Supplementary Information

Stable Single-atom Zn Catalyst Synthesized by Ligand-stabilized Pyrolysis Strategy for Selective Oxidation of C-H Bond

Wenhui Wang,^{*a*#}Ningzhao Shang,^{*a*#*} Junmin Wang,^{*a*} XinhaoNie,^{*a*} Congcong Du,^{*b*} Xin Zhou,^{*a*} Xiang Cheng,^{*a*} Wei Gao,^{*a*} Xue Liu, ^{*a*} Jianyu Huang,^{*b*} YuqingQiao,^{*c**} ShutaoGao,^{*a**} and Chun Wang^{*a*}

^aCollege of Science, Hebei Agricultural University, Baoding 071001, China

^b Clean Nano Energy Center, State Key Laboratory of Metastable Materials Science and Technology,

Yanshan University, Qinhuangdao 066004, China

^cCollege of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China

1. Characterization

The X-ray diffraction (XRD) patterns of the catalysts were recorded on a Rigaku B/Max-RB X-ray diffractometer with nickel-filtrated Cu K α radiation, and operating in a 2 θ range of 10-70° at scan step of 0.017°.A T.J.A. ICP-9000 type instrument was employed to detect the Zn contents of asprepared catalysts by inductively coupled plasma optical emission spectrometer (ICP-OES). X-ray photoelectron spectroscopy (XPS) was conducted with a VG Scientific ESCALAB210-XPS photoelectron spectrometer with an Al K α X-ray source. The XAFS spectra were obtained at 1W1B station in BSRF (Beijing Synchrotron Radiation Facility, P. R. China) operated at 2.5 GeV with a maximum current of 250 mA.XAS measurements at the Co K-edge were performed in fluorescence mode using a Lytle detector. All the single atom catalysts were characterized by high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM). Atomic resolution HAADF-STEM images were obtained by using a Titan 80-300 scanning/transmission electron microscope operated at 300 kV, equipped with a probe spherical aberration corrector. The surface area and porous properties of the samples were determined by nitrogen adsorption-desorption experiment using V-Sorb 2800P volumetric adsorption equipment(Jinaipu, China).

2. Calculation details

DFT calculations were carried out using the "Vienna ab initio simulation package" (VASP5.3)¹The Perdew–Burke–Ernzerhof (PBE) exchange-correlation functional was used within the spin-polarized generalized gradient approximation (GGA).²A plane-wave basis set was employed within the framework of the projector augmented wave (PAW) method.³ In order to get accurate results, the cutoff was set to 450 eV. A Gaussian smearing was used with a smearing width of 0.2 eV. Geometry relaxations were carried out until the residual forces on each ion were smaller than 0.02 eV/Å.

The Brillouin zone was sampled using a Monkhorst-pack $3 \times 3 \times 1$ k-point grid for ZnN₄. The twodimensional system of nitrogen-doped carbon was modeled with a 6×6 supercell consisted of 66 carbon sites. Two neighboring carbon atoms were removed to anchor a Zn atom, and four of carbon atoms were replaced by N atom, forming the Zn-N₄configuration, Fig. S1 (a). A Zn₂₆nanocluster structure was built to simulate Zn nanoparticles Fig. S1 (b). The stability of adsorbed species can be described by the differential adsorption energy ΔE , which is defined as

$$\Delta E_{ad} = E(surface + A^*) - E(surface) - E_A$$

where $E(surface+A^*)$ is the total energy for the adsorbed species adsorbed on the catalysts surfaces, E(surface) refers to the catalysts surfaces, and E_A is the energy for adsorbed species. The ΔE_{ad} was obtained from the ground state calculations. With this definition, a negative value indicates an exothermic adsorption.

3. Calculation of the EB conversion, acetophenone selectivity and TOF

The conversion of hydrocarbons was calculated by the following equations:

 $Conversion = \left(1 - \frac{mole \ of \ substrate \ after \ reaction}{mole \ of \ substrate \ before \ reaction}\right) \times 100\%$

The selectivity of hydrocarbons were calculated by the following equations:

Selectivity

= mole of desired product mole of substrate before reaction – mole of substrate after r

The turnover frequency (TOF) based on total Zn was calculated by the following equations:

 $TOF = \frac{the \ moles \ of \ converted \ substrate}{the \ moles \ of \ active \ metal \ atoms \ \times \ times}$

Fig. S1. XRD patterns of Zn-N-C-800, Zn-N-C-900, Zn-N-C-1000, Zn-N-C (g-C₃N₄/Glu), Zn-N-C (bipy/Glu).

Fig. S2. N₂ adsorption–desorption isotherms of Zn-N-C-800, Zn-N-C-900, Zn-N-C-1000, Zn-N-C (g-C₃N₄/Glu), Zn-N-C (bipy/Glu).

Fig. S3. Raman patterns of Zn-N-C-900.

Fig. S4. Zn 2p spectra of Zn-N-C-900.

Fig. S5. Optimized configuration of (a) ZnN_4 sites in Zn-N-C-900 and (b) Zn cluster. (\bigcirc C \bigcirc N \bigcirc Zn)

Fig. S6. Plots of charge density difference of $Zn-N_4$ sites at isosurfaces value 3.0×10^{-3} e/Bohr³. (yellow is charge accumulation and blue is charge depletion)

Fig. S7. HAADF-STEM images of (a) Zn-N-C-800, (b) Zn-N-C-900 and (c) Zn-N-C-1000.

Fig. S8. Optimization of the reaction conditions for the selective oxidation of ethylbenzene reaction over Zn-N-C-900. (a) Effect of the TBHP amount: 30 mg of Zn-N-C-900, 3 mmol of EB, 10 h, 80 °C, air atmosphere. (b) Effect of the reaction time: 30 mg of Zn-N-C-900, 3 mmol of EB, 70 wt % TBHP aqueous solution (2 equiv), 80 °C, air atmosphere. (c) Effect of the reaction temperature: 30 mg of Zn-N-C-900, 3 mmol of EB, 70 wt % TBHP aqueous solution (2 equiv), 10 h, air atmosphere.

Fig. S9. Nitrogen adsorption-desorption isotherms of fresh Zn-N-C-900 and recycled Zn-N-C-900.

Fig. S10. TEM image (a) and HRTEM image (b) of recycled Zn-N-C-900.

Fig. S11. XRD patterns of fresh Zn-N-C-900 and recycled Zn-N-C-900.

Fig. S12. N1s (a) and Zn 2p (b) spectra of the recycled Zn-N-C-900.

Fig. S13. Optimized configuration of O_2 (a) and TBHP (b) on Zn-N₄ sites, (c) optimized configuration of ZnN₄O.

Fig. S14. Optimized configuration of ethylbenzene on ZnN₄O (a) and Zn-N₄ (b) sites.

E. (BET ^a Pore volume ^b		Pore size ^c	
Entry	Sample	(m ² /g)	(cm ³ /g)	(nm)	
1	Zn-N-C-800	331	1.57	17.89	
2	Zn-N-C-900	603	2.69	19.10	
3	Zn-N-C-1000	376	1.96	18.15	
4	NC-900	107	0.57	17.50	
5	Zn-N-C (g-C ₃ N ₄ /Glu)	115	0.33	11.75	
6	Zn-N-C (bipy/Glu)	81	0.04	7.07	

Table S1. The results of N_2 adsorption–desorption measurements.

^aBET Surface Area, ^bBJH Adsorption cumulative volume, ^cBJH Median pore width.

Table S2. The relative concentrations of different N species based on XPS of the all samples.

	Total N	Relative concentrations of different N species(area%)					
Catalyst	(atom %)	Pyridinic N	Zn-N _x	Pyrrolic N	Graphitic N	N-oxide	
Zn-N-C-800	16.69	51.05	14.56	10.08	18.83	5.47	
Zn-N-C-900	9.01	25.14	15.35	8.65	35.32	15.53	
Zn-N-C-1000	7.49	24.42	13.09	7.25	36.95	18.28	
NC-900	7.90	19.12	-	14.15	51.83	14.89	
Zn-N-C (g-C ₃ N ₄ /Glu)	6.94	27.35	11.20	17.88	25.90	17.66	
Zn-N-C (bipy/Glu)	3.38	33.01	8.06	28.55	26.48	3.89	

Scattering pair	attering pair Bond length (Å)		σ ² (Å)	E ₀ shift (eV)	
Zn-N(O)	1.99 ± 0.01	4.2 ± 0.4	0.007 ± 0.003	3.6	

Table S3. Structural parameters extracted from the Zn K-edge EXAFS fitting. ($S_0^2=0.84$)

CN is the coordination number; σ^2 is Debye-Waller factor (a measure of thermal and static disorder in absorberscatter distances); E_0 is edge energy shift.

Table S4. ICP-OES analysis result for the Zn contents in Zn-N-C-900 by before and after use.

catalyst	Zn contents (wt.%)			
fresh Zn-N-C-900	2.27			
used Zn-N-C-900	2.08			

Table S5. The relative concentrations of different N species based on XPS of the fresh Zn-NC-900

and used Zn-NC-900.

Catalyst	Total N	Relative concentrations of different N species (area %)					
Catalyst	(atom %)	Pyridinic N	Zn-N _x	Pyrrolic N	Graphitic N	N-oxide	
fresh Zn-N C-900	9.01	25.14	15.35	8.65	35.32	15.53	
used Zn-N C-900	8.84	28.76	14.52	5.28	32.21	21.85	

Entry	Ethylbenzene	Catalysts	Oxidant	Solvents	T (°C) / Time(h)	Con.(%)/ Sel.(%)	Cycles	Refs.
1	3 mmol	Zn-N-C-900 (30 mg)	6 mmol TBHP	0.23 mL H ₂ O	80 / 10	99 / 99	15	this work
2	1 mmol	Pd-(4wt%)/g-C ₃ N ₄ (10 mg)	4 mmol TBHP	5 mL C ₂ H ₃ N	80 / 24	67 / 97	5	4
3	0.1 mmol	CIPC-750	0.3 mmol TBHP	2 mL C ₂ H ₃ N	80 / 12	58.7 / >95	3	5
4	10 mmol	Co ₁ Zn ₉₉ -ZIF-800-H ₂ (5 mg)	2.8 mmol TBHP	3 mL H ₂ O	60 / 17	57 / 93.1	4	6
5	1 mmol	Co-MnO@CN-700/15 (15 mg)	0.5 mL TBHP	5 mL H ₂ O	50 / 6	>99.9 / 99.9	7	7
6	1 mmol	Co-N-C-10 (15 mg)	3.5 mmol TBHP	3 mLH ₂ O	80 / 6	93 / 100	5	8
7	120 μL	Co-N-C-900/PCMK (15 mg)	490 µL TBHP	3 mL H ₂ O	80 / 12	96 / 99	5	9
8	0.5 mmol	CoTMPP-500 (5 mg)	500 µL TBHP	1 mL H ₂ O	80 / 6	91.9 / 97.5	3	10
9	1 mmol	Co-N-C-9 (15 mg)	3.5 mmol TBHP	H ₂ O	80 / 12	96.5 / 97.3	5	11
10	0.5 mmol	SNC-Ca-850 (10 mg)	2 mmol TBHP	2 mL H ₂ O	80 / 4	92.4 / 97.4	4	12
11	1 mmol	GS1000 (10 mg)	1 mLTBHP	2 mL H ₂ O	80 / 6	>99 / >99	5	13
12	0.5 mmol	Fe-ISAS/CN (20 mg)	1 mL TBHP	2 mL H ₂ O	60 / 24	99 / 99	5	14
13	0.1 mmol	SACo@g-C ₃ N ₄ (5 mg)	0.5 mmol PMS	10 mL	(0.1.2.4	07.5 / 05.6		15
				C ₂ H ₃ N / H ₂ O 1 : 1	00 / 24	97.5795.0	4	10
14	0.25 mmol	Fe ₁ /NC (20 mg)	1 mL TBHP	2 mL H ₂ O	35 / 48	97 / 99	5	16
15	5 mL	Co _{1.5} Ni _{1.5} Al ₁ O _x (200 mg)	15 mL TBHP	10 mL Acetic acid	120 / 8	73.7 / 85.1	4	17

Table S6. Comparison for catalytic performance of the Zn-N-C-900 with the reported catalysts in references

Reference

- 1. K. B. John P. Perdew and Matthias Ernzerhof, Phys. Rev. Lett, 1996, 77, 3865.
- 2. P. E. Blochl, Phsy. Rev. B, 1994, 50, 17953-17979.
- 3. G. Kresse.and D. Joubert, Phsy. Rev. B, 1999, 59, 1758
- 4. S. Nilforoushan, M. Ghiaci, S. M. Hosseini, S. Laurent and R. N. Muller, New J. Chem, 2019, 49,6921-6931
- 5. Z. Wang, Y. Jiang, Y. Li, H. Huo, T. Zhao, D. Li, K. Lin and X. Xu, Chem, 2019, 25, 4175-4183.
- 6. R. Nie, J. Chen, M. Chen, Z. Qi, T.-W. Goh, T. Ma, L. Zhou, Y. Pei and W. Huang, Green Chem, 2019, 21, 1461-1466.
- K. Wang, S. Zhao, L. Ma, M. Yang, J. Qin, X. Huang, L. Gong, Y. Xiong and R. Li, Org. Chem. Front, 2019, 6, 3270-3287.
- 8. L. Zhang, S. Jie and Z. Liu, New J. Chem, 2019, 43, 7275-7281.
- 9. L. Zhang, S. Jie, N. Cheng and Z. Liu, ACS Sustain Chem. Eng, 2019, 7, 19474-19482.
- 10. Z. Y. Wu, M. X. Chen, S. Q. Chu, Y. Lin, H. W. Liang, J. Zhang and S. H. Yu, iScience, 2019, 15, 282-290.
- 11. C. Shen, S. Jie, H. Chen and Z. Liu, Front. Chem, 2019, 7, 426.
- 12. Y. Qin, H. Guo, B. Wang, J. Li, R. Gao, P. Qiu, M. Sun and L. Chen, Chem. Asian J, 2019, 14, 1535-1540.
- 13. X. Hu, Y. Liu, H. Huang, B. Huang, G. Chai and Z. Xie, Green Chem, 2020, 22, 1291-1300.
- 14. S. Wei, Y. Wang, W. Chen, Z. Li, W.-C. Cheong, Q. Zhang, Y. Gong, L. Gu, C. Chen, D. Wang, Q. Peng and Y. Li, *Chem. Sci*, 2020, **11**, 786-790.
- J. Li, S. Zhao, S.-Z. Yang, S. Wang, H. Sun, S. P. Jiang, B. Johannessen and S. Liu, *J. Mater. Chem. A*, 2021, 9, 3029-3035.
- 16. Y. Cheng, Q. Sun, L. Huang, Q. He, H. Zhang, P. Wang, Y. Zhang, S. Shi, X. Zhang, T. Gan, X. He and H. Ji, *Dalton T*, 2021, 50, 11711-11715.
- 17. D. Ji, N. Xi, G. Li, P. Dong, H. Li, H. Li, C. Li, P. Wang and Y. Zhao, Mol. Catal, 2021, 508, 111579.