Supporting Information

Ultrafast N-Arylation of Sulfoximines Enabled by Micellar

Catalysis in Water

Mingyu Song,¹ Lei Zhang,¹ Diandian Wei, Yu He, Jiajia Jia, Heng Li, and Bingxin Yuan*

Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, Henan, China 450001.

¹ Mingyu Song and Lei Zhang contributed equally to this work.

*E-mail: bxyuan@zzu.edu.cn

Table of Contents

1. General information	2
2. Preparation of a stock solution	3
3. General procedure for C-N coupling	3
4. Reaction Process monitoring the yield versus the reaction time	3
5. Synthesis of bissulfoximines	4
6. Gram-Scale synthesis of 3e and E-factor calculation	4
7. Characterization data of all products	5
8. References	.12
9. The NMR spectra of all products	.12

1. General information

All commercially available reagents are used without further purification. All precatalysts were purchased from commercial sources. Compound 1a, 1c, 1d, 1e, 1f, 1g, 1h, 1j, 1k, 1l was prepared according to reported literature procedure.¹ TPGS-750-M was synthesized accroding to Lipshutz's work.² ¹H NMR and ¹³C NMR were recorded on a 400 MHz Bruker spectrometer (400 MHz for ¹H NMR and 100 MHz for ¹³C NMR). Chemical shifts (δ) of ¹H NMR and ¹³C NMR are reported in ppm relative to TMS and the residual solvent peak were converted to the TMS scale (CDCl₃: $\delta H =$ 7.26 ppm, $\delta C = 77.16$ ppm, H₂O: δH : 1.56; DMSO-d₆: $\delta H = 2.50$ ppm, $\delta C = 39.52$ ppm, H₂O: δ H: 3.33). The coupling constants (J) are in Hertz (Hz). The used abbreviations are as follows: s (singlet), d (doublet), t (triplet), q (quartet), dd (doublet of doublets), ddd (doublet of doublet of doublets), dt (doublet of triplets), td (triplet of doublets), tt (triplet of triplets), qd (quartet of doublets), m (multiplet). The high resolution mass spectra (HRMS) data were measured on a UHPLC Q-TOF HR-MS by means of the ESI technique. The low resolution mass spectra (LRMS) data were measured on the SHIMADZU GCMS-QP 2010 SE mass spectrometer (Kyoto, Japan) by means of EI technique. The melting points of these compounds were determined by an X-4A micro-melting point apparatus (Shanghai, China).

Table S1. Surfactant screening.^a

ONH S ^{NH} + 1a	Br 2a	<i>t</i> -BuXPhos Pd G3 (0.5 mol%) <u>NaOH (1.5 equiv.)</u> 2 wt% TPGS-750-M/H ₂ O N ₂ , 80 °C, 15 min	O SEN SEN 3a
Entry		Variations from the standard condition	Yield/[%] ^b
1		DDAB	25
2		TBAB	26
3		DODAB	28
4		Tween 80	44
5		PEG-750	36
6		1 wt% TPGS-750-M	80
7		3 wt% TPGS-750-M	82

8	$2 \text{ mL } 2 \text{ wt\% } \text{TPGS-750-M/H}_2\text{O}$	87
9	0.5 mL 2 wt% TPGS-750-M/H ₂ O	75
10	Na'Obu, toluene, 4 h	65
11	DMF, 12 h	trace

[a] Reaction condition: **1a** (0.2 mmol), **2a** (0.2 mmol), *t*-BuXPhos-Pd-G3 (0.5 mol%), NaOH (1.5 equiv.), 2 wt% TPGS-750-M/H₂O (1 mL), N₂, 80 °C, 15 min. [b] Isolated yield.

2. Preparation of a stock solution

The catalyst solution was prepared by dissolving the corresponding precatalyst (2.5 mol%) in 200 μ L THF. This stock solution was used freshly or can be stored up to a few weeks under argon in a freezer). For 0.5 mol% catalyst loading, 40 μ L of this stock solution was used.

3. General procedure for C-N coupling

To an oven-dried 25 mL schlenk tube with a magnetic stir bar was added NHsulfoximine 1 (0.2 mmol), NaOH (1.5 equiv.), and TPGS-750-M (2 wt%, 1 mL) aqueous solution. Then, aryl bromide 2 (1.0 equiv.) was added to the solution. The tube was sealed with rubber septum, evacuated, and backfilled with nitrogen three times. Subsequently, 40 μ L *t*-BuXPhos-Pd-G3 (0.5 mol%, 4% THF) were added to the previous solution by syringe. Then the reaction was placed into an oil bath and stirred (1000-1500 rpm) at 80 °C for 15 min. The schlenk tube was removed from oil bath and allowed to cool to room temperature. Ethyl acetate (250 μ L) was added to the schlenk tube and stirred briefly. Stirring was halted and after separation, the organic layer was removed via pipette. An additional extraction was performed with ethyl acetate (125 μ L). The organic layes were combined, and dried with Na₂SO₄. Volatiles were removed under vacuum, and the crude residue was purified by silica gel column chromatography to give the product **3a-4k**.

4. Reaction Process monitoring the yield versus the reaction time

To three oven-dried 25 mL schlenk tubes with a magnetic stir bar were added imino(methyl)(*p*-tolyl)- λ^6 -sulfanone **1a** (0.2 mmol, 34 mg), NaOH (1.5 equiv.), and TPGS-750-M (2 wt%, 1 mL) aqueous solution. Then, 4-bromophenyl methyl sulfone

2i (0.2 mmol, 48 mg) was added to the solution. The three tubes were sealed with rubber septum, evacuated, and backfilled with nitrogen three times. Subsequently, 40 μ L *t*-BuXPhos-Pd-G3 (0.5 mol%, 4% THF) were added to the previous solution by syringe. Then the three reactions were placed into an oil bath and stirred (1000-1500 rpm) at 80 °C for 5 min, 10 min, 15 min, respectively. The three schlenk tubes were removed from oil bath and allowed to cool to room temperature. Ethyl acetate (250 μ L) was added to the three schlenk tubes and stirred briefly. Stirring was halted and after separation, the organic layer was removed via pipette. An additional extraction was performed with ethyl acetate (125 μ L). The organic layes were combined, and dried with Na₂SO₄. Volatiles were removed under vacuum, and the crude residue was purified by silica gel column chromatography to give the product **3i**.

5. Synthesis of bissulfoximines

To an oven-dried 25 mL schlenk tube with a magnetic stir bar was added imino(methyl)(*p*-tolyl)- λ^6 -sulfanone **1a** (0.4 mmol, 68 mg), NaOH (1.5 equiv.), and TPGS-750-M (2 wt%, 2 mL) queous solution. Then, 4,4'-dibromobiphenyl **2q** (0.2 mmol, 63 mg) was added to the solution. The tube was sealed with rubber septum, evacuated, and backfilled with nitrogen three times. Subsequently, 80 µL *t*-BuXPhos-Pd-G3 (0.5 mol%, 1.6 mg) was added to the previous solution by syringe. Then the reaction was placed into an oil bath and stirred (1000-1500 rpm) at 80 °C for 0.5 h. The schlenk tube was removed from oil bath and allowed to cool to room temperature. Ethyl acetate (250 µL) was added to the schlenk tube and stirred briefly. Stirring was halted and after separation, the organic layer was removed via pipette. An additional extraction was performed with ethyl acetate (125 µL). The organic layes were combined, and dried with Na₂SO₄. Volatiles were removed under vacuum, and the crude residue was purified by silica gel column chromatography to give the product **5a**.

6. Gram-Scale synthesis of 3e

To an oven-dried 100 mL schlenk tube with a magnetic stir bar was added 1.016 g imino(methyl)(*p*-tolyl)- λ^6 -sulfanone **1a** (6.0 mmol, 1.0 equiv.), 360 mg NaOH (1.5 equiv.), and TPGS-750-M (30 mL, 2 wt%) queous solution. Then, 24.0 mg *t*-BuXPhos-

Pd-G3 and 3'-bromoacetophenone **2e** (1.0 equiv.) was added to the solution. The tube was sealed with rubber septum, evacuated, and backfilled with nitrogen three times. Then the reaction was placed into an oil bath and stirred (1000-1500 rpm) at 80 °C for 6 h. The schlenk tube was removed from oil bath and allowed to cool to room temperature. Ethyl acetate (1 mL) was added to the schlenk tube and stirred briefly. Stirring was halted and after separation, the organic layer was removed via pipette. An additional extraction was performed with ethyl acetate (0.5 mL). The organic layes were combined, and dried with Na₂SO₄. Volatiles were removed under vacuum, and the crude residue was purified by silica gel column chromatography to give the product **3e** (1.5 g).

E Factor calulations:

Note: Using the density of each liquid at 25 °C, toluene = 0.867 g/mL, water = 1.00 g/mL, dichloromethane = 1.325 g/mL, ethyl acetate = 0.897 g/mL. Additionally, the using solvents of silica gel column chromatography is NOT included as we are only considering solvents from the experimental procedure.

Previous work (Harmata³): Solvents: 7 mL toluene (6 g) 10 mL Dichloromethane (13.25 g) $\frac{19.25 \text{ g waste}}{0.179 \text{ g product}} = 108 \text{ E Factor}$

Water NOT included as waste: Solvents: 1.5 mL Ethyl acetate (1.35 g)

This work:

 $\frac{1.35 \text{ g waste}}{1.5 \text{ g product}} = 0.9 \text{ E Factor}$

Water included as waste:

Solvents:

30 mL H ₂ O (30 g)	31.35 g waste					
1.5 mL Ethyl acetate (1.35 g)	1.5 g product	- = 20.9 E Factor				
Water and base included as waste: Solvents: 30 mL H ₂ O (30 g) 1.5 mL Ethyl acetate (1.35 g)	31.71 g waste					
Base:		= 21.14 E Factor				
360 mg NaOH	1.5 g product					
2 wt% TPGS-750-M/H ₂ O and base included as waste:						
Solvents:						
30 mL 2 wt% TPGS-750-M/H ₂ O (30.6	g)					
1.5 mL Ethyl acetate (1.35 g)	32.31 g waste					
Base:		= 21.54 E Factor				
360 mg NaOH	1.5 g product					

7. Characterization data of all products

methyl(naphthalen-1-ylimino)(*p*-tolyl)-λ⁶-sulfanone (3a) Light yellow oil (51 mg, 87% yield), (hexane/EA = 3:1 as eluent). ¹H NMR (400 MHz, CDCl₃) δ 8.57 – 8.50 (m, 1H), 7.90 – 7.84 (m, 2H), 7.75 (dd, J = 7.5, 2.0 Hz, 1H), 7.53 – 7.43 (m, 2H), 7.38 (d, J = 8.2 Hz, 1H), 7.29 – 7.26 (m, 2H), 7.19 – 7.14 (m, 1H), 7.08 (dd, J = 7.4, 1.1 Hz, 1H), 3.33 (s, 3H), 2.38 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 144.3, 141.8, 136.3, 134.6, 130.3, 130.2, 128.6, 127.8, 126.1, 125.9, 125.1, 124.1, 121.5, 116.6, 46.2. HRMS (ESI) calcd for C₁₈H₁₈NOS ([M+H]⁺): 296.1104, Found: 296.1108.

methyl(phenylimino)(*p*-tolyl)-λ⁶-sulfanone (3b)⁴Light yellow oil (35 mg, 80% yield), (hexane/EA = 3:1 as eluent). ¹H NMR (400 MHz, CDCl₃ δ 7.84 (d, J = 8.3 Hz, 2H), 7.31 (d, J = 8.1 Hz, 2H), 7.12 (t, J = 7.8 Hz, 2H), 7.03 – 6.98 (m, 2H), 6.86 (t, J = 7.3Hz, 1H), 3.22 (s, 3H), 2.40 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 145.2, 144.2, 136.3, 130.3, 129.0, 128.7, 123.3, 121.6, 77.4, 77.1, 76.8, 46.3, 21.6. LRMS (EI): m/z calcd for C₁₄H₁₅NOS [M]⁺, 245.09; found, 244.90.

methyl(*p*-tolyl)(*p*-tolylimino)-λ⁶-sulfanone (3c)⁴ Light yellow oil (40 mg, 78% yield), (hexane/EA = 3:1 as eluent). ¹H NMR (400 MHz, CDCl₃) δ 7.87 – 7.81 (m, 2H), 7.30 (d, *J* = 7.8 Hz, 2H), 6.91 (d, *J* = 1.3 Hz, 4H), 3.20 (s, 3H), 2.40 (s, 3H), 2.20 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 144.1, 142.4, 136.5, 130.9, 130.2, 129.6, 128.8, 123.2, 77.4, 77.1, 76.8, 46.1, 21.6, 20.7. LRMS (EI): m/z calcd for C₁₅H₁₇NOS [M]⁺, 259.10; found, 259.10.

((4-methoxyphenyl)imino)(methyl)(*p*-tolyl)-λ⁶-sulfanone (3d) White solid (45 mg, 82% yield), (hexane/EA = 3:1 as eluent); mp 82-85 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.13 – 8.06 (m, 2H), 7.56 (d, J = 8.0 Hz, 2H), 7.25 – 7.17 (m, 2H), 6.97 – 6.90 (m, 2H), 3.95 (s, 3H), 3.45 (s, 3H), 2.66 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 154.7, 144.1, 138.1, 136.4, 130.2, 128.8, 124.4, 114.3, 55.4, 45.9, 21.6. HRMS (ESI) calcd for C₁₅H₁₈NO₂S ([M+H]⁺): 276.1053, Found: 276.1055.

((3-acetylphenyl)imino)(methyl)(*p*-tolyl)-λ⁶-sulfanone (3e) Light yellow oil (49 mg, 95% yield), (hexane/EA = 3:1 as eluent). ¹H NMR (400 MHz, CDCl₃) δ 7.87 – 7.81 (m, 2H), 7.58 – 7.56 (m, 1H), 7.47 – 7.44 (m, 1H), 7.32 (d, J = 7.9 Hz, 2H), 7.20 – 7.17 (m, 2H), 3.25 (s, 3H), 2.50 (s, 3H), 2.41 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 198.4, 145.8, 144.5, 138.1, 135.9, 130.4, 129.2, 128.7, 127.7, 123.4, 121.5, 46.4, 26.8, 21.6. HRMS (ESI) calcd for C₁₆H₁₈NO₂S ([M+H]⁺): 288.1053, Found: 288.1056.

methyl((4-propionylphenyl)imino)(*p*-tolyl)-λ⁶-sulfanone (3f) Light yellow solid (49 mg, 82% yield), (hexane/EA = 3:1 as eluent); mp 90-92 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.85 – 7.79 (m, 2H), 7.76 – 7.72 (m, 2H), 7.35 – 7.29 (m, 2H), 7.03 – 6.97 (m, 2H), 3.26 (s, 3H), 2.87 (q, *J* = 7.3 Hz, 2H), 2.41 (s, 3H), 1.15 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 199.9, 150.6, 144.7, 135.7, 130.5, 130.3, 129.5, 128.6, 122.5, 46.7, 31.3, 21.6, 8.5. HRMS (ESI) calcd for C₁₇H₂₀NO₂S ([M+H]⁺): 302.1209, Found: 302.1212.

methyl(*p*-tolyl)((4-(trifluoromethoxy)phenyl)imino)-λ⁶-sulfanone (3g) Colorless oil (60 mg, 91% yield), (hexane/EA = 3:1 as eluent). ¹H NMR (400 MHz, CDCl₃) δ 7.83 (d, *J* = 8.1 Hz, 2H), 7.33 (d, *J* = 8.1 Hz, 2H), 7.00 – 6.92 (m, 4H), 3.22 (s, 3H), 2.42 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 144.5, 144.1, 143.7 (q, J = 2.0 Hz), 136.0, 130.4, 128.7, 124.0, 121.8, 120.7 (q, J = 254.5 Hz), 46.4, 21.6. HRMS (ESI) calcd for $C_{15}H_{15}F_{3}NO_{2}S$ ([M+H]⁺): 330.0770, Found: 330.0770.

methyl(*p***-tolyl)((4-(trifluoromethyl)phenyl)imino)**-λ⁶-sulfanone (3h)¹White solid (53 mg, 85% yield), (hexane/EA = 3:1 as eluent); mp 39-44 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.85 – 7.79 (m, 2H), 7.33 (dd, J = 8.4, 4.4 Hz, 4H), 7.04 (d, J = 8.4 Hz, 2H), 3.25 (s, 3H), 2.41 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 149.0, 144.7, 135.7, 130.5, 128.6, 126.3 (2C, q, J = 3.8 Hz), 124.8 (q, J = 269.7 Hz), 123.2 (q, J = 32.2 Hz), 122.9, 46.6, 21.6. LRMS (EI): m/z calcd for C₁₅H₁₄F₃NOS [M]⁺, 313.07; found, 313.05.

methyl((4-(methylsulfonyl)phenyl)imino)(*p*-tolyl)-λ⁶-sulfanone (3i) White solid (62 mg, 96% yield), (EA as eluent); mp 138-144 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.82 – 7.78 (m, 2H), 7.67 – 7.61 (m, 2H), 7.37 – 7.31 (m, 2H), 7.10 – 7.04 (m, 2H), 3.27 (s, 3H), 2.97 (s, 3H), 2.43 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 151.4, 145.1, 135.3, 132.2, 130.6, 128.7, 128.6, 123.0, 46.8, 44.8, 21.7. HRMS (ESI) calcd for $C_{15}H_{18}NO_3S_2$ ([M+H]⁺): 324.0723, Found: 324.0724.

methyl((4-nitrophenyl)imino)(*p*-tolyl)-λ⁶-sulfanone (**3**j)⁵ Light yellow solid (46 mg, 81% yield), (hexane/EA = 3:1 as eluent); mp 112-114 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.01 – 7.96 (m, 2H), 7.84 – 7.78 (m, 2H), 7.35 (d, J = 7.6 Hz, 2H), 7.02 – 6.96 (m, 2H), 3.29 (s, 3H), 2.43 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 152.9, 145.2, 141.7, 135.1, 130.7, 128.5, 125.2, 122.5, 46.8, 21.7. LRMS (EI): m/z calcd for C₁₄H₁₄N₂O₃S [M]⁺, 290.07, found, 290.10.

methyl(naphthalen-2-ylimino)(*p*-tolyl)-λ⁶-sulfanone (3k) Light brown solid (49 mg, 83% yield), (hexane/EA = 3:1 as eluent); mp 85-89 °C. ¹HNMR (400 MHz, CDCl₃) δ 7.91 – 7.85 (m, 2H), 7.67 (d, J = 8.2 Hz, 1H), 7.63 (d, J = 8.8 Hz, 1H), 7.59 (d, J = 8.4 Hz, 1H), 7.38 (d, J = 2.2 Hz, 1H), 7.36 – 7.29 (m, 2H), 7.29 – 7.23 (m, 3H), 3.28 (s, 3H), 2.38 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 144.3, 143.2, 136.1, 134.5, 130.3, 129.5, 128.8, 128.7, 127.5, 126.9, 125.9, 124.9, 123.7, 118.6, 46.4, 21.6. HRMS (ESI) calcd for C₁₈H₁₈NOS ([M+H]⁺): 296.1104, Found: 296.1108.

methyl(pyridin-2-ylimino)(*p*-tolyl)-λ⁶-sulfanone (3l) Light yellow oil (45 mg, 92% yield), (hexane/EA = 3:1 as eluent). ¹H NMR (400 MHz, CDCl₃) δ 8.09 (ddd, J = 5.0, 2.0, 0.9 Hz, 1H), 7.93 – 7.86 (m, 2H), 7.46 (ddd, J = 8.2, 7.2, 2.0 Hz, 1H), 7.36 – 7.30 (m, 2H), 6.85 (dt, J = 8.2, 1.0 Hz, 1H), 6.72 (ddd, J = 7.3, 5.0, 1.1 Hz, 1H), 3.35 (s, 3H), 2.42 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 159.1, 148.0, 144.0, 137.7, 137.2, 130.2, 128.0, 116.8, 116.2, 45.8, 21.6. HRMS (ESI) calcd for C₁₃H₁₅N₂OS ([M+H]⁺): 247.0900, Found: 247.0903.

methyl(quinolin-2-ylimino)(*p*-tolyl)-λ⁶-sulfanone (3m) White solid (24 mg, 55% yield), (hexane/EA = 3:1 as eluent); mp 102-105 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.00 – 7.94 (m, 2H), 7.90 (dd, J = 8.8, 0.8 Hz, 1H), 7.69 (dd, J = 8.4, 1.1 Hz, 1H), 7.62 (dd, J = 8.0, 1.5 Hz, 1H), 7.50 (ddd, J = 8.4, 6.9, 1.5 Hz, 1H), 7.34 (d, J = 7.8 Hz, 2H), 7.30 – 7.26 (m, 1H), 7.04 (d, J = 8.7 Hz, 1H), 3.49 (s, 3H), 2.42 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 158.3, 147.5, 144.1, 137.6, 137.3, 130.1, 129.0, 127.9, 127.7, 127.2, 124.6, 123.6, 118.3, 45.5, 21.6. HRMS (ESI) calcd for C₁₇H₁₇N₂OS ([M+H]⁺): 297.1056, Found: 297.1056.

(benzo[*b*]thiophen-2-ylimino)(methyl)(*p*-tolyl)- λ^6 -sulfanone (3n) Colorless oil (49 mg, 82% yield), (hexane/EA = 4:1 as eluent). ¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, *J* = 7.4 Hz, 1H), 7.86 (d, *J* = 8.3 Hz, 2H), 7.73 (d, *J* = 7.9 Hz, 1H), 7.39 (ddd, *J* = 8.1, 7.1, 1.2 Hz, 1H), 7.35 – 7.32 (m, 1H), 7.30 (d, *J* = 8.0 Hz, 2H), 6.58 (s, 1H), 3.32 (s, 3H), 2.40 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 144.5, 138.2, 137.3, 137.3, 135.9, 130.3, 128.7, 124.5, 123.6, 122.7, 121.8, 107.9, 45.4, 21.6. HRMS (ESI) calcd for C₁₆H₁₆NOS₂ ([M+H]⁺): 302.0668, Found: 302.0671.

methyl((9-phenyl-9*H*-carbazol-3-yl)imino)(*p*-tolyl)-λ⁶-sulfanone (30) Light yellow solid (67 mg, 80% yield), (hexane/EA = 1:1 as eluent); mp 142-146 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.10 (d, *J* = 7.7 Hz, 2H), 7.94 – 7.90 (m, 2H), 7.39 (s, 1H), 7.36 (dt, *J* = 6.5, 1.3 Hz, 2H), 7.34 (d, *J* = 1.2 Hz, 1H), 7.31 (s, 1H), 7.30 – 7.28 (m, 1H), 7.27 (d, *J* = 2.2 Hz, 1H), 7.26 – 7.24 (m, 1H), 7.23 (t, *J* = 1.0 Hz, 1H), 7.22 – 7.18 (m, 2H), 7.18 (d, *J* = 2.1 Hz, 1H), 3.28 (s, 3H), 2.45 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 144.7, 144.5, 141.2, 136.3, 131.1, 130.5, 128.7, 127.9, 125.8, 124.2, 123.1, 120.2, 119.6, 109.9, 46.6, 21.7. HRMS (ESI) calcd for C₂₆H₂₃N₂OS ([M+H]⁺): 411.1526, Found: 411.1526.

methyl((9-oxo-9*H*-fluoren-2-yl)imino)(*p*-tolyl)-λ⁶-sulfanone (3**p**) Orange solid (60 mg, 86% yield), (hexane/EA = 2:1 as eluent); mp 77-81 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.86 – 7.79 (m, 2H), 7.53 (d, *J* = 7.3 Hz, 1H), 7.37 (td, *J* = 7.4, 1.2 Hz, 1H), 7.32 (d, *J* = 7.4 Hz, 3H), 7.27 (d, *J* = 2.1 Hz, 1H), 7.23 (d, *J* = 7.9 Hz, 1H), 7.14 (td, *J* = 7.4, 1.2 Hz, 1H), 7.09 (dd, *J* = 8.0, 2.1 Hz, 1H), 3.25 (s, 3H), 2.39 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 194.2, 146.9, 145.1, 144.6, 137.5, 135.8, 135.4, 134.7, 134.4, 130.4, 128.7, 128.6, 127.8, 124.2, 121.0, 119.5, 119.5, 46.4, 21.6. HRMS (ESI) calcd for C₂₁H₁₈NO₂S ([M+H]⁺): 348.1053, Found: 348.1052.

(4-(*tert*-butyl)phenyl)(methyl)(naphthalen-1-ylimino)-λ⁶-sulfanone (4a) Brown so lid (63 mg, 93% yield), (hexane/EA = 2:1 as eluent); mp 107-112 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.58 – 8.54 (m, 1H), 7.94 – 7.90 (m, 2 H), 7.77 (dd, J = 7.6, 1.9 Hz, 1H), 7.54 – 7.44 (m, 4H), 7.40 (d, J = 8.1 Hz, 1H), 7.20 (t, J = 7.7 Hz, 1H), 7.14 (dd, J = 7.4, 1.2 Hz, 1H), 3.32 (s, 3H), 1.31 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 157.2, 141.9, 136.4, 134.6, 130.2, 128.4, 127.8, 12 6.7, 126.2, 125.9, 125.0, 124.1, 121.4, 116.6, 46.1, 35.2, 31.1. HRMS (ESI) ca lcd for C₂₁H₂₄NOS ([M+H]⁺): 338.1573, Found: 338.1571.

(4-methoxyphenyl)(methyl)(naphthalen-1-ylimino)-λ⁶-sulfanone (4b)⁶White solid (46 mg, 74% yield), (hexane/EA = 3:1 as eluent); mp 135-139 °C.¹H NMR (400 MHz, CDCl₃) δ 8.54 (dd, J = 8.0, 1.1 Hz, 1H), 7.95 – 7.87 (m, 2H), 7.79 – 7.72 (m, 1H), 7.53 – 7.44 (m, 2H), 7.39 (d, J = 8.1 Hz, 1H), 7.18 (t, J = 7.8 Hz, 1H), 7.10 (dd, J = 7.5, 1.1 Hz, 1H), 6.96 – 6.90 (m, 2H), 3.81 (s, 3H), 3.32 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 163.5, 141.9, 134.6, 130.7, 130.5, 130.2, 127.8, 126.1, 125.9, 125.0, 124.1, 121.4, 116.6, 114.8, 55.7, 46.44. LRMS (EI): m/z calcd for C₁₈H₁₇NO₂S [M]⁺, 311.10; found, 311.05.

(4-fluorophenyl)(methyl)(naphthalen-1-ylimino)-λ⁶-sulfanone (4c) White solid (58 mg, 97% yield), (hexane/EA = 3:1 as eluent); mp 111-115 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.52 (dd, J = 8.4, 1.6 Hz, 1H), 8.03 – 7.97 (m, 2H), 7.77 (dd, J = 7.5, 2.0 Hz, 1H), 7.49 (m, J = 14.6, 8.3, 6.8, 1.5 Hz, 2H), 7.41 (d, J = 8.1 Hz, 1H), 7.21 – 7.12 (m, 3H), 7.08 (dd, J = 7.5, 1.1 Hz, 1H), 3.35 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 165.7 (d, J = 254.4 Hz), 141.4, 135.2 (d, J = 3.0 Hz), 134.6, 131.4, 131.3, 130.1, 127.9, 126.1 (d, J = 3.6 Hz), 125.2, 123.9, 121.8, 117.0, 116.8, 116.6, 46.2. HRMS (ESI) calcd for C₁₇H₁₅FNOS ([M+H]⁺): 300.0853, Found: 300.0855.

(4-chlorophenyl)(methyl)(naphthalen-1-ylimino)- λ^6 -sulfanone (4d) White solid (29 mg, 46% yield), (hexane/EA = 3:1 as eluent); mp 100-103 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.54 – 8.46 (m, 1H), 7.95 – 7.90 (m, 2H), 7.76 (dd, *J* = 7.4, 2.2 Hz, 1H), 7.54 – 7.43 (m, 4H), 7.41 (d, *J* = 8.2 Hz, 1H), 7.18 (t, *J* = 7.8 Hz, 1H), 7.06 (dd, *J* = 7.4, 1.1 Hz, 1H), 3.35 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 141.3, 140.1, 137.9, 134.6, 130.1,

130.0, 127.9, 126.1, 125.2, 123.9, 121.9, 116.6, 46.2. HRMS (ESI) calcd for $C_{17}H_{15}CINOS$ ([M+H]⁺): 316.0557, Found: 316.0554.

methyl(naphthalen-1-ylimino)(4-nitrophenyl)-λ⁶-sulfanone (4e) Light yellow solid (54 mg, 83% yield), (hexane/EA = 3:1 as eluent); mp 150-155 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.48 (dd, J = 8.4, 1.4 Hz, 1H), 8.33 – 8.27 (m, 2H), 8.21 – 8.14 (m, 2H), 7.77 (dd, J = 7.6, 1.9 Hz, 1H), 7.55 – 7.46 (m, 2H), 7.42 (d, J = 8.2 Hz, 1H), 7.19 – 7.13 (m, 1H), 7.05 (dd, J = 7.5, 1.1 Hz, 1H), 3.42 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 150.7, 145.6, 140.7, 134.6, 130.0, 128.0, 126.3, 126.0, 125.5, 124.8, 123.7, 122.5, 116.7, 77.4, 77.1, 76.8, 45.9. HRMS (ESI) calcd for C₁₇H₁₅N₂O₃S ([M+H]⁺): 327.0798, Found: 327.0798.

methyl(naphthalen-1-ylimino)(naphthalen-2-yl)-λ⁶-sulfanone (4f) Light yellow oil (64 mg, 96% yield), (hexane/EA = 3:1 as eluent). ¹H NMR (400 MHz, CDCl₃) δ 8.63 (dd, J = 12.4, 1.5 Hz, 2H), 7.94 (dd, J = 7.7, 1.6 Hz, 1H), 7.91 – 7.89 (m, 2H), 7.86 (d, J = 8.4 Hz, 1H), 7.76 (d, J = 7.4 Hz, 1H), 7.65 – 7.58 (m, 2H), 7.54 (ddd, J = 8.3, 6.8, 1.4 Hz, 1H), 7.48 (ddd, J = 8.1, 6.8, 1.4 Hz, 1H), 7.37 (dt, J = 7.2, 3.6 Hz, 1H), 7.17 – 7.12 (m, 2H), 3.42 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 141.7, 136.41, 135.2, 134.6, 132.6, 130.7, 130.2, 129.9, 129.4, 129.1, 128.0, 127.9, 127.6, 126.1, 126.0, 125.1, 124.1, 123.0, 121.6, 116.6, 46.1. HRMS (ESI) calcd for C₂₁H₁₈NOS ([M+H]⁺): 332.1104, Found: 332.1104.

methyl(naphthalen-1-ylimino)(pyridin-4-yl)-λ⁶-sulfanone (4g) White solid (26 mg, 46% yield), (hexane/EA = 21:1 as eluent); mp 174-176 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.84 – 8.79 (m, 2H), 8.48 (dd, J = 7.9, 1.1 Hz, 1H), 7.86 – 7.82 (m, 2H), 7.77 (dd, J = 7.5, 2.1 Hz, 1H), 7.54 – 7.46 (m, 2H), 7.43 (d, J = 8.3 Hz, 1H), 7.20 – 7.15 (m, 1H), 7.06 (dd, J = 7.5, 1.1 Hz, 1H), 3.38 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 151.6, 140.8, 128.0, 126.2, 126.0, 125.4, 123.8, 122.4, 121.9, 116.8, 77.4, 77.1, 76.8, 45.5. HRMS (ESI) calcd for C₁₆H₁₅N₂OS ([M+H]⁺): 283.0900, Found: 283.0907.

methyl(naphthalen-1-ylimino)(thiophen-2-yl)-λ⁶-sulfanone (4h) Light brown solid

(50 mg, 87% yield), (hexane/EA = 2:1 as eluent); mp 123-126 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.47 (dd, J = 8.2, 1.6 Hz, 1H), 7.77 (dd, J = 8.0, 1.5 Hz, 1H), 7.63 – 7.58 (m, 2H), 7.49 (qd, J = 7.1, 1.5 Hz, 2H), 7.46 – 7.41 (m, 1H), 7.26 – 7.21 (m, 2H), 7.03 (dd, J = 5.0, 3.8 Hz, 1H), 3.49 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 141.2, 140.8, 134.6, 134.2, 134.1, 130.2, 128.2, 127.8, 126.1, 126.0, 125.2, 124.1, 122.2, 117.0, 47.8. HRMS (ESI) calcd for C₁₅H₁₄NOS₂ ([M+H]⁺): 288.0511, Found: 288.0512.

(naphthalen-1-ylimino)diphenyl- λ^6 -sulfanone (4i)⁷ White solid (62 mg, 90% yield), (hexane/EA = 3:1 as eluent); mp 169-174 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.74 (d, J = 7.8 Hz, 1H), 8.15 – 8.10 (m, 4H), 7.78 (dd, J = 8.1, 1.3 Hz, 1H), 7.57 (ddd, J = 8.3, 6.8, 1.4 Hz, 1H), 7.54 – 7.44 (m, 7H), 7.39 (dd, J = 7.1, 2.0 Hz, 1H), 7.21 – 7.14 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 141.2, 141.1, 134.72, 132.8, 130.5, 129.4, 128.5, 127.9, 126.2, 126.0, 125.2, 124.1, 121.6, 117.1. LRMS (EI): m/z calcd for C₂₂H₁₇NOS [M]⁺, 343.10; found, 343.05.

5-(naphthalen-1-ylimino)-5H-5λ⁴-dibenzo[*b,d*]**thiophene 5-oxide (4j)**⁸Orange soli d (53 mg, 78% yield), (hexane/EA = 3:1 as eluent); mp 175-179 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.10 (d, J = 8.4 Hz, 1H), 7.86 (d, J = 7.7 Hz, 2H), 7.8 1 (d, J = 7.5 Hz, 2H), 7.76 (d, J = 8.1 Hz, 1H), 7.62 (td, J = 7.6, 1.1 Hz, 2H), 7.58 – 7.53 (m, 2H), 7.44 (td, J = 7.6, 1.0 Hz, 2H), 7.39 (ddd, J = 8.2, 6.9, 1.3 Hz, 2H), 7.29 (ddd, J = 8.2, 6.7, 1.3 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 140.4, 139.2, 134.7, 133.2, 132.0, 130.5, 130.3, 127.7, 126.1, 126.0, 125.2, 124.5, 123.0, 122.6, 121.7, 118.7. LRMS (EI): m/z calcd for C₂₂H₁₅NOS [M]⁺, 341.09; found, 341.05.

dimethyl(naphthalen-1-ylimino)- λ^6 -sulfanone (4k) White solid (20 mg, 47% yield), (hexane/EA = 3:1 as eluent); mp 114-117 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.32 – 8.26 (m, 1H), 7.82 – 7.76 (m, 1H), 7.51 (d, *J* = 8.1 Hz, 1H), 7.49 – 7.42 (m, 2H), 7.35 (t, *J* = 7.7 Hz, 1H), 7.29 (dd, *J* = 7.4, 1.3 Hz, 1H), 3.23 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 141.6, 134.8, 130.3, 127.9, 126.2, 126.1, 125.2, 124.1, 122.3, 117.3, 42.2. HRMS (ESI) calcd for C₁₂H₁₃NOSNa ([M+Na]⁺): 242.0610, Found: 242.0611.

([1,1'-biphenyl]-4,4'-diylbis(azanylylidene))bis(methyl(*p*-tolyl)- λ^6 -sulfanone) (5a) L ight yellow solid (67 mg, 69% yield), (EA as eluent); mp 83-87 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.87 – 7.80 (m, 4H), 7.29 (d, J = 8.1 Hz, 4H), 7.27 – 7.2 4 (m, 4H), 7.02 – 6.96 (m, 4H), 3.22 (s, 6H), 2.39 (s, 6H). ¹³C NMR (100 M Hz, CDCl₃) δ 144.2, 144.0, 136.3, 134.1, 130.3, 128.8, 127.0, 123.5, 46.3, 21.6. HRMS (ESI) calcd for C₂₈H₂₉N₂O₂S₂ ([M+H]⁺): 489.1665, Found: 489.1663.

8. References

- D. Liu, Z.-R. Liu, C. Ma, K.-J. Jiao, B. Sun, L. Wei, J. Lefranc, S. Herbert and T.-S. Mei, *Angew. Chem. Int. Ed.*, 2021, 60, 9444-9449.
- B. H. Lipshutz, S. Ghorai, A. R. Abela, R. Moser, T. Nishikata, C. Duplais, A. Krasovskiy, R. D. Gaston and R. C. Gadwood, *J. Org. Chem.*, 2011, 76, 4379-4391.
- 3. N. Yongpruksa, N. L. Calkins and M. Harmata, Chem. Commun., 2011, 47, 7665-7667.
- 4. J. Kim, J. Ok, S. Kim, W. Choi and P. H. Lee, Org. Lett., 2014, 16, 4602-4605.
- 5. C. Bolm, J. P. Hildebrand and J. Rudolph, Synthesis, 2000, DOI: 10.1055/s-2000-6287, 911-913.
- Q. Yang, P. Y. Choy, Q. Zhao, M. P. Leung, H. S. Chan, C. M. So, W.-T. Wong and F. Y. Kwong, J. Org. Chem., 2018, 83, 11369-11376.
- C. Wang, H. Zhang, L. A. Wells, T. Liu, T. Meng, Q. Liu, P. J. Walsh, M. C. Kozlowski and T. Jia, *Nat. Commun.*, 2021, 12, 932.
- 8. Z. Li, H. Yu and C. Bolm, Angew. Chem. Int. Ed., 2017, 56, 9532-9535.

9. The NMR spectra of all products

methyl(naphthalen-1-ylimino)(p-tolyl)-λ⁶-sulfanone (3a)

methyl(phenylimino)(p-tolyl)- λ^6 -sulfanone (3b)

methyl(*p*-tolyl)(*p*-tolylimino)- λ^6 -sulfanone (3c)

((4-methoxyphenyl)imino)(methyl)(p-tolyl)- λ^6 -sulfanone (3d)

((3-acetylphenyl)imino)(methyl)(*p*-tolyl)-λ⁶-sulfanone (3e)

methyl((4-propionylphenyl)imino)(*p*-tolyl)-λ⁶-sulfanone (3f)

methyl(*p*-tolyl)((4-(trifluoromethoxy)phenyl)imino)- λ^6 -sulfanone (3g)

¹³C NMR (CDCl₃, 100 MHz) of **3i**

¹³C NMR (CDCl₃, 100 MHz) of **3j**

¹³C NMR (CDCl₃, 100 MHz) of **3**k

¹³C NMR (CDCl₃, 100 MHz) of **3**l

¹³C NMR (CDCl₃, 100 MHz) of **3m**

¹³C NMR (CDCl₃, 100 MHz) of **3p**

¹³C NMR (CDCl₃, 100 MHz) of **4b**

(4-chlorophenyl)(methyl)(naphthalen-1-ylimino)-λ⁶-sulfanone(4d)

 $methyl (naphthalen-1-ylimino) (naphthalen-2-yl) - \lambda^6 - sulfanone \ (4f)$

¹³C NMR (CDCl₃, 100 MHz) of **4g**

¹³C NMR (CDCl₃, 100 MHz) of **4h**

¹³C NMR (CDCl₃, 100 MHz) of 4i

¹³C NMR (CDCl₃, 100 MHz) of 4j

¹³C NMR (CDCl₃, 100 MHz) of **4**k

 $([1,1'-biphenyl]-4,4'-diylbis(azanylylidene)) bis(methyl(p-tolyl)-\lambda^6-sulfanone)(5a)$

