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1. Characterization

The X-ray diffraction (XRD) patterns of the catalysts were recorded on a Rigaku B/Max-RB X-ray 

diffractometer with nickel-filtrated Cu Kα radiation, and operating in a 2θ range of 10-70° at scan 

step of 0.017°.A T.J.A. ICP-9000 type instrument was employed to detect the Zn contents of as-

prepared catalysts by inductively coupled plasma optical emission spectrometer (ICP-OES). X-ray 

photoelectron spectroscopy (XPS) was conducted with a VG Scientific ESCALAB210-XPS 

photoelectron spectrometer with an Al Kα X-ray source.The XAFS spectra were obtained at 1W1B 

station in BSRF (Beijing Synchrotron Radiation Facility, P. R. China) operated at 2.5 GeV with a 

maximum current of 250 mA.XAS measurements at the Co K-edge were performed in fluorescence 

mode using a Lytle detector.All the single atom catalysts were characterized by high-angle annular 

dark-field scanning transmission electron microscopy (HAADF-STEM). Atomic resolution HAADF-

STEM images were obtained by using a Titan 80-300 scanning/transmission electron microscope 

operated at 300 kV, equipped with a probe spherical aberration corrector. The surface area and porous 

properties of the samples were determined by nitrogen adsorption-desorption experiment using V-

Sorb 2800P volumetric adsorption equipment(Jinaipu, China).

2. Calculation details 

DFT calculations were carried out using the “Vienna ab initio simulation package” (VASP5.3)1The 

Perdew−Burke−Ernzerhof (PBE) exchange-correlation functional was used within the spin-polarized 

generalized gradient approximation (GGA).2A plane-wave basis set was employed within the 

framework of the projector augmented wave (PAW) method.3 In order to get accurate results, the 

cutoff was set to 450 eV. A Gaussian smearing was used with a smearing width of 0.2 eV. Geometry 

relaxations were carried out until the residual forces on each ion were smaller than 0.02 eV/Å.

The Brillouin zone was sampled using a Monkhorst-pack 3×3×1 k-point grid for ZnN4. The two-

dimensional system of nitrogen-doped carbon was modeled with a 6×6 supercell consisted of 66 

carbon sites. Two neighboring carbon atoms were removed to anchor a Zn atom, and four of carbon 

atoms were replaced by N atom, forming the Zn-N4configuration, Fig. S1 (a). A Zn26nanocluster 

structure was built to simulate Zn nanoparticles Fig. S1 (b). The stability of adsorbed species can be 

described by the differential adsorption energy ∆E, which is defined as

∆Ead = E(surface+A*) – E(surface) - EA



where E(surface+A*) is the total energy for the adsorbed species adsorbed on the catalysts surfaces, 

E(surface) refers to the catalysts surfaces, and EA is the energy for adsorbed species. The ∆Ead was 

obtained from the ground state calculations. With this definition, a negative value indicates an 

exothermic adsorption. 

3. Calculation of the EB conversion, acetophenone selectivity and TOF 

The conversion of hydrocarbons was calculated by the following equations:

𝐶𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 = (1 -
𝑚𝑜𝑙𝑒 𝑜𝑓 𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒 𝑎𝑓𝑡𝑒𝑟 𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛

𝑚𝑜𝑙𝑒 𝑜𝑓 𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒 𝑏𝑒𝑓𝑜𝑟𝑒 𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛) × 100%

The selectivity of hydrocarbons were calculated by the following equations:

𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦

=
𝑚𝑜𝑙𝑒 𝑜𝑓 𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝑝𝑟𝑜𝑑𝑢𝑐𝑡

𝑚𝑜𝑙𝑒 𝑜𝑓 𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒 𝑏𝑒𝑓𝑜𝑟𝑒 𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 ‒ 𝑚𝑜𝑙𝑒 𝑜𝑓 𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒 𝑎𝑓𝑡𝑒𝑟 𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛
× 100%

The turnover frequency (TOF) based on total Zn was calculated by the following equations:

𝑇𝑂𝐹 =
 𝑡ℎ𝑒 𝑚𝑜𝑙𝑒𝑠 𝑜𝑓 𝑐𝑜𝑛𝑣𝑒𝑟𝑡𝑒𝑑 𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒

𝑡ℎ𝑒 𝑚𝑜𝑙𝑒𝑠 𝑜𝑓 𝑎𝑐𝑡𝑖𝑣𝑒 𝑚𝑒𝑡𝑎𝑙 𝑎𝑡𝑜𝑚𝑠 × 𝑡𝑖𝑚𝑒𝑠

Fig. S1. XRD patterns of Zn-N-C-800, Zn-N-C-900, Zn-N-C-1000, Zn-N-C (g-C3N4/Glu), Zn-N-C 

(bipy/Glu).



Fig. S2. N2 adsorption–desorption isotherms of Zn-N-C-800, Zn-N-C-900, Zn-N-C-1000, Zn-N-C 

(g-C3N4/Glu), Zn-N-C (bipy/Glu).

Fig. S3. Raman patterns of Zn-N-C-900.



Fig. S4. Zn 2p spectra of Zn-N-C-900.

 
                    (a) Zn-N-C-900                   (b) Zn cluster

Fig. S5. Optimized configuration of (a) ZnN4 sites in Zn-N-C-900 and (b) Zn cluster.



Fig. S6. Plots of charge density difference of Zn-N4 sites at isosurfaces value 3.0×10−3e/Bohr3. 

(yellow is charge accumulation and blue is charge depletion)

Fig. S7. HAADF-STEM images of (a) Zn-N-C-800, (b) Zn-N-C-900 and (c) Zn-N-C-1000.

Fig. S8. Optimization of the reaction conditions for the selective oxidation of ethylbenzene reaction 

over Zn-N-C-900. (a) Effect of the TBHP amount: 30 mg of Zn-N-C-900, 3 mmol of EB, 10 h, 80 
oC, air atmosphere. (b) Effect of the reaction time: 30 mg of Zn-N-C-900, 3 mmol of EB, 70 wt % 

TBHP aqueous solution (2 equiv), 80 oC, air atmosphere. (c) Effect of the reaction temperature: 30 

mg of Zn-N-C-900, 3 mmol of EB, 70 wt % TBHP aqueous solution (2 equiv), 10 h, air atmosphere.



Fig. S9. Nitrogen adsorption-desorption isotherms of fresh Zn-N-C-900 and recycled Zn-N-C-900.

Fig. S10. TEM image (a) and HRTEM image (b) of recycled Zn-N-C-900.

Fig. S11. XRD patterns of fresh Zn-N-C-900 and recycled Zn-N-C-900.



Fig. S12. N1s (a) and Zn 2p (b) spectra of the recycled Zn-N-C-900.

        

Fig. S13. Optimized configuration of O2 (a) and TBHP (b) on Zn-N4 sites, (c) optimized configuration 

of ZnN4O.



Fig. S14. Optimized configuration of ethylbenzene on ZnN4O (a) and Zn-N4 (b) sites.

Table S1. The results of N2 adsorption–desorption measurements.

Entry Sample
BETa

(m2/g)

Pore volumeb

(cm3/g)

Pore sizec

(nm)

1 Zn-N-C-800 331 1.57 17.89

2 Zn-N-C-900 603 2.69 19.10

3 Zn-N-C-1000 376 1.96 18.15

4 NC-900 107 0.57 17.50

5 Zn-N-C (g-C3N4/Glu) 115 0.33 11.75

6 Zn-N-C (bipy/Glu) 81 0.04 7.07

aBET Surface Area, bBJH Adsorption cumulative volume, cBJH Median pore width.

Table S2.The relative concentrations of different N species based on XPS of the all samples.

Relative concentrations of different N species( area%)
Catalyst

Total N
(atom %) Pyridinic N Zn-Nx Pyrrolic N Graphitic N N-oxide

Zn-N-C-800 16.69 51.05 14.56 10.08 18.83 5.47

Zn-N-C-900 9.01 25.14 15.35 8.65 35.32 15.53

Zn-N-C-1000 7.49 24.42 13.09 7.25 36.95 18.28

NC-900 7.90 19.12 - 14.15 51.83 14.89

Zn-N-C (g-C3N4/Glu) 6.94 27.35 11.20 17.88 25.90 17.66

Zn-N-C (bipy/Glu) 3.38 33.01 8.06 28.55 26.48 3.89



Table S3. Structural parameters extracted from the Zn K-edge EXAFS fitting. (S0
2=0.84)

Scattering pair Bond length (Å) CN σ2 (Å) E0 shift (eV)

Zn-N(O) 1.99 0.01± 4.2 0.4± 0.007 0.003± 3.6

CN is the coordination number; σ2 is Debye-Waller factor (a measure of thermal and static disorder in absorber-

scatter distances); E0 is edge energy shift.

Table S4. ICP-OES analysis result for the Zn contents in Zn-N-C-900 by before and after use.

catalyst Zn contents (wt.%)

fresh Zn-N-C-900 2.27

used Zn-N-C-900 2.08

Table S5. The relative concentrations of different N species based on XPS of the fresh Zn-NC-900 

and used Zn-NC-900.

Relative concentrations of different N species (area %)
Catalyst

Total N
(atom %) Pyridinic N Zn-Nx Pyrrolic N Graphitic N N-oxide

fresh Zn-N C-900 9.01 25.14 15.35 8.65 35.32 15.53

used Zn-N C-900 8.84 28.76 14.52 5.28 32.21 21.85



Table S6.Comparison for catalytic performance of the Zn-N-C-900 with the reported catalysts in references
Entry Ethylbenzene Catalysts Oxidant Solvents T (°C) / Time(h) Con.(%)/ Sel.(%) Cycles Refs.

1 3 mmol Zn-N-C-900 (30 mg) 6 mmol TBHP 0.23 mL H2O 80 / 10 99 / 99 15 this work

2 1 mmol Pd-(4wt%)/g-C3N4 (10 mg) 4 mmol TBHP 5 mL C2H3N 80 / 24 67 / 97 5 4

3 0.1 mmol CIPC-750 0.3 mmol TBHP 2 mL C2H3N 80 / 12 58.7 / >95 3 5

4 10 mmol Co1Zn99-ZIF-800-H2 (5 mg) 2.8 mmol  TBHP 3 mL H2O 60 / 17 57 / 93.1 4 6

5 1 mmol Co-MnO@CN-700/15 (15 mg) 0.5 mL TBHP 5 mL H2O 50 / 6 >99.9 / 99.9 7 7

6 1 mmol Co–N–C-10 (15 mg) 3.5 mmol TBHP 3 mLH2O 80 / 6 93 / 100 5 8

7 120 μL Co−N−C-900/PCMK (15 mg) 490 μL TBHP 3 mL H2O 80 / 12 96 / 99 5 9

8 0.5 mmol CoTMPP-500 (5 mg) 500 μL TBHP 1 mL H2O 80 / 6 91.9 / 97.5 3 10

9 1 mmol Co−N−C−9 (15 mg) 3.5 mmol TBHP H2O 80 / 12 96.5 / 97.3 5 11

10 0.5 mmol SNC-Ca-850 (10 mg) 2 mmol TBHP 2 mL H2O 80 / 4 92.4 / 97.4 4 12

11 1 mmol GS1000 (10 mg) 1 mLTBHP 2 mL H2O 80 / 6 >99 / >99 5 13

12 0.5 mmol Fe-ISAS/CN (20 mg) 1 mL TBHP 2 mL H2O 60 / 24 99 / 99 5 14

13 0.1 mmol SACo@g-C3N4 (5 mg) 0.5 mmol PMS
10 mL

C2H3N / H2O 1 : 1
60 / 24 97.5 / 95.6 4 15

14 0.25 mmol Fe1/NC (20 mg) 1 mL TBHP 2 mL H2O 35 / 48 97 / 99 5 16

15 5 mL Co1.5Ni1.5Al1Ox (200 mg) 15 mL TBHP 10 mL Acetic acid 120 / 8 73.7 / 85.1 4 17
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