hz, 1H), 7.56 - 7.49 (m, 4H), 7.42 (t, *J* = 7.3 Hz, 1H), 7.05 - 6.97 (m, 2H), 3.87 (s, 3H), 2.66 (s, 3H); ¹³C NMR (101 MHz,

129.37, 129.07, 127.94, 127.88, 125.61, 124.55, 116.49, 113.86, 111.50, 55.42, 18.46; HRMS (EI-TOF) Calcd for C₂₃H₁₉N₂O [M+H]⁺: 339.1492; found: 399.1492.

Chloroform-d) & 159.29, 148.32, 139.21, 134.28, 132.42, 131.23, 129.49, 129.46,

5-fluoro-6-(4-methoxyphenyl)-1-phenylimidazo[5,1,2-*cd*]indolizine (**24**): Yellow solid; Eluent: petroluem ether/ethyl acetate 60:1; 58.9 mg, 86%; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.36 (d, J = 6.9 Hz, 2H), 7.92 (dd, J = 8.5, 3.0 Hz, 1H), 7.86 - 7.79 (m, 3H), 7.66 (dd, J = 11.4, 8.5 Hz, 1H), 7.57 (t, J = 7.6 Hz, 2H), 7.48 (t, J = 7.4 Hz, 1H), 7.09 - 7.02 (m, 2H), 3.90 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 159.54, 152.84, 150.53 (d, J = 5.1 Hz), 150.35, 138.02, 133.85, 131.16 (d, J = 5.1 Hz), 130.04, 129.67 (d, J = 4.1 Hz), 129.26, 128.09, 126.54 (d, J = 3.1 Hz), 119.10, 118.80, 115.13, 114.89, 114.54, 114.31 (d, J = 3.1 Hz), 112.12 (d, J = 8.1 Hz), 55.53; ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -124.01; HRMS (EI-TOF) Calcd for C₂₂H₁₆FN₂O [M+H]⁺: 343.1241; found: 343.1249.

5-chloro-6-(4-methoxyphenyl)-1-phenylimidazo[5,1,2-*cd*]indolizine (**25**): Yellow solid; Eluent: petroluem ether/ethyl acetate 40:1; 63.2 mg, 88%; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.36 (d, *J* = 7.1 Hz, 2H), 7.92 (d, *J* = 8.4 Hz, 1H), 7.84 (d, *J* = 8.4 Hz, 1H), 7.75 (s, 1H), 7.68 (d, *J* = 8.6 Hz, 2H), 7.56 (t, *J* = 7.5 Hz, 2H), 7.49 (d, *J* = 7.2 Hz, 1H), 7.07 - 7.01 (m, 2H), 3.90 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 159.59, 150.19, 139.32, 133.52, 132.55, 131.63, 130.26, 129.29, 128.57, 128.24, 127.52, 126.31, 125.21, 121.39, 117.80, 113.82, 111.84, 55.50; HRMS (EI-TOF) Calcd for C₂₂H₁₆ClN₂O [M+H]⁺: 359.0946; found: 359.0941.

6-(4-methoxyphenyl)-1-phenylimidazo[5,1,2-*cd*]indolizine-5-carbonitrile (**26**): Orange solid; Eluent: petroluem ether/ethyl acetate 20:1; 45.5 mg, 65%; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.41 (d, J = 7.4 Hz, 2H), 8.19 (d, J = 7.2 Hz, 1H), 8.08 (d, J = 8.0 Hz, 1H), 7.94 (s, 1H), 7.75 (d, J = 8.3 Hz, 2H), 7.60 (t, J = 7.2 Hz, 1Hz, 2H), 7.57 - 7.52 (m, 1H), 7.11 (d, J = 8.2 Hz, 2H), 3.91 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 160.19, 153.46, 141.81, 132.86, 131.78, 131.26, 131.02, 130.96, 129.51, 128.81, 125.48, 124.94, 119.44, 116.82, 114.48, 111.52, 97.43, 55.55; HRMS (EI-TOF) Calcd for C₂₃H₁₆N₃O [M+H]⁺: 350.1288; found: 350.1292.

6-(4-methoxyphenyl)-1-phenyl-5-(trifluoromethyl)imidazo[5,1,2-*cd*]indolizine (**27**): Yellow solid; Eluent: petroluem ether/ethyl acetate 150:1; 55.8 mg, 71%; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.39 (d, J = 7.0 Hz, 2H), 8.18 (d, J = 8.3 Hz, 1H), 8.06 (d, J = 8.3 Hz, 1H), 7.83 (s, 1H), 7.57 (t, J = 7.4 Hz, 2H), 7.51 (d, J = 8.7 Hz, 3H), 7.02 (d, J = 8.3 Hz, 2H), 3.90 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 159.63, 152.95, 141.84, 133.30, 132.44, 131.39, 130.79, 129.35, 128.57, 128.10, 127.82, 127.04, 125.24, 125.12, 124.52 (q, J = 5.1 Hz), 122.42, 120.80, 117.21, 116.86, 116.51, 113.58, 110.65, 55.45; ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -55.05; HRMS (EI-TOF) Calcd for C₂₃H₁₆F₃N₂O [M+H]⁺: 393.1029; found: 393.1200.

4-chloro-6-(4-methoxyphenyl)-1-phenylimidazo[5,1,2-*cd*]indolizine (**28**): Yellow solid; Eluent: petroluem ether/ethyl acetate 40:1; 53.8 mg, 75%; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.38 - 8.31 (m, 2H), 8.07 (s, 1H), 7.99 (s, 1H), 7.85 (s, 1H), 7.78 - 7.70 (m, 2H), 7.56 (t, *J* = 7.4 Hz, 2H), 7.49 (t, *J* = 7.3 Hz, 1H), 7.11 - 7.03 (m, 2H), 3.90 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 159.57, 150.90, 140.08, 133.47, 131.51, 130.36, 130.25, 129.28, 128.76, 128.32, 126.87, 124.96, 115.61, 114.91, 114.27, 111.95, 55.57; HRMS (EI-TOF) Calcd for C₂₂H₁₆ClN₂O [M+H]⁺: 359.0946; found: 359.0945.

5-bromo-3-iodo-6-(4-methoxyphenyl)-1-phenylimidazo[5,1,2-*cd*]indolizine (**29**): Yellow solid; Eluent: petroluem ether/ethyl acetate 250:1; 64.6 mg, 61%; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.38 (d, *J* = 6.9 Hz, 2H), 8.31 (s, 1H), 7.65 (s, 1H), 7.62 (d, *J* = 8.6 Hz, 2H), 7.54 (d, *J* = 14.5 Hz, 2H), 7.49 (d, *J* = 5.9 Hz, 1H), 7.02 (d, *J* = 1.8 Hz, 2H), 3.90 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 159.74, 150.86, 141.43, 138.90, 133.47, 133.24, 132.08, 130.50, 129.21, 128.86, 128.56, 126.59, 125.70, 118.73, 113.68, 108.04, 55.50; HRMS (EI-TOF) Calcd for C₂₂H₁₅BrIN₂O [M+H]⁺:528.9407; found: 528.9406.

5-(4-methoxyphenyl)-8-methylnaphtho[1',2':4,5]imidazo[1,2-*a*]pyridine (**30**) Brown solid; Eluent: petroluem ether/ethyl acetate 10:1; 43.4 mg, 64%; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.97 (d, *J* = 8.2 Hz, 1H), 8.09 (s, 1H), 7.97 (d, *J*

= 8.4 Hz, 1H), 7.77 (d, J = 9.1 Hz, 1H), 7.74 - 7.66 (m, 1H), 7.59 - 7.51 (m, 1H), 7.47 (d, J = 8.6 Hz, 2H), 7.32 (dd, J = 9.2, 6.8 Hz, 1H), 7.09 - 7.02 (m, 2H), 6.64 (d, J = 6.8 Hz, 1H), 3.93 (s, 3H), 3.03 (s, 5H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 159.07, 148.53, 141.14, 138.18, 133.96, 133.87, 131.57, 130.38, 127.92, 126.73, 126.66, 126.32, 126.18, 125.39, 123.51, 115.51, 115.07, 113.90, 112.12, 55.52, 21.63; HRMS (EI-TOF) Calcd for C₂₃H₁₉N₂O [M+H]⁺: 339.1492; found: 339.1492.

1-(4-methoxyphenyl)-3-phenyl-2a¹,4,5-triazacyclopenta[*cd*]indene (**31**): Orange solid; Eluent: petroluem ether/ethyl acetate 15:1; 33.5mg, 76.8%; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.88 (d, *J* = 5.4 Hz, 1H), 8.32 (d, *J* = 6.3 Hz, 2H), 7.83 (d, *J* = 5.4 Hz, 1H), 7.80 (s, 1H), 7.63 (d, *J* = 6.4 Hz, 2H), 7.53 - 7.42 (m, 3H), 6.99 - 6.92 (m, 2H), 3.83 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 159.47, 155.40, 148.00, 146.80, 133.69, 133.05, 131.14, 131.06, 129.11, 128.77, 128.22, 126.26, 123.26, 117.64, 114.76, 109.04, 55.45; HRMS (EI-TOF) Calcd for C₂₁H₁₆N₃O [M+H]⁺: 326.1288; found: 326.1286.

5-(4-methoxyphenyl)naphtho[1',2':4,5]imidazo[2,1-*b*]thiazole (**32**) Brown solid; Eluent: petroluem ether/ethyl acetate 15:1; 59.5 mg, 90%; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.75 (d, *J* = 9.6 Hz, 1H), 7.97 (d, *J* = 8.4 Hz, 1H), 7.69 - 7.62 (m, 3H), 7.51 - 7.40 (m, 3H), 7.07 - 7.00 (m, 2H), 6.85 (d, *J* = 4.5 Hz, 1H), 3.90 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 159.07, 154.24, 143.39, 134.39, 133.38, 131.50, 129.65, 127.04, 126.85, 126.51, 125.16, 122.52, 117.44, 113.84, 111.74, 111.43, 55.48; HRMS (EI-TOF) Calcd for C₂₀H₁₅N₂OS [M+H]⁺: 331.09; found: 331.0896.

1,6,7-triphenylimidazo[5,1,2-cd]indolizine (33):4

Yellow solid; Eluent: petroluem ether/ethyl acetate 15:1; 37.1 mg, 50%; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.09 - 8.03 (m, 1H), 8.00 - 7.95 (m, 2H), 7.86 -7.80 (m, 2H), 7.49 - 7.45 (m, 2H), 7.43 (dd, J = 8.0, 1.7 Hz, 2H), 7.41 - 7.31 (m, 7H), 7.31 - 7.27 (m, 2H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 151.14, 134.13, 134.04, 133.73, 131.83, 131.75, 131.15, 130.31, 129.82, 129.51, 128.77, 128.65, 128.48, 128.30, 127.46, 127.17, 127.14, 112.91, 111.48.; HRMS (EI-TOF) Calcd for: C₂₇H₁₉N₂ [M+H]⁺: 371.1543; found: 371.1542.

34

7-methyl-1,6-diphenylimidazo[5,1,2-cd]indolizine (34):4

Yellow solid; Eluent: petroluem ether/ethyl acetate 20:1; 35.6 mg, 58%;

¹H NMR (400 MHz, Chloroform-*d*) δ 8.30 (d, J = 7.3 Hz, 2H), 7.95 (d, J = 8.0 Hz, 1H), 7.86 (t, J = 7.8 Hz, 1H), 7.78 (d, J = 7.5 Hz, 1H), 7.63 (d, J = 7.9 Hz, 2H), 7.56 (dt, J = 11.5, 7.5 Hz, 4H), 7.48 (t, J = 7.3 Hz, 1H), 7.42 (t, J = 7.4 Hz, 1H), 2.88 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 150.28, 139.80, 134.51, 134.15, 132.06, 130.08, 129.43, 129.18, 129.00, 128.92, 128.60, 127.48, 127.28, 126.74, 125.60, 111.36, 110.63, 14.06; HRMS (EI-TOF) Calcd for C₂₂H₁₇N₂ [M+H]⁺: 309.1386; found: 309.1389.

6-(4-(pentyloxy)phenyl)-1-phenylimidazo[5,1,2-*cd*]indolizine (**35**): Yellow solid; Eluent: petroluem ether/ethyl acetate 25:1; 48.0 mg, 63%; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.38 (s, 2H), 8.07 (d, *J* = 7.6 Hz, 1H), 8.00 (d, *J* = 8.0 Hz, 1H), 7.90 (t, J = 7.8 Hz, 1H), 7.86 (s, 1H), 7.81 – 7.74 (m, 2H), 7.56 (t, J = 7.6 Hz, 2H), 7.46 (t, *J* = 7.4 Hz, 1H), 7.08 - 7.01 (m, 2H), 4.03 (t, *J* = 6.6 Hz, 2H), 1.90 - 1.80 (m, 2H), 1.55 - 1.36 (m, 4H), 0.97 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 158.93, 149.33, 140.57, 134.13, 131.36, 130.88, 129.83, 129.18, 128.76, 128.22, 127.39, 126.85, 124.89, 115.36, 114.16, 113.58, 111.72, 68.29, 29.12, 28.36, 22.61, 14.17; HRMS (EI-TOF) Calcd for C₂₆H₂₅N₂O [M+H]⁺: 381.1961; found: 381.1960.

6-([1,1'-biphenyl]-4-yl)-1-phenylimidazo[5,1,2-*cd*]indolizine (**36**):

Yellow solid; Eluent: petroluem ether/ethyl acetate 15:1; 41.5 mg, 28%;

¹H NMR (400 MHz, Chloroform-*d*) δ 8.42 (d, *J* = 7.3 Hz, 2H), 8.18 (d, *J* = 7.6 Hz, 1H), 8.07 - 8.01 (m, 2H), 7.97 (dd, *J* = 8.0, 4.2 Hz, 3H), 7.77 (d, *J* = 8.3 Hz, 2H), 7.69 (d, *J* = 7.0 Hz, 2H), 7.59 (t, *J* = 7.6 Hz, 2H), 7.50 (t, *J* = 7.5 Hz, 3H), 7.40 (t, *J* = 7.4 Hz, 1H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 149.88, 140.67, 140.65, 140.35, 134.04, 133.95, 130.87, 130.82, 130.06, 129.26, 129.05, 128.32, 128.02, 127.98,

127.65, 127.25, 127.14, 124.99, 114.94, 113.86, 111.88; HRMS (EI-TOF) Calcd for C₂₇H₁₉N₂ [M+H]⁺: 371.1543; found: 371.1534.

1-phenyl-6-(p-tolyl)imidazo[5,1,2-cd]indolizine (**37**):

Yellow solid; Eluent: petroluem ether/ethyl acetate 15:1; 32.1 mg, 52%; ¹H NMR (400 MHz, Chloroform-d) δ 8.41 (d, *J* = 7.0 Hz, 2H), 8.13 (d, *J* = 7.6 Hz, 1H), 8.03 (d, *J* = 8.0 Hz, 1H), 7.98 - 7.90 (m, 2H), 7.79 (d, *J* = 6.3 Hz, 2H), 7.58 (t, *J* = 7.6 Hz, 2H), 7.48 (t, *J* = 7.4 Hz, 1H), 7.35 (d, *J* = 7.9 Hz, 2H), 2.45 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 149.61, 140.61, 137.48, 134.05, 132.15, 131.45, 130.88, 130.06, 129.94, 129.22, 128.26, 127.55, 127.02, 124.90, 114.69, 113.75, 111.78, 21.40; HRMS (EI-TOF) Calcd for C₂₂H₁₇N₂ [M+H]⁺: 309.1386; found: 309.1388.

6-(4-(*tert*-butyl)phenyl)-1-phenylimidazo[5,1,2-*cd*]indolizine (**38**):

Yellow solid; Eluent: petroluem ether/ethyl acetate 15:1; 34.3 mg, 49%; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.41 (d, *J* = 7.0 Hz, 2H), 8.14 (d, *J* = 7.6 Hz, 1H), 8.03 (d, *J* = 8.0 Hz, 1H), 7.98 - 7.90 (m, 2H), 7.87 - 7.80 (m, 2H), 7.67 - 7.54 (m, 4H), 7.54 - 7.44 (m, 1H), 1.42 (s, 9H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 150.71, 149.57, 140.57, 134.03, 132.17, 131.36, 130.89, 129.93, 129.22, 128.26, 127.39, 127.03, 126.30, 124.90, 114.72, 113.78, 111.75, 34.81, 31.48; HRMS (EI-TOF) Calcd for C₂₅H₂₃N₂ [M+H]⁺: 351.1856; found: 351.1858.

6-(2-methoxyphenyl)-1-phenylimidazo[5,1,2-*cd*]indolizine (**39**): Light yellow oil; Eluent: petroluem ether/ethyl acetate 30:1; 34.4 mg, 53%; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.43 (dd, J = 7.0, 1.5 Hz, 2H), 8.09 (s, 1H), 8.03 (dd, J = 7.8, 3.4 Hz, 2H), 7.92 (t, J = 7.9 Hz, 1H), 7.76 (dd, J = 7.5, 1.7 Hz, 1H), 7.58 (t, J = 7.6 Hz, 2H), 7.47 (t, J = 7.4 Hz, 1H), 7.37 - 7.42 (m, 1H), 7.18 - 7.03 (m, 2H), 3.94 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 156.70, 149.62, 140.61, 134.15, 131.79, 131.08, 129.83, 129.17, 128.95, 128.31, 127.43, 126.81, 125.03, 123.74, 121.23, 117.97, 114.45, 111.60, 111.39, 55.65; HRMS (EI-TOF) Calcd for C₂₂H₁₇N₂O [M+H]⁺: 325.1335; found: 325.1329.

6-(3-methoxyphenyl)-1-phenylimidazo[5,1,2-*cd*]indolizine (**40**): Light yellow oil; Eluent: petroluem ether/ethyl acetate 30:1; 37.7 mg, 58%; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.42 (d, J = 7.0 Hz, 2H), 8.16 (d, J = 7.6 Hz, 1H), 8.04 (d, J = 8.0 Hz, 1H), 8.01 - 7.90 (m, 2H), 7.58 (t, J = 7.5 Hz, 2H), 7.52 - 7.45 (m, 3H), 7.43 (t, J = 2.0 Hz, 1H), 6.99 - 6.92 (m, 1H), 3.93 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 160.41, 149.98, 140.69, 136.39, 133.98, 131.16, 130.83, 130.39, 130.05, 129.26, 128.31, 127.20, 124.88, 120.24, 115.20, 113.83, 113.51, 112.86, 111.86, 55.54; HRMS (EI-TOF) Calcd for C₂₂H₁₇N₂O [M+H]⁺: 325.1335; found: 325.1342.

5-(4-(trifluoromethyl)phenyl)naphtho[1',2':4,5]imidazo[1,2-*a*]pyridine (**41**): Brown solid; Eluent: petroluem ether/ethyl acetate 3:1; 37.0 mg, 51%; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.93 (d, J = 8.2 Hz, 1H), 8.45 (d, J = 6.8 Hz, 1H), 7.88 (t, J = 9.0 Hz, 2H), 7.82 - 7.75 (m, 3H), 7.72 (t, J = 7.7 Hz, 1H), 7.66 (d, J = 7.9 Hz, 2H), 7.58 - 7.47 (m, 1H), 7.47 - 7.38 (m, 1H), 6.93 (t, J = 6.7 Hz, 1H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 147.65, 144.89, 141.12, 133.46, 130.85, 130.34, 129.82, 129.50, 128.11, 127.02, 126.89, 126.64, 126.43, 125.80, 125.43 (q, J = 3.1 Hz), 124.49, 123.82, 123.52, 123.09, 118.09, 111.68, 111.27; ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -62.30; HRMS (EI-TOF) Calcd for C₂₂H₁₄F₃N₂ [M+H]⁺: 363.1104; found: 363.1117.

5-(4-chlorophenyl)naphtho[1',2':4,5]imidazo[1,2-*a*]pyridine (**42**):

Brown solid; Eluent: petroluem ether/ethyl acetate 3:1; 46.7 mg, 71%;

¹H NMR (400 MHz, Chloroform-*d*) δ 8.93 (dd, J = 8.1, 1.6 Hz, 1H), 8.47 (d, J = 6.9 Hz, 1H), 7.93 (d, J = 9.4 Hz, 1H), 7.87 (d, J = 9.2 Hz, 1H), 7.80 (s, 1H), 7.72 (t, J = 7.0 Hz, 1H), 7.54 (ddd, J = 8.4, 6.9, 1.4 Hz, 1H), 7.48 (d, J = 1.0 Hz, 4H), 7.47 – 7.39 (m, 1H), 6.93 (t, J = 6.8 Hz, 1H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 147.57, 141.04, 139.61, 133.77, 133.57, 131.80, 130.61, 128.68, 127.95, 127.09, 126.85, 126.80, 126.31, 124.51, 123.91, 123.47, 118.14, 111.59, 111.12; HRMS (EI-TOF) Calcd for C₂₁H₁₄ClN₂ [M+H]⁺: 329.084; found: 329.0847.

4-(naphtho[1',2':4,5]imidazo[1,2-*a*]pyridin-5-*yl*)benzonitrile (**43**):

Green solid; Eluent: petroluem ether/ethyl acetate 5:1; 49.8 mg, 78%; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.92 (d, J = 8.2 Hz, 1H), 8.49 (d, J = 6.8 Hz, 1H), 7.86 (d, J = 7.7 Hz, 2H), 7.82 (d, J = 4.5 Hz, 3H), 7.72 (t, J = 7.5 Hz, 1H), 7.67 (d, J = 7.9 Hz, 2H), 7.55 (t, J = 7.7 Hz, 1H), 7.50 - 7.41 (m, 1H), 6.96 (d, J = 13.6 Hz, 1H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 147.81, 146.08, 141.42, 132.80, 132.29, 131.26, 129.97, 128.27, 127.06, 126.99, 126.57, 126.33, 124.55, 123.81, 123.58, 119.04, 118.16, 111.77, 111.43, 111.21; HRMS (EI-TOF) Calcd for C₂₂H₁₄N₃ [M+H]⁺: 320.1182; found: 320.1185.

8-(4-methoxyphenyl)-7-phenylbenzo[4,5]imidazo[1,2-*a*]pyridine (44):

Colourless solid; Eluent: petroluem ether/ethyl acetate 3:1; 65.2 mg, 93%;

¹H NMR (400 MHz, Chloroform-*d*) δ 8.44 (d, J = 6.9 Hz, 1H), 7.96 (s, 1H), 7.87 (s, 1H), 7.72 (d, J = 9.3 Hz, 1H), 7.47 - 7.38 (m, 1H), 7.29 - 7.18 (m, 5H), 7.14 - 7.07 (m, 2H), 6.85 (t, J = 6.2 Hz, 1H), 6.82 - 6.74 (m, 2H), 3.78 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 158.39, 149.19, 143.58, 142.12, 139.53, 134.65, 134.37, 131.38, 130.38, 129.66, 128.31, 128.00, 126.49, 125.36, 121.21, 118.03, 113.49, 111.98, 110.72, 55.30; HRMS (EI-TOF) Calcd for C₂₄H₁₉N₂O [M+H]⁺: 351.1492; found: 351.1490.

7-(4-chlorophenyl)-8-(4-methoxyphenyl)benzo[4,5]imidazo[1,2-*a*]pyridine (**45**): Colourless solid; Eluent: petroluem ether/ethyl acetate 3:1; 63.9 mg, 83%; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.45 (d, *J* = 6.9 Hz, 1H), 7.89 (d, *J* = 13.8 Hz, 2H), 7.73 (d, *J* = 9.3 Hz, 1H), 7.50 - 7.41 (m, 1H), 7.26 - 7.19 (m, 2H), 7.15 (d, *J* = 6.6 Hz, 2H), 7.12 - 7.07 (m, 2H), 6.92 - 6.84 (m, 1H), 6.84 - 6.77 (m, 2H), 3.81 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 158.54, 149.45, 143.89, 140.70, 138.15, 134.48, 134.09, 132.62, 131.66, 131.42, 129.71, 128.57, 128.25, 125.38, 121.25, 118.23, 113.68, 112.14, 110.77, 55.37; HRMS (EI-TOF) Calcd for C₂₄H₁₈ClN₂O [M+H]⁺: 385.1102; found: 385.1096.

8-(4-methoxyphenyl)-7-(*p*-tolyl)benzo[4,5]imidazo[1,2-*a*]pyridine (46):

Colourless solid; Eluent: petroluem ether/ethyl acetate 3:1; 69.2 mg, 95%;

¹H NMR (400 MHz, Chloroform-*d*) δ 8.43 (d, J = 6.9 Hz, 1H), 7.94 (s, 1H), 7.85 (s, 1H), 7.71 (d, J = 9.2 Hz, 1H), 7.46 - 7.38 (m, 1H), 7.12 (dd, J = 8.5, 2.7 Hz, 4H), 7.06 (d, J = 7.9 Hz, 2H), 6.85 (t, J = 6.7 Hz, 1H), 6.85 - 6.76 (m, 2H), 3.82 (s, 3H), 2.33 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 158.36, 149.23, 143.77, 139.48, 139.20, 136.08, 134.65, 134.60, 131.37, 130.23, 129.53, 128.76, 128.24, 125.34, 121.23, 118.09, 113.50, 111.96, 110.62, 55.32, 21.23; HRMS (EI-TOF) Calcd for C₂₅H₂₁N₂O [M+H]⁺: 365.1648; found: 365.1643.

8-(4-methoxyphenyl)-7-(4-(trifluoromethyl)phenyl)benzo[4,5]imidazo[1,2-*a*]pyridine (47):

Colourless solid; Eluent: petroluem ether/ethyl acetate 3:1; 45.3 mg, 55%;

¹H NMR (400 MHz, Chloroform-*d*) δ 8.48 (d, *J* = 6.8 Hz, 1H), 7.93 (d, *J* = 16.2 Hz, 2H), 7.77 (d, J = 9.2 Hz, 1H), 7.50 (t, *J* = 6.4 Hz, 3H), 7.33 (d, *J* = 8.0 Hz, 2H), 7.12 - 7.05 (m, 2H), 6.91 (t, *J* = 6.7 Hz, 1H), 6.83 - 6.77 (m, 2H), 3.80 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 158.66, 149.27, 145.84, 143.26, 138.10, 134.64, 133.71, 132.04, 131.42, 130.62, 130.17, 128.81, 128.65, 128.49, 125.80, 125.44, 125.00 (q, *J* = 4.1 Hz), 123.10, 121.23, 118.09, 113.74, 112.33, 111.13, 55.36; ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -62.29; HRMS (EI-TOF) Calcd for C₂₅H₁₈F₃N₂O [M+H]⁺: 419.1366; found: 419.1355.

7-(2-bromo-5-chlorophenyl)-8-(4-methoxyphenyl)benzo[4,5]imidazo[1,2-*a*]pyridine (**48**):

Colourless solid; Eluent: petroluem ether/ethyl acetate 3:1; 39.0 mg, 42%;

¹H NMR (400 MHz, Chloroform-*d*) δ 8.47 (d, *J* = 6.9 Hz, 1H), 7.90 (s, 1H), 7.82 (s, 1H), 7.74 (d, *J* = 9.3 Hz, 1H), 7.45 (dd, *J* = 15.9, 7.6 Hz, 2H), 7.24 (d, *J* = 2.6 Hz, 1H), 7.18 - 7.11 (m, 2H), 7.09 (dd, *J* = 8.6, 2.6 Hz, 1H), 6.88 (t, *J* = 6.8 Hz, 1H), 6.81 - 6.75 (m, 2H), 3.79 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 158.60, 149.56,

144.53, 143.28, 137.21, 134.91, 133.68, 133.48, 132.82, 132.30, 131.10, 129.85, 128.99, 128.75, 125.42, 122.42, 121.47, 118.31, 113.48, 111.76, 110.83, 55.32; HRMS (EI-TOF) Calcd for C₂₄H₁₇BrClN₂O [M+H]⁺: 463.0207; found: 463.0189.

8-(4-methoxyphenyl)-7-(thiophen-2-yl)benzo[4,5]imidazo[1,2-*a*]pyridine (**49**): Colourless solid; Eluent: petroluem ether/ethyl acetate 3:1; 42.1 mg, 59%; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.40 (d, J = 6.9 Hz, 1H), 8.08 (s, 1H), 7.82 (s, 1H), 7.70 (d, J = 9.2 Hz, 1H), 7.46 - 7.38 (m, 1H), 7.25 - 7.17 (m, 3H), 6.91 (dd, J =5.1, 3.5 Hz, 1H), 6.89 - 6.81 (m, 3H), 6.79 (dd, J = 3.6, 1.2 Hz, 1H), 3.83 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 158.86, 149.44, 143.96, 143.73, 134.87, 134.29, 131.95, 131.24, 129.71, 128.52, 127.27, 127.00, 125.78, 125.35, 121.43, 118.15, 113.59, 112.26, 110.75, 55.36; HRMS (EI-TOF) Calcd for C₂₂H₁₇N₂OS [M+H]⁺: 357.1056; found: 357.1050.

9、Reference

1. Nipate, D. S., Sonam., Shinde, V. N., Rangan, K. & Kumar, A. Tempo-mediated synthesis of indolyl/imidazo 1,2-a pyridinyl-substituted para-quinone methides from butylated hydroxytoluene. *J. Org. Chem.* **2021**, *86* (23), 17090-17100.

2. Mohan, D. C., Rao, S. N., Ravi, C. & Adimurthy, S. Copper(I) iodide catalyzed aerobic oxidative C-N and C-S bond formations through C-H activation: Synthesis of functionalized imidazo 1,2-a pyridines. *J. Org. Chem.* **2014**, *3* (5), 609-613.

3. Hao, H.-Y., Mao, Y.-J., Xu, Z.-Y., Lou, S.-J. & Xu, D.-Q. Selective crossdehydrogenative C(sp(3))-H arylation with arenes. *Org. Lett.* **2020**, *22* (6), 2396-2402.

4. Meena, N., Sharma, S., Bhatt, R., Shinde, V. N., Sunda, A. P., Bhuvanesh, N., Kumar, A. & Joshi, H. A selenium-coordinated palladium(ii)trans-dichloride molecular rotor as a catalyst for site-selective annulation of 2-arylimidazo 1,2-a pyridines. *Chem. Commun.* **2020**, *56* (70), 10223-10226.

10、 NMR Spectra for Electrolysis Products

5-(4-methoxyphenyl)naphtho[1',2':4,5]imidazo[1,2-*a*]pyridine (4):

6-(4-methoxyphenyl)-1-(p-tolyl)imidazo[5,1,2-cd]indolizine (5):

1-(4-fluorophenyl)-6-(4-methoxyphenyl)imidazo[5,1,2-cd]indolizine (6):

1-(4-chlorophenyl)-6-(4-methoxyphenyl)imidazo[5,1,2-*cd*]indolizine (7):

1-(4-bromophenyl)-6-(4-methoxyphenyl)imidazo[5,1,2-*cd*]indolizine (8):

1-(4-iodophenyl)-6-(4-methoxyphenyl)imidazo[5,1,2-*cd*]indolizine (9):

1-([1,1'-biphenyl]-4-yl)-6-(4-methoxyphenyl)imidazo[5,1,2-*cd*]indolizine (10):

6-(4-methoxyphenyl)-1-(4-(trifluoromethyl)phenyl)imidazo[5,1,2-cd]indolizine (11):

3-methoxy-5-(4-methoxyphenyl)naphtho[1',2':4,5]imidazo[1,2-*a*]pyridine (12):

6-(4-methoxyphenyl)-1-(4-(trifluoromethoxy)phenyl)imidazo[5,1,2-cd]indolizine (13):

 ∞1-4-12λ5-4°11°11
 ∞
 ∞
 ∞
 ∞
 ∞
 ∞
 ∞
 ∞
 ∞
 ∞
 ∞
 ∞
 ∞
 ∞
 ∞
 ∞
 ∞
 ∞
 ∞
 ∞
 ∞
 ∞
 ∞
 ∞
 ∞
 ∞
 ∞
 ∞
 ∞
 ∞
 ∞
 ∞
 ∞
 ∞
 ∞
 ∞
 ∞
 ∞
 ∞
 ∞
 ∞
 ∞
 ∞
 ∞
 ∞
 ∞
 ∞
 ∞
 ∞
 ∞
 ∞
 ∞
 ∞
 ∞
 ∞
 ∞
 ∞
 ∞
 ∞
 ∞
 ∞
 ∞
 ∞
 ∞
 ∞
 ∞
 ∞
 ∞
 ∞
 ∞
 ∞
 ∞
 ∞
 ∞
 ∞
 ∞
 ∞
 ∞
 ∞
 ∞
 ∞
 ∞
 ∞
 ∞
 ∞
 ∞
 ∞
 ∞
 ∞
 ∞
 ∞
 ∞
 ∞
 ∞
 ∞
 ∞
 ∞
 ∞
 ∞
 ∞
 ∞
 ∞
 ∞
 ∞
 ∞
3.91 -1.8×10¹¹ -1.7×10¹¹ -7.0×10¹⁰ 7.09 7.07 -1.6×10¹¹ -6.0×10¹⁰ -1.5×10¹¹ -5. 0×10¹⁰ -1.4×10^{11} -4. 0×10¹⁰ -1.3×10¹¹ -3.0×10^{10} -1.2×10¹¹ -1.1×10¹¹ -2.0×10¹⁰ -1.0×10¹¹ -1.0×10¹⁰ -9.0×10¹⁰ 0.0 98-05 119 00 96 -10 -8.0×10¹⁰ 8.5 8.4 8.3 8.2 8.1 7.6 7.5 7.4 7.3 7.2 7.1 7.0 7.8 7.7 fl (ppm) 7.9 8.0 -7.0×10^{10} -6.0×10¹⁰ -5. 0×10¹⁰ -4.0×10¹⁰ -3.0×10¹⁰ -2.0×10¹⁰ -1.0×10^{10} -0.0 1.198 - 1.198 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 -1.0×10^{10} 7.0 fl (ppm) 3.5 13.0 12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 6.5 6.0

methyl 4-(6-(4-methoxyphenyl)imidazo[5,1,2-*cd*]indolizin-1-yl)benzoate (14):

4-(6-(4-methoxyphenyl)imidazo[5,1,2-*cd*]indolizin-1-yl)benzonitrile (15):

6-(4-methoxyphenyl)-1-(o-tolyl)imidazo[5,1,2-cd]indolizine (16): $\begin{array}{c} 7.49\\ 7.48\\$ -3.43 -6.5×10¹¹ -6.0×10¹¹ -5.5×10¹¹ 7.52 7.51 7.51 7.51 7.51 7.51 7.54 7.54 7.44 7.45 7.745 7.743 7.741 7.743 7.741 7.743 7.06 7.05 6.97 6.96 7.97 6.94 1. 2×10¹¹ -5.0×10¹¹ 1. 0×10¹¹ -4.5×10¹¹ 8. 0×10¹⁰ -4.0×10^{11} 6. 0 × 10¹⁰ 4. 0×10¹⁰ -3.5×10¹¹ 2. 0×10¹⁰ -3.0×10^{11} 0.0 -00 0.96-00 02 98 0.5 -2.5×10¹¹ 7.9 8.0 7.7 7.5 7.4 fl (ppm) 7.3 7.2 7.0 6.9 7.8 7.6 -2.0×10¹¹ -1.5×10¹¹ -1.0×10^{11} -5.0×10¹⁰ -0.0 1.00 2.00 1.05 1.05 1.09 2.00 2.00 3.02 -3.00-1 -5. 0×10¹⁰ 12.5 12.0 11.5 11.0 10.5 10.0 9.5 8.5 7.0 6.5 fl (ppm) 3. 0 2.5 2.0 1.5 1.0 0.5 9.0 8.0 7.5 6.0 5, 5 5.0 4.5 4.0 3.5

6-(4-methoxyphenyl)-1-(*m*-tolyl)imidazo[5,1,2-*cd*]indolizine (17):

3-(6-(4-methoxyphenyl)imidazo[5,1,2-*cd*]indolizin-1-yl)benzonitrile (**18**):

tert-butyl(4-(6-(4-methoxyphenyl)imidazo[5,1,2-cd]indolizin-1-yl)phenyl)carbamate

1-(4-(benzyloxy)phenyl)-6-(4-methoxyphenyl)imidazo[5,1,2-cd]indolizine (20)

6-(4-methoxyphenyl)-1-(thiophen-2-yl)imidazo[5,1,2-cd]indolizine (21)

6-(4-methoxyphenyl)imidazo[5,1,2-cd]indolizine (22)

6-(4-methoxyphenyl)-5-methyl-1-phenylimidazo[5,1,2-*cd*]indolizine (23):

5-fluoro-6-(4-methoxyphenyl)-1-phenylimidazo[5,1,2-*cd*]indolizine (24):

5-chloro-6-(4-methoxyphenyl)-1-phenylimidazo[5,1,2-*cd*]indolizine (25):

6-(4-methoxyphenyl)-1-phenylimidazo[5,1,2-*cd*]indolizine-5-carbonitrile (26):

fl (ppm)

210 200

4-chloro-6-(4-methoxyphenyl)-1-phenylimidazo[5,1,2-*cd*]indolizine (28):

5-bromo-3-iodo-6-(4-methoxyphenyl)-1-phenylimidazo[5,1,2-*cd*]indolizine (29):

1-(4-methoxyphenyl)-3-phenyl-2a1,4,5-triazacyclopenta[*cd*]indene (**30**):

6-(4-methoxyphenyl)-8-methylnaphtho[1',2':4,5]imidazo[1,2-*a*]pyridine (**31**) $\begin{array}{c} 7.69 \\ 7.57 \\ 7.57 \\ 7.53 \\ 7.53 \\ 7.46 \\ 7.33 \\ 7.33 \\ 7.33 \\ 7.33 \\ 7.05 \\ 7.06 \\ 7.06 \\ 7.06 \\ 7.06 \\ 7.06 \\ 7.06 \\ 7.06 \\ 6.63 \\ 6.$ -3.03 -1.3×10¹² 3.93 17.7 -1.2×10¹² -1.1×10¹² -6.63 4. 0×10¹¹ -1.0×10^{12} -9.0×10¹¹ -3. 0×10¹¹ -8.0×10¹¹ -2. 0×10¹¹ -7.0×10¹¹ -1. 0×10¹¹ -6.0×10¹¹ €66.0°° 7.8 7.6 f1 (ppm) 8 0.0 -5.0×10¹¹ 00 00 01 01 7.0 7.4 8.0 7. 2 6.6 8.8 8.6 8.4 8.2 6.8 -4. 0×10¹¹ -3. 0×10¹¹ -2.0×10¹¹ -1.0×10^{11} -0. 0 3.00-1 1.00 1.01 1.01 1.02 2.00 1.00 1.00 -0.99-00 -1.0×10¹¹ 3 12.0 11.5 11.0 10.5 10.0 9.5 8.5 8.0 7.5 6.5 (fl (ppm) 6.0 4.5 3. 5 3. 0 2.5 2.0 1.5 1.0 0.5 9.0 7.0 5, 5 5.0 4.0

1,6,7-triphenylimidazo[5,1,2-*cd*]indolizine (**33**):

7-methyl-1,6-diphenylimidazo[5,1,2-*cd*]indolizine (**34**)

6-(4-(pentyloxy)phenyl)-1-phenylimidazo[5,1,2-cd]indolizine (35):

6-([1,1'-biphenyl]-4-yl)-1-phenylimidazo[5,1,2-*cd*]indolizine (**36**):

6-(2-methoxyphenyl)-1-phenylimidazo[5,1,2-*cd*]indolizine (**39**):

6-(3-methoxyphenyl)-1-phenylimidazo[5,1,2-*cd*]indolizine (40):

5-(4-(trifluoromethyl)phenyl)naphtho[1',2':4,5]imidazo[1,2-*a*]pyridine (**41**):

GWJ-4CL-QUE. 2. 1. 1r $\begin{array}{c} 147.57\\ 141.04\\ 133.77\\ 133.57\\ 133.57\\ 133.57\\ 133.57\\ 133.61\\ 133.61\\ 123.61\\ 127.95\\ 126.85\\ 127.09\\ 126.85\\ 127.09\\$ -7.0×10¹⁰ -6.5×10¹⁰ ~124.51 ~123.91 ~123.47 27.95 127.09⁻ 126.85 126.80 126.31 V133.77 133.57 131.80 28.68 -130.61-6.0×10¹⁰ -5.5×10¹⁰ -1. 5×10 -5.0×10¹⁰ -1. 0×10¹⁰ 4.5×10^{10} -4.0×10¹⁰ -5. 0×10⁹ -3.5×10¹⁰ -3.0×10^{10} -0, 0 134 133 132 131 130 129 fl (ppm) 128 127 126 125 123 -2.5×10^{10} 24 -2.0×10¹⁰ -1.5×10¹⁰ -1.0×10^{10} -5.0×10⁹ -0.0 -5.0×10^{9} 10 0 210 200 190 170 160 150 140 130 120 100 90 80 70 60 50 40 30 20 180 110 fl (ppm)

5-(4-chlorophenyl)naphtho[1',2':4,5]imidazo[1,2-*a*]pyridine (**42**):

S78

8-(4-methoxyphenyl)-7-phenylbenzo[4,5]imidazo[1,2-*a*]pyridine (44):

7-(4-chlorophenyl)-8-(4-methoxyphenyl)benzo[4,5]imidazo[1,2-*a*]pyridine (45):

8-(4-methoxyphenyl)-7-(p-tolyl)benzo[4,5]imidazo[1,2-a]pyridine (46):

8-(4-methoxyphenyl)-7-(4-(trifluoromethyl)phenyl)benzo[4,5]imidazo[1,2-*a*]pyridine (47):

 $\label{eq:constraint} 7-(2-bromo-5-chlorophenyl)-8-(4-methoxyphenyl) \\ benzo[4,5]imidazo[1,2-a]pyridine \\ benzo[4,5]imi$

(48):

8-(4-methoxyphenyl)-7-(thiophen-2-yl)benzo[4,5]imidazo[1,2-*a*]pyridine (49):

2,6-di-*tert*-butyl-4-((2-phenylimidazo[1,2-*a*]pyridin-3-yl)methylene)cyclohexa-2,5dien-1-one (**50**):

