Supporting Information

Construction of "environmental-friendly" CuB_x@PU self-supporting

electrode toward efficient seawater electrolysis

Yiran Zhang^a, Chengyu Fu^a, Shuo Weng^a, Haiyang Lv^a, Peng Li^a, Shengwei Deng^b,

Weiju Hao^a*

^aUniversity of Shanghai for Science and Technology, Shanghai 200093, P. R. China.

^bCollege of Chemical Engineering, Zhejiang University of Technology, Hangzhou,

Zhejiang 310014, P. R. China

*Corresponding author.

E-mail address: wjhao@usst.edu.cn

Figure S1. (a) Cutaway view of electrode holder; (b) LSV curves of bare Ti sheet.

Figure S2. SEM images of bare PU substrate.

Figure S3. SEM images of CuB_x on PU substrate with different EP time: (a1, a2, a3) $CuB_x@PU - 30min;$ (b1, b2, b3) $CuB_x@PU - 60min;$ (c1, c2, c3) $CuB_x@PU - 90min.$

Figure S4. Loading amount of CuB_x on PU substrate with different EP time.

Figure S5. LSV curves of $CuB_x@PU$ electrode with different EP time during (a) HER process and (b) OER process.

Figure S6. High-resolution XPS spectrum for $CuB_x@PU$ electrode of (a) Cu 2p, (b) B 1s and (c) O 1s; XPS survey spectra of (d) $CuB_x@PU$.

Figure S7. FT-IR spectrum of CuB_x@PU.

Figure S8. Raman spectrum of $CuB_x@PU$ under 532 nm excitation.

Figure S9. Contact angle measurements of (a) bare PU and (b) $CuB_x@PU$ electrodes.

Figure S10. Comparison of LSV before and after 80% iR correction (a) HER process and (b) OER process.

Figure S11. LSV curves of $CuB_x@PU$ electrode in real seawater (0.5 M NaCl) during

(a) HER process and (b) OER process.

Figure S12. CV curves within a non-faradaic reaction region of 0.47 V~0.57 V verses RHE at different scan rates toward HER for (a) $CuB_x@PU$ (b) $CuB_x@NF$.

Figure S13. Chronopotentiometric measurement of HER at 70 mV. Inset: LSV curves of $CuB_x@PU$ before and after HER cycles

Figure S14. SEM images of (a1, a2) post-HER.

Figure S15. CV curves within a non-faradaic reaction region of 0.65 V~0.77 V verses RHE at different scan rates toward OER for (a) $CuB_x@PU$ and (b) $CuB_x@NF$.

Figure S16. Chronopotentiometric measurement of OER at 136 mV. Inset: LSV curves of $CuB_x@PU$ before and after OER cycles.

Figure S17. SEM images of (a1, a2) post-OER samples.

Figure S18. Chronopotentiometric measurement of the overall water splitting at the constant potential of 1.45 V. Inset: LSV curves of $CuB_x@PU$ before and after overall water splitting.

Figure S19. Photographs of H_2 and O_2 collected per five minutes at the current density of 100 mA cm⁻².

Figure S20. XPS survey spectra of (a) post-HER and (b) post-OER samples.

Figure S21. (a, b) Quality of $CuB_x@PU$ with different working time at high current density ($j > 1 \text{ A cm}^{-2}$) in the solution of 1M KOH and 1M KOH + 0.5 M NaCl; (c, d) state of 1M KOH and 1M KOH + 0.5 M NaCl electrolytes at high current density ($j > 1 \text{ A cm}^{-2}$).

Figure S22. SEM images of (a,b) CuB-Mo@PU; (c,d) CuB-P@PU; (e,f) CuB-Ni@PU

and (g,h) CuB-Co@PU.

Figure S23. LSV curves of $CuB_x@PU$ electrode doped with other (non)mentals of Co/Mo/P/Ni during (a) HER process and (b) OER process.

Supporting Tables

Catalysts	Cu	P	Co/Mo/Ni/P	Atomic Ratio
Catalysis	Cu	D		(Cu:B)
CuB _x @PU	3.23	29.80		1:9.02
post-HER	1.68	15.17		1:9.09
post-OER	1.88	20.32		1:11.1
Co-doped CuB _x @PU	1.55	24.57	5.59	1:16.7
Mo-doped CuB _x @PU	0.5	10.10	0.22	1:25.0
Ni-doped CuB _x @PU	1.98	37.86	5.22	1:20.1
P-doped CuB _x @PU	1.72	24.79	0.06	1:25.2

Table S1. ICP-AES analysis results of CuBx-based catalytic electrodes.

		j ŋ		Loading	D 4
Catalysts	Electrolyte	(mA cm ⁻²)	(mV)	Amount	Reference
	1.0 M				
CuB _x @PU	KOH+0.5 M	10	70	5.75 mg cm ⁻²	This work
	NaCl				
Ni-Mo/Cu	1.0 M KOH	20	152	2.17 mg cm ⁻²	1
Cu plate NiFeLDH	1.0 M KOH	10	116	2.2 mg cm ⁻²	2
Mo-/Co-NC/Cu	1.0 M KOH	100	71	N/A	3
Co-N-C/Cu	1.0 M KOH	100	155	N/A	3
Mo-N-C/Cu	1.0 M KOH	100	183	N/A	3
N-C/Cu	1.0 M KOH	100	21	N/A	4
RuCu NSs/C	1.0 M KOH	10	20	N/A	4
NiCo ₂ O ₄ /Cu _x O/Cu	1.0 M KOH	10	92	2.9 mg cm ⁻²	5
CuNi@NiFeCu	1.0 M KOH	10	42	1.95 mg cm ⁻²	6
CuO _x @Co ₃ O ₄ NRs/CF	1.0 M KOH	50	242	N/A	7
Pt-Cu@Cu _x O NWs	1.0 M KOH	10	72	18.9 mg cm ⁻²	8
Cu-Ni ₃ S ₂ /Co ₃ S ₄	1.0 M KOH	10	79	N/A	9
Cu@CoS _x /CF	1.0 M KOH	10	134	3.9 mg cm ⁻²	10
Cu ₃ N@CoNiCHs/CF	1.0 M KOH	10	182	6.23 mg cm ⁻²	11
CuFe ₂ O ₄	1.0 M KOH	10	103	1.66 mg cm ⁻²	12
Cu-Foam@CuCoNC-	1.0 M KOH	10	59.2	N/A	13
500					
Cu-CoP NAs/CP	1.0 M PBS	10	81	3.95 mg cm ⁻²	14

Table S2. Comparison of HER performance of $CuB_x@PU$ catalyst with recentlyreported Cu-based catalysts under alkaline conditions.

CoNiMo ₄ -21/CuOx/CF	1.0 M KOF	ł	10	46		N/A	15
Fe-Ni ₂ P@PC/Cu _x S	1.0 M KOF	ł	10		112.9	2.2 mg cm ⁻²	16
Cu-(a-NiSe _x /c-	1 0 M KOF	ł	10		156.9	$1.5 \mathrm{mg}\mathrm{cm}^{-2}$	17
NiSe ₂)/TiO ₂	1.0 10 1001	1	10		150.9		
Co-Cu-W	1.0 M KOH	ł	10	100)	1.25 mg cm ⁻²	18
NiFeO _x @NiCu	1.0 M KOF	ł	10	66		0.4 mg cm ⁻²	19
	1.0	М					
1D-Cu@Co-CoO/Rh	KOH+0.5	М	10	137	7.7	N/A	20
	NaCl						
	1.0	М					
Cu-f	KOH+0.5	М	10	23.	6	N/A	21
Cu-i	NaCl						

Catalant	Flootnolyto		j	η	Loading	Refer
Catalyst	Electrolyte		(mA cm ⁻²)	(mV)	Amount	ences
CuB _x @PU	1.0NKOH+0.5NNaCl	Л	10	136	5.75 mg cm ⁻²	This work
Ni-Mo/Cu	1.0 M KOH		20	280	2.17 mg cm ⁻²	1
Cu plate NiFeLDH	1.0 M KOH		10	199	2.2 mg cm ⁻²	2
Mo-/Co-NC/Cu	1.0 M KOH		100	318	N/A	3
RuCu NSs/C	1.0 M KOH		10	234	N/A	4
NiCo ₂ O ₄ /Cu _x O/Cu	1.0 M KOH		10	213	2.9 mg cm ⁻²	5
CuNi@NiFeCu	1.0 M KOH		50	285	1.95 mg cm ⁻²	6
CuO _x @Co ₃ O ₄ NRs/CF	1.0 M KOH		50	240	N/A	7
Pt-Cu@Cu _x O NWs	1.0 M KOH		10	250	18.9 mg cm ⁻²	8
Cu-Ni ₃ S ₂ /Co ₃ S ₄	1.0 M KOH		50	160	N/A	9
Cu@CoS _x /CF	1.0 M KOH		10	160	3.9 mg cm ⁻²	10
Cu ₃ N@CoNiCHs/CF	1.0 M KOH		10	155	6.23 mg cm ⁻²	11
CuFe ₂ O ₄	1.0 M KOH		10	298	1.66 mg cm ⁻²	12
Cu-Foam@CuCoNC- 500	1.0 M KOH		10	245	N/A	13
Cu-CoP NAs/CP	1.0 M PBS (P <i>BS</i>)		10	411	3.95 mg cm ⁻²	14
CoNiMo ₄ -	1.0 M KOH		10	221	N/A	15
21/CuOx/CF			- •		- ·· 4 4	
Fe-Ni ₂ P@PC/Cu _x S	1.0 M KOH		50	330	2.2 mg cm ⁻²	16

Table S3. Comparison of OER performance of $CuB_x@PU$ catalyst with recentlyreported Cu-based catalysts under alkaline conditions.

Cu-(a-NiSe _x /c-	1.0 M KOH		10	339	$1.5 \mathrm{mg}\mathrm{cm}^{-2}$	17
NiSe ₂)/TiO ₂	1.0 W KOII		10	557		
Co-Cu-W	1.0 M KOH		10	300	1.25 mg cm ⁻²	18
NiFeO _x @NiCu	1.0 M KOH		10	300	0.4 mg cm ⁻²	19
	1.0	М				
1D-Cu@Co-CoO/Rh	KOH+0.5	М	10	260	N/A	20
	NaCl					

	Electrolyte		j	Potential	Loading	D.4
Catalysts			(mA cm ⁻²)	(V)	Amount	Reference
	1.0	М				
CuB _x @PU	KOH+0.5	М	10	1.45	5.75 mg cm ⁻²	This work
	NaCl					
Ni-Mo/Cu	1.0 M KOH		20	1.69	2.17 mg cm ⁻²	1
Cu plate NiFeLDH	1.0 M KOH		10	1.54	2.2 mg cm ⁻²	2
Mo-/Co-NC/Cu	1.0 M KOH		100	1.62	N/A	3
RuCu NSs/C	1.0 M KOH		10	1.49	N/A	4
NiCo ₂ O ₄ /Cu _x O/Cu	1.0 M KOH		10	1.61	2.9 mg cm ⁻²	5
CuNi@NiFeCu	1.0 M KOH		10	1.51	1.95 mg cm ⁻²	6
CuO _x @Co ₃ O ₄ NRs/CF	1.0 M KOH		10	1.60	N/A	7
Pt-Cu@Cu _x O NWs	1.0 M KOH		10	1.56	18.9 mg cm ⁻²	1
Cu-Ni ₃ S ₂ /Co ₃ S ₄	1.0 M KOH		10	1.49	N/A	9
Cu@CoS _x /CF	1.0 M KOH		10	1.50	3.9 mg cm ⁻²	10
Cu ₃ N@CoNiCHs/CF	1.0 M KOH		10	1.58	6.23 mg cm ⁻²	11
CuFe ₂ O ₄	1.0 M KOH		10	1.62	1.66 mg cm ⁻²	12
Cu-Foam@CuCoNC-			10	1.50	NT/ A	13
500	1.0 M KOH		10	1.52	N/A	
	1.0 M					
Cu-CoP NAs/CP	PBS (Phosphat					14
	e Buf	fer	10	1.72	3.95 mg cm ⁻²	17
	Solution)					
CoNiMo4-	1.0 M KOH		50	1.53	N/A	15

Table S4. Comparison of overall-water splitting performance of $CuB_x@PU$ catalystwith recently reported Cu-based catalysts under alkaline conditions.

21/CuOx/CF

Fe-Ni ₂ P@PC/Cu _x S	1.0 M KOH		10	1.62	2.2 mg cm ⁻²	16
Cu-(a-NiSe _x /c- NiSe ₂)/TiO ₂	1.0 M KOH		10	1.62	1.5 mg cm ⁻²	17
Co-Cu-W	1.0 M KOH		10	1.80	1.25 mg cm ⁻²	18
NiFeO _x @NiCu	1.0 M KOH		10	1.67	0.4 mg cm ⁻²	19
1D-Cu@Co-CoO/Rh	1.0 KOH+0.5 NaCl	M M	10	1.60	N/A	20
NiP ₂ -FeP ₂ / Cu-NW / Cu-f	1.0 KOH+0.5 NaCl	M M	10	1.40	N/A	21
Ru/Cu-doped RuO ₂	1.0 M KOH		10	1.47	N/A	22

References

- 1. S. Zhao, J. Huang, Y. Liu, J. Shen, H. Wang, X. Yang, Y. Zhu and C. Li, *J Mater Chem A*, 2017, **5**, 4207-4214.
- L. Yu, H. Zhou, J. Sun, F. Qin, F. Yu, J. Bao, Y. Yu, S. Chen and Z. Ren, *Energ Environ Sci*, 2017, 10, 1820-1827.
- H. Shi, T. Dai, W. Wan, Z. Wen, X. Lang and Q. Jiang, *Adv Funct Mater*, 2021, 31, 2102285.
- Q. Yao, B. Huang, N. Zhang, M. Sun, Q. Shao and X. Huang, *Angew Chem Int Edit*, 2019, 58, 13983-13988.
- Q. Ouyang, Z. Lei, Q. Li, M. Li and C. Yang, *J Mater Chem A*, 2021, 9, 14466-14476.
- 6. D. Cao, H. Xu and D. Cheng, *Appl Catal B-Environ*, 2021, **298**, 120600.
- Q. Zhou, T. Li, J. Qian, Y. Hu, F. Guo and Y. Zheng, *J Mater Chem A*, 2018, 6, 14431-14439.
- T. Duy Thanh, L. Huu Tuan, D. Thi Luu Luyen, N. H. Kim and J. H. Lee, *Nano Energy*, 2019, **59**, 216-228.
- H. Su, S. Song, S. Li, Y. Gao, L. Ge, W. Song, T. Ma and J. Liu, *Appl Catal B-Environ*, 2021, 293, 120225.
- Y. Liu, Q. Li, R. Si, G. Li, W. Li, D. Liu, D. Wang, L. Sun, Y. Zhang and X. Zou, *Adv Mater*, 2017, **29**, 1606200.
- 11. S. Liu, M. Gao, S. Liu and J. Luo, *Appl Catal B-Environ*, 2021, **292**, 120148.
- 12. V. Sharma, U. N. Pan, T. I. Singh, A. K. Das, N. H. Kim and J. H. Lee, Chem

Eng J, 2021, **415**, 127779.

- H. Sun, Q. Li, Y. Lian, C. Zhang, P. Qi, Q. Mu, H. Jin, B. Zhang, M. Chen, Z. Deng and Y. Peng, *Appl Catal B-Environ*, 2020, 263, 118139.
- L. Yan, B. Zhang, J. Zhu, Y. Li, P. Tsiakaras and P. K. Shen, *Appl Catal B-Environ*, 2020, 265, 118555.
- M. Gu, X. Deng, M. Lin, H. Wang, A. Gao, X. Huang and X. Zhang, *Adv Energy Mater*, 2021, **11**, 2102361.
- D. T. Tran, H. T. Le, V. H. Hoa, N. H. Kim and J. H. Lee, *Nano Energy*, 2021,
 84, 105861.
- K. R. Park, D. T. Tran, T. T. Nguyen, N. H. Kim and J. H. Lee, *Chem Eng J*, 2021, 422, 130048.
- D. Gao, R. Liu, J. Biskupek, U. Kaiser, Y. Song and C. Streb, *Angew Chem Int Edit*, 2019, **58**, 4644-4648.
- Y. Zhou, Z. Wang, Z. Pan, L. Liu, J. Xi, X. Luo and Y. Shen, *Adv Mater*, 2019, 31, 1806769.
- 20. T. Phan Khanh Linh, T. Duy Thanh, D. Malhotra, S. Prabhakaran, D. H. Kim, N.
 H. Kim and J. H. Lee, *Small*, 2021, 17, 2103826.
- 21. A. Kumar, V. Q. Bui, J. Lee, A. R. Jadhav, Y. Hwang, M. G. Kim, Y. Kawazoe and H. Lee, *ACS Energy Lett*, 2021, **6**, 354-363.
- K. Yang, P. Xu, Z. Lin, Y. Yang, P. Jiang, C. Wang, S. Liu, S. Gong, L. Hu and Q. Chen, *Small*, 2018, 14, 1803009.