Supporting Information

Yuling Lu, Chunmei Chen, Hucheng Zhu, Zengwei Luo,* and Yonghui Zhang*

Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China Email: luozengwei@hust.edu.cn; zhangyh@mails.tjmu.edu.cn

Contents

- 1. General information
- 2. General procedure for the synthesis of **1ab-1ao**,**1ba-1bo**
- 3. General procedure for the synthesis of **1ab-3cc**
- 4. Scale-up, transformation applications and the functional group compatibility

experiments

- 5. Control experiments
- 6. Experiments procedure for the green merits
- 7. Reference
- 8. NMR spectrum data and X-Ray structure

1. General information

All reagents and solvents were purchased without purification unless specified otherwise. Column chromatography was performed using silica gel (200-300 mesh). ¹H NMR and ¹³C NMR spectra were measured on a 400 MHz and 600 MHz Bruker (400 MHz for ¹H NMR, 100 MHz for ¹³C NMR, 600 MHz ¹H NMR, 150 MHz for ¹³C NMR) using CDCl₃ as the solvent at room temperature. Chemical shifts (δ) are given in parts per million relative to the solvent peak, and coupling constants (*J*) are given in hertz. High-resolution electrospray ionization mass spectra were carried out in the positive ion mode on a Thermo Fisher LC-LTQ-Orbitrap XL spectrometer. Melting points were obtained using an X-5 microscopic melting point apparatus (Beijing Tech, China).

2. General procedure for the synthesis of 1ab-ao,1ba-1bo

To a dry bottom flask was added 1.3 equiv. NaH (60% stored in kerosene) at 0°C into amide solution in anhydrous THF (0.5 M). The solution was stirred for 30minutes followed by 1.2 equiv. methacryloyl chloride dropwise slowly. The resulting solution was stirred at room temperature for subsequent 30minutes. After completing the reaction, the reaction mixture was quenched by adding water, then extracted with EtOAc. the organic layers were combined and concentrated by rotary evaporation. The crude product was purified by silica gel column chromatography (PE: EtOAc= 30: 1- 20: 1)

3. General procedure for the synthesis of 3ab-3cc

To a bottom flask was added 1.05equiv iodine into acetonitrile solution of compound **1aa-1cc** (0.1 M), then stirred for 20 minutes under air and room temperature. After the reaction was completed, the reaction was quenched by $Na_2S_2O_3$ aqueous solution and extracted with EtOAc. Combined organic layer was dried with anhydrous Na_2SO_4 and then concentrated by rotary evaporation to give the crude product. The crude product was purified by silica gel column chromatography (PE: EtOAc = 25: 1- 15: 1) to afford the product.

4. Scale-up, transformation applications and the functional group compatibility experiments

1) Scale-up experiment

To a 100ml bottom flask was added iodine (878.5 mg, 3.461 mmol) into the solution of **1ba** (1000 mg, 3.296 mmol) in acetonitrile (33 mL). Then the mixture was stirred for 20minutes under open air, room temperature. After the reaction was completed, sodium thiosulfate aqueous solution was added to quench the reaction and extracted with EtOAc. Combined organic layer was dried with anhydrous Na_2SO_4 and then concentrated by rotary evaporation to give the crude product. The crude product was purified by silica gel column chromatography (PE: EtOAc = 25: 1) to afford the product **3ba**.

2) Experiments of transformation applications

To a Schlenk tube was added **3ba** (55.7mg, 0.1 mmol), phenylboronic acid (24.39mg, 0.2 mmol), Pd(PPh₃)₄ (5.8 mg, 0.005 mmol), Cs_2CO_3 (97.8 mg, 0.3 mmol) and dry THF (2 mL) under the protection with argon. The resulting solution was heated at 40 °C in oil bath for 6 hours. After the reaction was completed, the reaction mixture was cooled to room temperature, and water was added and extracted with EtOAc three times. The combined organic layer was concentrated under reduced pressure. The crude residue was purified by silica gel column chromatography to give pure product $\mathbf{4}^{[1]}$.

To a dry 10 mL Schlenk tube was added **3ba** (0.1 mmol, 55.7mg), ethynylbenzene(0.15mmol, 15.32 mg), $Pd(PPh_3)_2Cl_2$ (0.005 mmol, 3.51 mg) and CuI (0.0025 mmol, 0.48 mg) under Argon, followed by the solution of THF: TEA(1: 1, 1 mL) injected. The resulting solution was heated in 50 °C oil bath for 12 h. After the reaction was completed, the reaction mixture was cooled to room temperature, washed with a saturated solution of NH₄Cl, and extracted with ethyl acetate three times. The combined organic layers were dried and concentrated under reduced pressure. The residue was purified by column chromatography to give product **5**^[2]

To a schlenk tube was added **3ba** (0.1 mmol, 55.7mg), Pd(PPh₃)₄ (0.02 mmol, 23.11mg), Cs₂CO₃ (0.2 mmol, 65.16 mg) and 1,4-dioxane put into the tube. Then, the resulting mixture was put into 90 °C oil bath for 12h. After the reaction was completed (by TLC), the reaction mixture was cooled to room temperature and washed with H₂O (10 mL) and extracted with EtOAc. The organic layer was combined and the crude product was purified by column chromatography to give product **6**.

To a dry schlenk tube was added **3ba** (0.1 mmol, 55.7mg) and AgNO₃ (0.2 mmol,33.97mg), EtOH injected into and the mixture heated at 70 °C in oil bath. After the reaction was completed (by TLC), the reaction mixture was cooled to room temperature and washed with brine and extracted with EtOAc. The organic layer was combined and the crude product was purified by column chromatography to give product $7^{[3]}$.

To a dry schlenk was added **3ba** (0.1 mmol, 55.7mg) and sodium 4-phenylbutanoate (0.15 mmol, 27.93mg). The reaction mixture in dimethyl sulfoxide was heated to 110 °C for 2 h. After the reaction was completed (by TLC), the reaction mixture was cooled to room temperature and washed with sodium carbonate saturated solution and

brine and extracted with EtOAc. The organic layer was combined and the crude product was purified by column chromatography to give product **8**^[3].

To a dry schlenk was added **3ba** (0.1 mmol, 55.7mg) and sodium 2-propylvalerate (0.15 mmol, 24.93mg). The reaction mixture in dimethyl sulfoxide was heated to 110 °C for 2 h. After the reaction was completed (by TLC), the reaction mixture was cooled to room temperature and washed with sodium carbonate saturated solution and brine and extracted with EtOAc. The organic layer was combined and the crude product was purified by column chromatography to give product **9**^[3].

To a dry schlenk was added **3ba** (0.1 mmol, 55.7mg) and 3-Indole-acetic acid sodium salt (0.15 mmol, 29.58mg). The reaction mixture in dimethyl sulfoxide was heated to 110 °C for 2 h. After the reaction was completed (by TLC), the reaction mixture was cooled to room temperature and washed with sodium carbonate saturated solution and brine and extracted with EtOAc. The organic layer was combined and the crude product was purified by column chromatography to give product **10**^[3].

To a dry schlenk was added **3ba** (0.1 mmol, 55.7mg) and Penicillin G sodium salt (0.15 mmol, 53.46mg). The reaction mixture in dimethyl sulfoxide was heated to 110 °C for 2 h. After the reaction was completed (by TLC), the reaction mixture was cooled to room temperature and washed with sodium carbonate saturated solution and brine and extracted with EtOAc. The organic layer was combined, and the crude product was purified by column

chromatography to give product **11**^[3].

3) The functional group compatibility experiments

To a bottom flask was added 1.0 equiv. additive, 1.05 equiv iodine into acetonitrile solution of compound **1ba** (0.1 M) and then stirred for 20 minutes under air and room temperature. After the reaction was completed, the reaction mixture was quenched by Na₂S₂O₃ aqueous solution and extracted with EtOAc. Combined organic layer was dried with anhydrous Na₂SO₄ and then concentrated by rotary evaporation to give the crude product. The crude product was purified by silica gel column chromatography to afford the product and additive.

5. Experiments procedure for green merits

To a 100ml bottom flask was added iodine (1.76 g, 6.92 mmol) into the solution of **1ba** (2.00 g, 6.59 mmol) in acetonitrile (33 mL, 25.94 g). Then the mixture was stirred for 20 minutes under open air, room temperature. After the reaction was completed, sodium thiosulfate aqueous solution(0.08 g Na₂S₂O₃/0.08 g H₂O) was added to quench the reaction and concentrated by rotary evaporation to give the crude product. The crude product was purified by silica gel column chromatography (40.00 g Silica gel, PE: EtOAc (v/v) = 10: 1(240 mL/24 mL), 210.00 g) to afford the product **3ba**.

6. Control experiments

To a bottom flask was added **1ba** (0.1 mmol), additive (0.2 mmol) and iodine (0.105 mmol) sequentially, acetonitrile was added then the reaction mixture stirred at room temperature for 20 minutes. The reaction was monitored by

To a tin foil wrapped schlenk were added **1ba** (0.1 mmol) and iodine (0.105 mmol), then acetonitrile was injected by syringe. The mixture was stirred for 20 minutes off light in dark room. After that, the reaction was monitored by TLC. The reaction mixture was quenched by $Na_2S_2O_3$ aqueous solution. The crude product was purified by silica gel column chromatography to afford the product.

To a schlenk 1 was added acetonitrile (5 mL) and oxygen-removal was carried out by argon bubbling into solvent for 30 minutes, then **1ba** (0.1 mmol) and iodine (0.105 mmol) was added to schlenk 2 with argon atmosphere. Subsequently, oxygen-free acetonitrile (1 mL) was transfered to schlenk 2 from schlenk 1 with cannula. The reaction was stirred for 20 minutes under argon. After that, the reaction was monitored by TLC. The reaction mixture was quenched by Na₂S₂O₃ aqueous solution. The crude product was purified by silica gel column chromatography to afford the product.

7.Reference

[1] Y. Gu, L. Dai, K. M. Mao, J. H. Zhang, C. Wang, L. M. Zhao and L. C. Rong.Org. Lett. **2020**, 22, 2956–2960.

[2] (a)W. Z. Weng, H. Liang, R. Z. Liu, Y. X. Ji, and B. Zhang. Org. Lett. ,2019, 21, 5586–5590 (b) M. Dong, D. F. Wang and X. F. Tong. Org. Lett., 2021, 23, 3588–3592

[3] X. H. Wei, X. W. Liang, Y. Z. Li, Q. Liu, X. Y. Liu, Y. Zhou and H. Liu. Green Chem., 2021,23, 9165-9171

8. NMR spectrum data and X-Ray structure

1) Characterization data of starting material

Compound 1aa: Yellow oil. ¹**H NMR (600 MHz, CDCl₃)** δ 7.63 – 7.54 (m, 6H), 7.46 (dd, *J* = 8.4, 6.9 Hz, 2H), 7.43 – 7.37 (m, 3H), 7.36 – 7.31 (m, 2H), 7.31 – 7.27 (m, 1H), 5.46 (q, *J* = 1.7 Hz, 1H), 5.41 – 5.38 (m, 1H), 5.08 (s, 2H), 2.10 (d, *J* = 1.2 Hz, 3H). ¹³**C NMR (150 MHz, CDCl₃)** δ 174.2, 155.0, 143.6, 142.4, 139.7, 136.7, 133.0, 129.0, 128.6, 128.5, 128.2, 127.7, 127.4, 127.1, 122.3, 118.4, 94.5, 83.6, 48.1, 18.9. **HRMS** m/z (ESI⁺) calcd for C₂₆H₂₁NNaO₂[M+Na]⁺: 402.1465; found: 402.1465.

Compound 1ab: Yellow oil. ¹**H NMR (400 MHz, CDCl₃)** δ 7.26 (m, 4H), 7.20 – 7.14 (m, 2H), 7.11 (tt, *J* = 7.0, 1.5 Hz, 1H), 6.75 – 6.68 (m, 2H), 5.27 (q, *J* = 1.6 Hz, 1H), 5.22 (d, *J* = 1.1 Hz, 1H), 4.91 (s, 2H), 3.90 (q, *J* = 7.0 Hz, 2H), 1.93 (t, *J* = 1.3 Hz, 3H), 1.27 (t, *J* = 7.0 Hz, 3H). ¹³**C NMR (100 MHz, CDCl₃)** δ 174.8, 161.6, 155.8, 142.9, 137.3, 135.0, 129.1, 128.9, 128.2, 122.4, 115.4, 111.7, 96.0, 83.2, 64.3, 48.6, 19.5, 15.2. **HRMS** m/z (ESI⁺) calcd for C₂₂H₂₁NNaO₃[M+Na]⁺: 370.1414; found: 370.1410.

Compound 1ac: Yellow oil. ¹**H NMR (600 MHz, CDCl₃)** δ 7.39 (td, *J* = 7.0, 1.8 Hz, 4H), 7.34 – 7.30 (m, 2H), 7.29 – 7.26 (m, 1H), 7.21 – 7.18 (m, 2H), 5.43 (q, *J* = 1.6 Hz, 1H), 5.37 (d, *J* = 1.1 Hz, 1H), 5.06 (s, 2H), 2.49 (s, 3H), 2.07 (t, *J* = 1.2 Hz, 3H). ¹³**C NMR (150 MHz, CDCl₃)** δ 174.2, 155.0, 143.5, 142.4, 136.7, 132.7, 128.6, 128.5, 127.7, 125.5, 122.2, 115.3, 94.7, 83.3, 48.1, 18.9, 14.9. **HRMS** m/z (ESI⁺) calcd for C₂₁H₁₉NNaO₂S[M+Na]⁺: 372.1029 ; found: 372.1021.

Compound 1ad: Yellowish oil. ¹H NMR (600 MHz, CDCl₃) δ 7.69 – 7.65 (m, 2H), 7.58 – 7.54 (m, 2H), 7.39 – 7.35 (m,

2H), 7.35 – 7.31 (m, 2H), 7.31 – 7.27 (m, 1H), 5.49 (q, J = 1.6 Hz, 1H), 5.41 – 5.38 (m, 1H), 5.05 (s, 2H), 2.04 (t, J = 1.3 Hz, 3H). ¹³**C NMR (150 MHz, CDCl₃)** δ 173.8, 154.1, 142.2, 136.3, 132.7, 132.3, 128.7, 128.5, 127.9, 124.5, 123.1, 117.8, 114.1, 91.4, 85.7, 48.2, 18.8. **HRMS** m/z (ESI⁺) calcd for C₂₁H₁₆N₂NaO₂[M+Na]⁺: 351.1104; found: 351.1111.

Compound 1ae: Colorless oil. ¹H NMR (600 MHz, CDCl₃) δ 7.64 (d, *J* = 8.3 Hz, 2H), 7.59 (d, *J* = 8.2 Hz, 2H), 7.41 – 7.37 (m, 2H), 7.36 – 7.31 (m, 2H), 7.31 – 7.27 (m, 1H), 5.48 (q, *J* = 1.6 Hz, 1H), 5.40 (d, *J* = 1.1 Hz, 1H), 5.06 (s, 2H), 2.06 (t, *J* = 1.3 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 174.0, 154.4, 142.3, 136.4, 132.6, 132.4, 132.4, 132.2, 132.0, 128.7, 128.5, 127.9, 125.7, 125.7, 125.7, 125.6, 124.4, 123.5, 122.8, 122.6, 92.1, 84.4, 48.1, 18.8. HRMS m/z (ESI⁺) calcd for C₂₁H₁₆F₃NNaO₂[M+Na]⁺: 394.1025; found: 394.1037.

Compound 1af: Yellow oil. ¹**H NMR (400 MHz, CDCl₃)** δ 7.52 – 7.45 (m, 2H), 7.41 – 7.37 (m, 2H), 7.36-7.30 (m, 2H), 7.30-7.27(m,1H), 7.12 – 7.04 (m, 2H), 5.46 (q, *J* = 1.6 Hz, 1H), 5.38 (d, *J* = 1.1 Hz, 1H), 5.05 (s, 2H), 2.06 (t, *J* = 1.3 Hz, 3H). ¹³**C NMR (100 MHz, CDCl₃)** δ 174.3, 165.4, 162.9, 155.0, 142.5, 136.8, 135.0, 134.9, 128.8, 128.6, 128.0, 122.6, 116.6, 116.4, 116.0, 116.0, 93.5, 83.1, 48.3, 19.1. **HRMS** m/z (ESI⁺) calcd for C₂₀H₁₆FNNaO₂[M+Na]⁺: 344.1057; found: 344.1056.

Compound 1ag: Yellow oil. ¹**H NMR (400 MHz, CDCl₃)** δ 7.44 – 7.27 (m, 9H), 5.46 (q, *J* = 1.6 Hz, 1H), 5.38 (d, *J* = 1.1 Hz, 1H), 5.05 (s, 2H), 2.06 (t, *J* = 1.3 Hz, 3H). ¹³**C NMR (100 MHz, CDCl₃)** δ 174.2, 154.9, 142.5, 137.4, 136.7, 133.8, 129.4, 128.8, 128.6, 128.0, 122.7, 118.3, 93.2, 83.9, 48.3, 19.1. **HRMS** m/z (ESI⁺) calcd for C₂₀H₁₆ClNNaO₂[M+Na]⁺: 360.0762; found: 360.0767.

Compound 1ah: Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.55 – 7.50 (m, 2H), 7.40 – 7.36 (m, 2H), 7.36 – 7.27 (m, 5H), 5.45 (q, *J* = 1.6 Hz, 1H), 5.38 (d, *J* = 1.2 Hz, 1H), 5.05 (s, 2H), 2.05 (dd, *J* = 1.6, 1.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 174.2, 154.9, 142.5, 136.7, 133.9, 132.3, 128.8, 128.6, 128.0, 125.8, 122.7, 118.8, 93.3, 84.0, 48.3, 19.1. HRMS m/z (ESI⁺) calcd for C₂₀H₁₆BrNNaO₂[M+Na]⁺: 404.0257; found: 404.0248.

Compound 1ai: Yellowish oil. ¹**H NMR (400 MHz, CDCl**₃) δ 7.50 (dd, *J* = 7.8, 1.7 Hz, 1H), 7.43 – 7.35 (m, 4H), 7.35 – 7.22 (m, 4H), 5.43 (q, *J* = 1.6 Hz, 1H), 5.37 (s, 1H), 5.08 (s, 2H), 2.02 (t, *J* = 1.3 Hz, 3H). ¹³**C NMR (100 MHz, CDCl**₃) δ 174.5, 155.2, 142.8, 137.4, 137.1, 134.8, 132.2, 130.2, 129.1, 129.0, 128.3, 127.3, 123.1, 120.6, 91.2, 87.4, 48.9, 19.3. **HRMS** m/z (ESI⁺) calcd for C₂₀H₁₆ClNNaO₂[M+Na]⁺: 360.0762; found: 360.0750.

Compound 1aj: Yellow oil. ¹**H NMR (400 MHz, CDCl₃)** δ 7.40 – 7.18 (m, 9H), 5.40 (q, *J* = 1.6 Hz, 1H), 5.32 (d, *J* = 1.1 Hz, 1H), 4.98 (s, 2H), 1.99 (t, *J* = 1.2 Hz, 3H). ¹³**C NMR (100 MHz, CDCl₃)** δ 174.1, 154.7, 142.5, 136.6, 134.8, 132.2, 131.2, 130.6, 130.2, 128.8, 128.8, 128.6, 128.0, 122.8, 121.5, 92.6, 83.7, 48.3, 19.0. **HRMS** m/z (ESI⁺) calcd for C₂₀H₁₆ClNNaO₂[M+Na]⁺: 360.0762; found: 360.0765.

Compound 1ak: Yellowish oil. ¹H NMR (600 MHz, CDCl₃) δ 7.41 – 7.38 (m, 2H), 7.35 – 7.30 (m, 2H), 7.30 – 7.24 (m, 5H), 5.44 (q, *J* = 1.6 Hz, 1H), 5.37 (d, *J* = 1.1 Hz, 1H), 5.06 (s, 2H), 2.34 (s, 3H), 2.07 (t, *J* = 1.3 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 174.2, 155.0, 142.4, 138.6, 136.7, 132.9, 131.7, 129.6, 128.6, 128.5, 127.7, 122.2, 119.5, 94.8, 82.8,

48.1, 21.2, 18.9. **HRMS** m/z (ESI⁺) calcd for C₂₁H₁₉NNaO₂[M+Na]⁺: 340.1308; found: 340.1312.

Compound 1al: Yellow oil. ¹**H NMR (600 MHz, CDCl₃)** δ 8.04 (s, 1H), 7.83 (t, *J* = 8.7 Hz, 3H), 7.60 – 7.53 (m, 3H), 7.47 (dd, *J* = 8.4, 1.5 Hz, 1H), 7.42 (d, *J* = 7.6 Hz, 2H), 7.34 (t, *J* = 7.5 Hz, 2H), 7.29 (d, *J* = 7.3 Hz, 1H), 5.48 (d, *J* = 1.9 Hz, 1H), 5.42 (s, 1H), 5.10 (s, 2H), 2.11 (s, 3H). ¹³**C NMR (150 MHz, CDCl₃)** δ173.2, 154.0, 141.4, 135.7, 132.8, 132.7, 131.6, 127.6, 127.5, 127.5, 127.2, 127.1, 126.9, 126.7, 126.7, 126.1, 121.3, 115.8, 93.9, 82.2, 47.1, 17.9. **HRMS** m/z (ESI⁺) calcd for C₂₄H₁₉NNaO₂ [M+Na]⁺: 376.1308; found: 376.1301.

Compound 1am: Yellow oil. ¹**H NMR (600 MHz, CDCl₃)** δ 7.42 – 7.37 (m, 2H), 7.35 – 7.30 (m, 2H), 7.29 – 7.25 (m, 1H), 7.12 (dd, *J* = 8.3, 1.9 Hz, 1H), 6.96 (d, *J* = 1.9 Hz, 1H), 6.84 (d, *J* = 8.4 Hz, 1H), 5.44 (q, *J* = 1.6 Hz, 1H), 5.39 (d, *J* = 1.2 Hz, 1H), 5.07 (s, 2H), 3.91 (s, 3H), 3.86 (s, 3H), 2.09 (t, *J* = 1.3 Hz, 1H). ¹³**C NMR (150 MHz, CDCl₃)** δ 174.2, 155.2, 151.7, 148.9, 142.4, 136.8, 128.6, 128.4, 127.7, 126.7, 122.0, 114.9, 111.5, 111.1, 95.4, 82.4, 56.0, 48.1, 18.9. **HRMS** m/z (ESI⁺) calcd for C₂₂H₂₁NNaO₄[M+Na]⁺: 386.1363; found: 386.1372.

Compound 1an: White solid,67.9-68.5^oC. ¹**H NMR (600 MHz, CDCl₃)** δ 7.40 – 7.36 (m, 2H), 7.32 (dd, *J* = 8.4, 6.7 Hz, 2H), 7.28 – 7.23 (m, 1H), 6.87 (s, 2H), 5.39 (t, *J* = 1.5 Hz, 2H), 5.11 (s, 2H), 2.35 (s, 6H), 2.28 (s, 3H), 2.00 (t, *J* = 1.2 Hz, 3H). ¹³**C NMR (150 MHz, CDCl₃)** δ 174.1, 155.4, 142.3, 142.1, 140.8, 136.7, 128.6, 128.1, 128.0, 127.7, 121.6, 116.5, 93.4, 90.2, 48.5, 21.5, 20.8, 18.8. **HRMS** m/z (ESI⁺) calcd for C₂₃H₂₃NNaO₂[M+Na]⁺: 368.1621; found: 368.1627.

Compound 1ao: Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.16-7.28 (m, 5H), 5.30 (d, J = 1.6 Hz, 1H), 5.20 (s, 1H),

4.91 (s, 2H), 1.93 (d, *J* = 2.1 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 174.6, 155.1, 142.7, 136.9, 128.7, 128.6, 127.9, 121.6, 94.0, 75.3, 48.2, 18.9, 4.4. HRMS m/z (ESI⁺) calcd for C₁₅H₁₅NNaO₂[M+Na]⁺: 264.0995; found: 264.0995.

Compound 1ba: Yellow oil. ¹**H NMR (600 MHz, CDCl**₃) δ 7.50 – 7.46 (m, 2H), 7.46 – 7.42 (m, 1H), 7.38 (m, 4H), 7.34 – 7.30 (m, 2H), 7.29 – 7.25 (m, 1H), 5.44 (q, *J* = 1.6 Hz, 1H), 5.38 (d, *J* = 1.3 Hz, 1H), 5.06 (s, 2H), 2.07 (t, *J* = 1.3 Hz, 3H). ¹³**C NMR (150 MHz, CDCl**₃) δ 174.2, 155.0, 142.4, 136.7, 132.5, 130.8, 128.7, 128.6, 128.5, 127.8, 122.3, 119.7, 94.4, 83.0, 48.1, 18.9. **HRMS** m/z (ESI⁺) calcd for C₂₀H₁₇NNaO₂[M+Na]⁺: 326.1151; found: 326.1142.

Compound 1bb: Colorless oil. ¹**H NMR (400 MHz, CDCl₃)** δ 7.60 – 7.55 (m, 4H), 7.53 – 7.43 (m, 6H), 7.42 – 7.32 (m, 4H), 5.49 (q, *J* = 1.6 Hz, 1H), 5.44 (d, *J* = 1.1 Hz, 1H), 5.11 (s, 2H), 2.11 (t, *J* = 1.3 Hz, 3H). ¹³**C NMR (100 MHz, CDCl₃)** δ 174.4, 155.2, 142.6, 140.9, 140.8, 135.9, 132.6, 131.0, 129.1, 128.9, 128.9, 127.5, 127.5, 127.3, 122.6, 119.9, 94.7, 83.2, 48.0, 19.1. **HRMS** m/z (ESI⁺) calcd for C₂₆H₂₁NNaO₂[M+Na]⁺: 402.1465; found: 402.1471.

Compound 1bc: Colorless oil. ¹**H NMR (400 MHz, CDCl**₃) δ 7.52 – 7.47 (m, 2H), 7.47 – 7.43 (m, 1H), 7.41 – 7.31 (m, 4H), 6.86 – 6.81 (m, 2H), 5.43 (q, *J* = 1.6 Hz, 1H), 5.34 (d, *J* = 1.2 Hz, 1H), 4.99 (s, 2H), 4.00 (q, *J* = 7.0 Hz, 2H), 2.11 – 2.04 (m, 3H), 1.39 (t, *J* = 7.0 Hz, 3H).¹³**C NMR (100 MHz, CDCl**₃) δ 174.5, 158.7, 155.1, 142.7, 132.6, 130.9, 130.3, 128.9, 122.5, 119.9,114.6, 94.4, 83.3, 63.6, 47.8, 19.0, 15.0. **HRMS** m/z (ESI⁺) calcd for C₂₂H₂₁NNaO₃ [M+Na]⁺: 370.1414; found:370.1410.

Compound 1bd: Yellow oil.¹H NMR (400 MHz, CDCl₃) δ 7.53 – 7.43 (m, 3H), 7.42 – 7.33 (m, 2H), 6.93 (d, J = 1.7 Hz,

1H), 6.88 (dd, J = 8.0, 1.8 Hz, 1H), 6.75 (d, J = 8.0 Hz, 1H), 5.94 (s, 2H), 5.46 (q, J = 1.6 Hz, 1H), 5.38 (d, J = 1.1 Hz, 1H), 4.95 (s, 2H), 2.07 (dd, J = 1.5, 1.0 Hz, 3H). ¹³**C NMR (100 MHz, CDCl**₃) δ 174.7, 155.4, 148.3, 147.7, 143.0, 132.9, 131.3, 130.9, 129.2, 123.0, 122.9, 120.2, 109.8, 108.7, 101.6, 95.0, 83.6, 48.4, 19.4. **HRMS** m/z (ESI⁺) calcd for $C_{21}H_{17}NNaO_4[M+Na]^+:370.1050$; found:370.1038.

Compound 1be: Yellowish oil. ¹**H NMR (600 MHz, CDCl₃)** δ 7.91 (d, *J* = 8.1 Hz, 2H), 7.60 (d, *J* = 8.4 Hz, 2H), 7.48 (td, *J* = 8.3, 4.0 Hz, 3H), 7.39 (t, *J* = 7.6 Hz, 2H), 5.54 (t, *J* = 1.5 Hz, 1H), 5.45 (s, 1H), 5.11 (s, 2H), 3.04 (s, 3H), 2.12 (d, *J* = 1.4 Hz, 3H). ¹³**C NMR (150 MHz, CDCl₃)** δ 174.0, 154.8, 142.9, 142.1, 139.9, 132.5, 131.1, 129.4, 128.8, 127.8, 123.0, 119.4, 95.4, 82.7, 47.5, 44.5, 19.0. **HRMS** m/z (ESI⁺) calcd for C₂₁H₁₉NNaO₄S[M+Na]⁺: 404.0927; found: 404.0925.

Compound 1bf: Yellowish oil. ¹H NMR (600 MHz, CDCl₃) δ 7.50 – 7.47 (m, 2H), 7.47 – 7.43 (m, 1H), 7.37 (ddd, *J* = 7.4, 4.8, 2.9 Hz, 3H), 7.31 (dd, *J* = 7.4, 1.9 Hz, 1H), 7.23 (dtd, *J* = 17.8, 7.7, 1.9 Hz, 2H), 5.58 (d, *J* = 1.1 Hz, 1H), 5.52 (q, *J* = 1.6 Hz, 1H), 5.19 (s, 2H), 2.10 (t, *J* = 1.2 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 174.0, 154.8, 142.0, 134.0, 133.1, 132.6, 130.9, 129.6, 129.0, 128.8, 128.7, 127.0, 122.6, 119.6, 94.5, 82.6, 46.3, 18.9. HRMS m/z (ESI⁺) calcd for C₂₀H₁₆ClNNaO₂[M+Na]⁺:360.0762; found:360.0756.

Compound 1bg: Colorless oil. ¹H NMR (600 MHz, CDCl₃) δ 7.51 – 7.48 (m, 2H), 7.46 – 7.42 (m, 1H), 7.37 (t, *J* = 7.6 Hz, 2H), 6.82 (s, 2H), 5.51 (s, 1H), 5.49 (d, *J* = 1.6 Hz, 1H), 2.41 (s, 5H), 2.23 (s, 3H), 1.92 (d, *J* = 1.3 Hz, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 174.4, 154.3, 142.7, 137.9, 137.4, 132.4, 130.7, 129.4, 128.9, 128.7, 123.7, 119.9, 94.0, 82.9, 42.9, 20.9, 20.0, 18.6. HRMS m/z (ESI⁺) calcd for C₂₃H₂₃NNaO₂[M+Na]⁺: 368.1621; found: 368.1636.

Compound 1bh: Colorless oil. ¹**H NMR (600 MHz, CDCl₃)** δ 7.54 – 7.50 (m, 2H), 7.48 – 7.44 (m, 1H), 7.39 (dd, *J* = 8.3, 7.0 Hz, 2H), 7.15 (d, *J* = 8.0 Hz, 2H), 7.10 (d, *J* = 7.8 Hz, 2H), 5.43 (q, *J* = 1.6 Hz, 1H), 5.36 – 5.34 (m, 1H), 4.12 – 4.07 (m, 2H), 2.99 – 2.91 (m, 2H), 2.31 (s, 3H), 2.06 (t, *J* = 1.2 Hz, 3H). ¹³**C NMR (150 MHz, CDCl₃)** δ 174.4, 154.9, 142.3, 136.2, 135.0, 132.5, 130.8, 129.3, 128.9, 128.7, 121.9, 119.8, 93.9, 82.9, 46.5, 34.4, 21.0, 19.0. **HRMS** m/z (ESI⁺) calcd for C₂₂H₂₁NNaO₂[M+Na]⁺:354.1465; found:354.1460.

Compound 1bi: Yellow oil. ¹**H NMR (600 MHz, CDCl₃)** δ 7.52 – 7.49 (m, 2H), 7.49 – 7.44 (m, 1H), 7.39 (t, *J* = 7.6 Hz, 2H), 6.79 (d, *J* = 1.1 Hz, 2H), 6.77 (s, 1H), 5.43 (d, *J* = 1.8 Hz, 1H), 5.32 (s, 1H), 4.14 – 4.07 (m, 2H), 3.85 (s, 3H), 3.83 (s, 3H), 2.97 – 2.91 (m, 2H), 2.06 (s, 3H). ¹³**C NMR (150 MHz, CDCl₃)** δ 174.4, 154.9, 149.0, 147.8, 142.3, 132.4, 130.8, 130.6, 128.7, 122.0, 121.0, 119.7, 112.1, 111.3, 93.9, 82.9, 55.9, 55.8, 46.4, 34.4, 19.0. **HRMS** m/z (ESI⁺) calcd for C₂₃H₂₃NNaO₄[M+Na]⁺:400.1519; found:400.1512.

Compound 1bj: Colorless oil. ¹H NMR (600 MHz, CDCl₃) δ 7.53 – 7.50 (m, 2H), 7.47 – 7.44 (m, 1H), 7.39 (dd, *J* = 8.2, 6.8 Hz, 2H), 5.48 (dt, *J* = 2.7, 1.2 Hz, 2H), 3.92 – 3.86 (m, 2H), 2.09 (t, *J* = 1.2 Hz, 3H), 1.65 (dq, *J* = 13.2, 6.7 Hz, 1H), 1.57 – 1.52 (m, 2H), 0.96 (s, 3H), 0.95 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 174.5, 155.0, 142.7, 132.4, 130.7, 128.7, 121.7, 119.8, 93.6, 83.0, 43.8, 37.5, 26.3, 22.4, 18.9. HRMS m/z (ESI⁺) calcd for C₁₈H₂₁NNaO₂[M+Na]⁺:306.1465; found:306.1465.

Compound 1bk: Orange oil. ¹H NMR (600 MHz, CDCl₃) δ 7.54 – 7.50 (m, 2H), 7.48 – 7.44 (m, 1H), 7.41 – 7.37 (m,

2H), 5.49 (dd, J = 3.3, 1.6 Hz, 2H), 3.86 – 3.82 (m, 2H), 2.09 (t, J = 1.3 Hz, 3H), 1.74 – 1.66 (m, 2H), 0.97 (t, J = 7.4 Hz, 3H).
¹³C NMR (150 MHz, CDCl₃) δ 174.5, 155.1, 142.7, 132.5, 130.7, 128.7, 121.8, 119.8, 93.7, 83.0, 46.8, 22.0, 19.0, 11.4. HRMS m/z (ESI⁺) calcd for C₁₆H₁₇NNaO₂[M+Na]⁺: 278.1151; found: 278.1151.

Compound 1bl: Orange oil. ¹H NMR (600 MHz, CDCl₃) δ 7.52 (dd, *J* = 8.0, 1.3 Hz, 2H), 7.49 – 7.45 (m, 1H), 7.39 (t, *J* = 7.6 Hz, 2H), 5.64 (s, 1H), 5.54 (d, *J* = 1.7 Hz, 1H), 4.09 (t, *J* = 7.0 Hz, 2H), 2.79 (t, *J* = 7.0 Hz, 2H), 2.16 (s, 3H), 2.11 (d, *J* = 1.3 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 174.3, 154.9, 142.1, 132.5, 130.8, 128.7, 122.8, 119.7, 94.3, 82.9, 43.5, 32.7, 19.0, 15.4. HRMS m/z (ESI⁺) calcd for C₁₆H₁₇NNaO₂S[M+Na]⁺:310.0872; found:310.0879.

Compound 1bm: Yellow oil. ¹**H NMR (600 MHz, CDCl₃)** δ 7.54 – 7.51 (m, 2H), 7.48 – 7.45 (m, 1H), 7.39 (t, *J* = 7.7 Hz, 2H), 5.56 (s, 1H), 5.54 (d, *J* = 1.7 Hz, 1H), 4.20 – 4.11 (m, 4H), 2.70 (t, *J* = 7.1 Hz, 2H), 2.10 (s, 3H), 1.25 (t, *J* = 7.1 Hz, 3H). ¹³**C NMR (150 MHz, CDCl₃)** δ 174.2, 171.1, 154.7, 142.2, 132.5, 130.9, 128.7, 122.7, 119.7, 94.3, 82.7, 60.8, 41.0, 33.4, 18.9, 14.1. **HRMS** m/z (ESI⁺) calcd for C₁₈H₁₉NNaO₄[M+Na]⁺:336.1206; found:336.1210.

Compound 1bn: Yellow oil. ¹**H NMR (600 MHz, CDCl₃)** δ 7.55 – 7.51 (m, 2H), 7.51 – 7.47 (m, 1H), 7.41 (dd, *J* = 8.4, 7.0 Hz, 2H), 5.66 (d, *J* = 1.1 Hz, 1H), 5.62 (q, *J* = 1.6 Hz, 1H), 4.17 (t, *J* = 6.9 Hz, 2H), 2.79 (t, *J* = 6.9 Hz, 2H), 2.13 (t, *J* = 1.3 Hz, 3H). ¹³**C NMR (150 MHz, CDCl₃)** δ 173.9, 154.5, 141.6, 132.5, 131.2, 128.8, 123.8, 119.3, 117.0, 95.7, 82.3, 40.2, 19.0, 17.1. **HRMS** m/z (ESI⁺) calcd for C₁₆H₁₄N₂NaO₂[M+Na]⁺: 289.0947; found: 289.0949.

Compound 1bo: White solid, MP: 57.9- 58.2 $^{\circ}$ C. ¹H NMR (600 MHz, CDCl₃) δ 7.50 – 7.42 (m, 3H), 7.42 – 7.38 (m,

1H), 7.33 – 7.28 (m, 4H), 7.26 (dt, J = 6.4, 1.4 Hz, 2H), 5.74 – 5.71 (m, 1H), 5.54 (q, J = 1.6 Hz, 1H), 2.07 (t, J = 1.3 Hz, 3H).
¹³C NMR (150 MHz, CDCl₃) δ 173.3, 154.5, 141.5, 138.0, 132.9, 130.8, 129.4, 128.8, 128.7, 128.5, 122.4, 119.5, 94.5, 82.7, 18.8. HRMS m/z (ESI⁺) calcd for C₁₉H₁₅NNaO₂ [M+Na]⁺: 312.0995; found: 312.0991.

2) Characterization data of products

4-([1,1'-biphenyl]-4-yliodomethylene)-1-benzyl-3-(iodomethyl)-3-methylpyrrolidine-2,5-dione(3aa) (2: 1 Z/E mixture) Orange foamy, MP:51.8- 53.5 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.60 – 7.51 (m, 4H), 7.39 (ddt, *J* = 9.4, 7.4, 1.6 Hz, 3.33H), 7.36 – 7.15 (m, 6.67H), 4.75 (s, 1.34H), 4.60 (s, 0.66H), 4.18 (d, *J* = 10.1 Hz, 0.33H), 3.47 (d, *J* = 10.1 Hz, 0.33H), 3.28 (d, *J* = 10.0 Hz, 0.67H), 2.63 (d, *J* = 10.0 Hz, 0.67H), 1.73 (s, 1H), 1.30 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 177.8, 176.2, 166.1, 164.1, 143.8, 142.4, 142.3, 142.1, 140.3, 139.7, 137.1, 136.0, 135.4, 135.4, 129.2, 129.1, 128.9, 128.9, 128.8, 128.7, 128.3, 128.2, 128.1, 127.9, 127.6, 127.4, 127.2, 127.0, 126.9, 116.9, 106.5, 51.5, 51.3, 43.5, 42.8, 23.5, 20.6, 9.8, 7.3. HRMS m/z (ESI⁺) calcd for C₂₆H₂₁l₂NNaO₂[M+Na]⁺:655.9554; found:655.9534.

1-benzyl-4-((4-ethoxyphenyl)iodomethylene)-3-(iodomethyl)-3-methylpyrrolidine-2,5-dione (3ab) (1.63:1 Z/E mixture) Yellow solid, MP:85.5- 86.1 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.49 – 7.43 (m, 1.38H), 7.35 – 7.31 (m, 2H), 7.31 – 7.26 (m, 2.38H), 7.26 – 7.21 (m, 1.24H), 6.93 – 6.83 (m, 2H),4.80 (s, 1.24H), 4.66 (s, 0.76H), 4.24 (d, *J* = 10.0 Hz, 0.38H), 4.06 (qd, *J* = 7.0, 1.2 Hz, 2H), 3.52 (d, *J* = 10.0 Hz, 0.38H), 3.34 (d, *J* = 10.0 Hz, 0.62H), 2.65 (d, *J* = 9.9 Hz, 0.62H), 1.77 (s, 1.14H), 1.43 (td, *J* = 7.0, 5.6 Hz, 3H), 1.33 (s, 1.86H). ¹³C NMR (100 MHz, CDCl₃) δ 177.9, 176.2, 166.3, 164.2, 159.9, 159.7, 137.0, 136.4, 135.9, 135.9, 135.5, 135.4, 129.2, 129.1, 128.9, 128.8, 128.7, 128.2, 128.0, 127.6, 118.1, 114.3, 114.0, 107.3, 63.9, 63.7, 51.5, 51.3, 43.4, 42.8, 23.5, 20.7, 15.0, 14.9, 9.8, 7.5. HRMS m/z (ESI⁺) calcd for C₂₂H₂₁l₂NNaO₃[M+Na]⁺:623.9503; found:623.9513.

1-benzyl-4-(iodo(4-(methylthio)phenyl)methylene)-3-(iodomethyl)-3-methylpyrrolidine-2,5-dione (3ac) (2.22:1 Z/E mixture) Yellow solid, MP: 107.1- 107.9 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.49 – 7.44 (m, 1.38H), 7.41 – 7.31 (m, 2.31H), 7.30 – 7.17 (m, 4.69H), 7.17 – 6.95 (m, 0.62H), 4.81 (s, 1.38H), 4.66 (s, 0.62H), 4.22 (d, *J* = 10.1 Hz, 0.31H), 3.52 (d, *J* = 10.0 Hz, 0.31H), 3.35 (d, *J* = 10.0 Hz, 0.69H), 2.65 (d, *J* = 10.0 Hz, 0.69H), 2.51 (s, 2.07H), 2.50 (s, 0.93H), 1.77 (s, 0.93H), 1.34 (s, 2.07H). ¹³C NMR (150 MHz, CDCl₃) δ 177.6, 176.0, 166.0, 164.0, 141.0, 141.0, 140.7, 139.7, 136.8, 135.9, 135.2, 129.0, 128.7, 128.6, 128.5, 128.0, 127.9, 127.5, 125.2, 125.2, 116.6, 106.2, 51.3, 51.1, 43.3, 42.6, 23.3, 20.4, 15.1, 15.1, 9.6, 7.1. HRMS m/z (ESI⁺) calcd for C₂₁H₁₉l₂NNaO₂S[M+Na]⁺: 625.9118; found:625.9127.

4-((1-benzyl-4-(iodomethyl)-4-methyl-2,5-dioxopyrrolidin-3-ylidene)iodomethyl)

benzonitrile (3ad) (1.33:1 Z/E mixture) Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.73 (d, *J* = 7.8 Hz, 1.14H), 7.70 – 7.65 (m, 1H), 7.48 – 7.42 (m, 1.14H), 7.40 – 7.22 (m, 5.72H), 4.81 (s, 1.14H), 4.64 (s, 0.86H), 4.17 (d, *J* = 10.2 Hz, 0.43H), 3.53 (d, *J* = 10.1 Hz, 0.43H), 3.37 (d, *J* = 10.2 Hz, 0.57H), 2.48 (d, *J* = 10.2 Hz, 0.57H), 1.78 (s, 1.29H), 1.32 (s, 1.71H). ¹³C NMR (100 MHz, CDCl₃) δ 177.4, 175.6, 165.6, 164.0, 149.0, 147.5, 138.7, 136.9, 135.1, 135.0, 132.2, 129.2, 128.9, 128.8, 128.7, 128.3, 128.2, 127.5, 118.4, 117.8, 113.5, 112.8, 112.2, 102.7, 51.4, 51.1, 43.6, 42.9, 23.5, 20.3, 9.0, 6.7. HRMS m/z (ESI⁺) calcd for C₂₁H₁₆I₂N₂NaO₂[M+Na]⁺:604.9193; found:604.9183.

1-benzyl-4-(iodo(4-(trifluoromethyl)phenyl)methylene)-3-(iodomethyl)-3-methylpyrrolidine-2,5-dione (3ae) (1.78:1 Z/E mixture) Yellowish oil. ¹H NMR (600 MHz, CDCl₃) δ 7.69 (s, 1.28H), 7.67 – 7.60 (m, 1.28H), 7.49 – 7.44 (m, 1.28H), 7.39 (d, *J* = 8.2 Hz, 0.64H), 7.37 – 7.22 (m, 4.52H), 4.82 (s, 1.28H), 4.65 (s, 0.72H), 4.20 (d, *J* = 10.1 Hz, 0.36H), 3.54 (d, *J* = 10.1 Hz, 0.36H), 3.36 (d, *J* = 10.1 Hz, 0.64H), 2.52 (d, *J* = 10.1 Hz, 0.64H), 1.79 (s, 1.08H), 1.32 (s, 1.92H). ¹³C NMR (150 MHz, CDCl₃) δ 177.4, 175.7, 165.6, 163.9, 148.0, 146.7, 138.2, 136.5, 135.0, 135.0, 131.7, 131.5, 131.3, 131.1, 131.1, 130.9, 130.7, 130.5, 129.1, 128.7, 128.6, 128.1, 128.0, 127.0, 125.9, 125.8, 125.8, 125.3, 125.3, 125.2, 125.2, 124.6, 124.3, 122.8, 122.5, 113.4, 103.6, 51.2, 51.0, 43.4, 42.7, 23.3, 20.2, 9.1, 6.7. HRMS m/z (ESI⁺) calcd for C₂₁H₁₆F₃I₂NNaO₂[M+Na]⁺:647.9115; found:647.9111.

1-benzyl-4-((4-fluorophenyl)iodomethylene)-3-(iodomethyl)-3-methylpyrrolidine-2,5-dione (3af) (1.7:1 Z/E mixture) Orange solid, MP:78.5- 79.9 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.49 – 7.36 (m, 1.37H), 7.29 – 7.15 (m, 5.26H), 7.02 (dt, *J* = 17.6, 8.5 Hz, 2.37H), 4.74 (s, 1.26H), 4.59 (s, 0.74H), 4.15 (d, *J* = 10.1 Hz, 0.37H), 3.46 (d, *J* = 10.1 Hz, 0.37H), 3.29 (d, *J* = 10.0 Hz, 0.63H), 2.50 (d, *J* = 10.1 Hz, 0.63H), 1.71 (s, 1.11H), 1.26 (s, 1.89H). ¹³C NMR (100 MHz, CDCl₃) δ 177.7, 176.0, 166.0, 164.2, 164.1, 164.1, 161.8, 161.6, 140.9, 140.8, 139.7, 139.7, 137.7, 136.5, 135.3, 129.2, 129.1, 129.0, 128.9, 128.8, 128.7, 128.2, 128.1, 115.6, 115.4, 105.2, 51.4, 51.2, 43.5, 42.8, 23.4, 20.5, 9.5, 7.1. HRMS m/z (ESI⁺) calcd for C₂₀H₁₆Fl₂NNaO₂[M+Na]⁺:597.9147; found:597.9138.

1-benzyl-4-((4-chlorophenyl)iodomethylene)-3-(iodomethyl)-3-methylpyrrolidine-2,5-dione (3ag) (2:1 Z/E mixture) Yellow foamy, MP: 56.4- 57.1 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.50 – 7.44 (m, 1.34H), 7.40 (d, J = 7.6 Hz, 1.65H), 7.37 – 7.26 (m, 4.34H), 7.23 (dd, J = 8.3, 1.9 Hz, 1H), 7.11 (s, 0.67H), 4.81 (s, 1.34H), 4.65 (s, 0.66H), 4.20 (d, J = 10.1 Hz, 0.33H), 3.52 (d, J = 10.1 Hz, 0.33H), 3.36 (d, J = 10.1 Hz, 0.67H), 2.58 (d, J = 10.1 Hz, 0.67H), 1.77 (s, 1H), 1.33 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 177.7, 176.0, 166.0, 164.1, 143.2, 142.0, 137.9, 136.5, 135.6, 135.3, 135.3, 135.3, 129.2, 128.9, 128.8, 128.7, 128.6, 128.4, 128.3, 128.1, 114.8, 104.7, 51.4, 51.2, 43.5, 42.9, 23.5, 20.5, 9.4, 7.0. HRMS m/z (ESI⁺) calcd for C₂₀H₁₆Cll₂NNaO₂ [M+Na]⁺: 613.8851; found:613.8865.

1-benzyl-4-((4-bromophenyl)iodomethylene)-3-(iodomethyl)-3-methylpyrrolidine-2,5-dione (3ah) (2:1 Z/E mixture) Yellow foamy, MP:50.9- 51.5 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.56 (d, *J* = 8.0 Hz, 1.34H), 7.53 – 7.48 (m, 0.67H), 7.48 – 7.43 (m, 1.32H), 7.41 – 7.23 (m, 4.34H), 7.16 (d, *J* = 8.4 Hz, 0.67H), 7.06 (d, *J* = 27.3 Hz, 0.66H), 4.81 (s, 1.34H), 4.65 (s, 0.66H), 4.20 (d, *J* = 10.1 Hz, 0.33H), 3.52 (d, *J* = 10.1 Hz, 0.33H), 3.36 (d, *J* = 10.1 Hz, 0.67H), 2.58 (d, *J* = 10.0 Hz, 0.67H), 1.77 (s, 1H), 1.33 (s, 2H). ¹³C NMR (150 MHz, CDCl3) δ 177.5, 175.8, 165.8, 163.9, 143.5, 142.2, 137.7, 136.3, 135.1, 135.1, 131.6, 131.4, 129.0, 128.8, 128.6, 128.6, 128.4, 128.1, 128.0, 123.6, 123.5, 114.5, 104.5, 51.2, 51.0, 43.3, 42.7, 23.3, 20.3, 9.2, 6.8. HRMS m/z (ESI⁺) calcd for C₂₀H₁₆Brl₂NNaO₂ [M+Na]⁺:657.8346; found:657.8354.

1-benzyl-4-((2-chlorophenyl)iodomethylene)-3-(iodomethyl)-3-methylpyrrolidine-2,5-dione (**3ai**) (1.27:1 Z/E mixture) Pale yellow solid, MP: 88.2- 89.0 °C. ¹H NMR (**600** MHz, **CDCl**₃) δ 7.48 (ddd, *J* = 9.6, 7.2, 1.7 Hz, 1.56H), 7.44 (dd, *J* = 7.9, 1.3 Hz, 0.56H), 7.41 (dd, *J* = 7.9, 1.2 Hz, 0.44H), 7.39 – 7.26 (m, 5.56H), 7.26 – 7.23 (m, 0.88H), 4.81 (s, 1.12H), 4.69 – 4.60 (m, 0.88H), 4.21 (d, *J* = 10.0 Hz, 0.44H), 3.54 (d, *J* = 10.0 Hz, 0.44H), 3.35 (d, *J* = 10.0 Hz, 0.56H), 2.77 (d, *J* = 9.9 Hz, 0.56H), 1.80 (s, 1.32H), 1.28 (s, 1.68H). ¹³C NMR (150 MHz, CDCl₃) δ 177.6, 176.0, 165.8, 163.7, 142.7, 140.8, 138.7, 136.0, 135.1, 131.4, 130.8, 130.6, 130.1, 130.0, 129.6, 129.3, 128.7, 128.6, 128.5, 128.1, 127.9, 127.9, 127.0, 126.8, 126.7, 110.9, 102.0, 51.2, 50.9, 43.4, 42.6, 20.7, 20.0, 10.3, 6.8. HRMS m/z (ESI⁺) calcd for C₂₀H₁₆Cll₂NNaO₂ [M+Na]⁺:613.8851; found:613.8856.

1-benzyl-4-((2-chlorophenyl)iodomethylene)-3-(iodomethyl)-3-methylpyrrolidine-2,5-dione (3ai') (1:1.7 Z/E mixture) Pale yellow solid, MP:102.1- 103.6 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.53 – 7.50 (m, 0.74H), 7.47 – 7.40 (m, 1.26H), 7.35 – 7.31 (m, 2.22H), 7.31 – 7.27 (m, 2.52H), 7.26 – 7.23 (m, 1.26H), 7.12 (dt, J = 7.6, 2.3 Hz, 1H), 4.82 (s, 0.74H), 4.68 – 4.61 (m, 1.26H), 4.21 (d, J = 10.2 Hz, 0.63H), 3.47 (d, J = 10.0 Hz, 0.63H), 3.20 (d, J = 9.8 Hz, 0.37H), 2.96 (d, J = 9.8 Hz, 0.37H), 1.80 (s, 1.89H), 1.28 (s, 1.11H). ¹³C NMR (150 MHz, CDCl₃) δ 177.6, 176.0, 166.0, 163.8, 142.6, 140.6, 138.6, 136.1, 135.1, 132.0, 130.8, 130.6, 130.4, 130.0, 129.9, 129.5, 129.0, 128.8, 128.7, 128.7, 128.6, 142.6, 140.6, 138.6, 136.1, 135.1, 132.0, 130.8, 130.6, 130.4, 130.0, 129.9, 129.5, 129.0, 128.8, 128.7, 128.7, 128.6, 142.6, 140.6, 138.6, 136.1, 135.1, 132.0, 130.8, 130.6, 130.4, 130.0, 129.9, 129.5, 129.0, 128.8, 128.7, 128.7, 128.6, 142.6, 140.6, 138.6, 136.1, 135.1, 132.0, 130.8, 130.6, 130.4, 130.0, 129.9, 129.5, 129.0, 128.8, 128.7, 128.7, 128.6, 142.6, 140.6, 138.6, 136.1, 135.1, 132.0, 130.8, 130.6, 130.4, 130.0, 129.9, 129.5, 129.0, 128.8, 128.7, 128.7, 128.6, 142.6, 140.6, 138.6, 136.1, 135.1, 132.0, 130.8, 130.6, 130.4, 130.0, 129.9, 129.5, 129.0, 128.8, 128.7, 128.7, 128.6, 142.6, 140.6, 138.6, 136.1, 135.1, 132.0, 130.8, 130.6, 130.4, 130.0, 129.9, 129.5, 129.0, 128.8, 128.7, 128.7, 128.6, 142.6, 140.6, 138.6, 136.4, 130.6, 130.4, 130.0, 129.9, 129.5, 129.0, 128.8, 128.7, 128.7, 128.6, 142.6, 140.6,

128.5, 128.1, 127.9, 127.5, 126.7, 126.3, 111.3, 102.9, 51.2, 50.8, 43.4, 42.6, 22.9, 20.9, 7.4, 5.0. **HRMS** m/z (ESI⁺) calcd for C₂₀H₁₆Cll₂NNaO₂ [M+Na]⁺:613.8851; found:613.8856.

1-benzyl-4-((3-chlorophenyl)iodomethylene)-3-(iodomethyl)-3-methylpyrrolidine-2,5-dione (3aj) (2:1 Z/E mixture) Orange foamy,MP:54.2- 54.8 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.55 – 7.44 (m, 1.67H), 7.31 (m, 6.66H), 7.16 (d, *J* = 7.1 Hz, 0.67H), 4.81 (s, 1.34H), 4.66 (s, 0.66H), 4.20 (d, *J* = 10.1 Hz, 0.33H), 3.52 (d, *J* = 10.1 Hz, 0.33H), 3.37 (d, *J* = 10.1 Hz, 0.67H), 2.59 (d, *J* = 10.1 Hz, 0.67H), 1.77 (s, 1H), 1.34 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 178.0, 176.3, 166.2, 164.2, 146.6, 145.2, 138.4, 136.8, 135.6, 134.3, 130.0, 129.9, 129.7, 129.5, 129.2, 129.1, 129.1, 128.6, 128.5, 127.2, 125.3, 114.0, 104.3, 51.7, 51.5, 43.9, 43.2, 23.8, 20.7, 9.6, 7.2. HRMS m/z (ESI⁺) calcd for C₂₀H₁₆Cll₂NNaO₂ [M+Na]⁺:613.8851; found:613.8834.

1-benzyl-4-(iodo(m-tolyl)methylene)-3-(iodomethyl)-3-methylpyrrolidine-2,5-dione (3ak) (1.7:1 Z/E mixture) White solid, MP:100.1- 101.8 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.50 – 7.42 (m, 1.26H), 7.40 – 7.20 (m, 5.48H), 7.17 – 7.08 (m, 1H), 6.95 (s, 0.63H), 4.81 (s, 0.63H), 4.65 (s, 1.26H), 4.23 (d, J = 10.0 Hz, 0.74H), 3.52 (d, J = 10.0 Hz, 0.37H), 3.32 (d, J = 9.8 Hz, 0.37H), 2.71 – 2.57 (m, 0.63H), 2.36 (s, 3H), 1.78 (s, 1.11H), 1.32 (s, 1.89H). ¹³C NMR (150 MHz, CDCl₃) δ 177.7, 176.1, 166.0, 163.8, 144.8, 143.3, 137.8, 136.8, 135.4, 135.3, 135.2, 130.1, 130.1, 129.0, 128.8, 128.6, 128.5, 128.0, 127.9, 127.9, 127.1, 123.7, 117.0, 106.8, 51.2, 51.0, 43.3, 42.6, 23.2, 21.5, 21.5, 20.4, 9.5, 7.0. HRMS m/z (ESI⁺) calcd for C₂₁H₁₉I₂NNaO₂[M+Na]⁺:593.9397; found:593.9389.

1-benzyl-4-(iodo(naphthalen-2-yl)methylene)-3-(iodomethyl)-3-methylpyrrolidine-2,5-dione (3al) (2:1 Z/E mixture) Yellow solid. MP:120.0- 121.3 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.02 – 7.75 (m, 3.67H), 7.73 – 7.45 (m, 4H), 7.42 – 7.26 (m, 3.66H), 7.24 (t, *J* = 2.4 Hz, 0.67H), 4.84 (s, 1.34H), 4.65 (s, 0.66H), 4.28 (d, *J* = 10.1 Hz, 0.33H), 3.57

(d, J = 10.1 Hz, 0.33H), 3.29 (d, J = 25.3 Hz, 0.67H), 2.62 (d, J = 94.9 Hz, 0.67H), 1.83 (s, 1H), 1.42 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 177.9, 176.2, 166.2, 164.1, 142.3, 140.7, 137.4, 136.2, 135.4, 135.4, 133.6, 133.3, 132.8, 129.3, 129.0, 128.8, 128.8, 128.7, 128.2, 128.1, 128.1, 128.0, 127.7, 127.4, 127.2, 126.7, 126.3, 124.7, 116.9, 106.9, 51.3, 43.5, 42.8, 20.6, 7.3. HRMS m/z (ESI⁺) calcd for C₂₄H₁₉I₂NNaO₂[M+Na]⁺: 629.9397; found:629.9402.

1-benzyl-4-((3,4-dimethoxyphenyl)iodomethylene)-3-(iodomethyl)-3-methylpyrrolidine-2,5-dione (3am) (2:1 Z/E mixture) Orange solid, MP:115.1- 116.3 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.51 – 7.43 (m, 1.34H), 7.42 – 7.27 (m, 3.33H), 7.26 – 7.19 (m, 0.33H), 7.02 (s, 0.67H), 6.93 (dd, *J* = 8.3, 2.1 Hz, 0.33H), 6.89 – 6.78 (m, 1.33H), 6.73 (s, 0.67H), 4.81 (s, 1.34H), 4.67 (s, 0.66H), 4.24 (d, *J* = 10.0 Hz, 0.33H), 3.91 (d, *J* = 2.6 Hz, 5H), 3.84(s, 1H), 3.53 (d, *J* = 10.1 Hz, 0.33H), 3.37 (d, *J* = 10.0 Hz, 0.67H), 2.66 (s, 0.67H), 1.78 (s, 1H), 1.37 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 177.8, 176.2, 166.2, 164.1, 150.1, 149.8, 148.6, 148.5, 137.3, 136.7, 136.1, 135.9, 135.5, 135.4, 129.2, 129.0, 128.8, 128.7, 128.2, 128.1, 120.4, 117.7, 111.0, 110.5, 110.4, 106.9, 56.3, 56.2, 56.1, 56.0, 51.6, 51.3, 43.4, 42.8, 20.7, 7.6. HRMS m/z (ESI⁺) calcd for C₂₂H₂₁I₂NNaO₄[M+Na]⁺: 639.9452; found:639.9459.

1-benzyl-4-(iodo(mesityl)methylene)-3-(iodomethyl)-3-methylpyrrolidine-2,5-dione (3an) (1:1.33 Z/E mixture) White solid, MP: 138.6- 139.1 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.55 – 7.50 (m, 0.84H), 7.35 – 7.26 (m, 2.85H), 7.26 – 7.21 (m, 1.29H), 6.91 (s, 0.57H), 6.88 (s, 0.43H), 6.87 (s, 0.57H), 6.85 (s, 0.43H), 4.81 (s, 0.86H), 4.68 – 4.59 (m, 1.14H), 4.26 (d, *J* = 10.0 Hz, 0.57H), 3.48 (d, *J* = 10.0 Hz, 0.57H), 3.16 (d, *J* = 9.8 Hz, 0.43H), 2.90 (d, *J* = 9.8 Hz, 0.43H), 2.39 (s, 1.29H), 2.36 – 2.30 (m, 4.71H), 2.20 (s, 1.29H), 2.12 (s, 1.71H), 1.80 (s, 1.71H), 1.21 (s, 1.29H). ¹³C NMR (150 MHz, CDCl₃) δ 177.7, 176.3, 166.2, 163.6, 140.2, 139.2, 138.6, 137.4, 137.2, 135.2, 135.1, 134.6, 133.9, 133.5, 133.3, 132.0, 129.6, 128.9, 128.8, 128.7, 128.7, 128.6, 128.5, 128.5, 128.1, 127.9, 118.1, 108.6, 51.4, 50.8, 43.4, 42.5, 21.2, 21.2, 21.0, 20.9, 20.8, 20.4, 19.7, 19.4, 8.2, 6.2. HRMS m/z (ESI⁺) calcd for C₂₃H₂₃I₂NNaO₂ [M+Na]⁺: 621.9710; found:621.9710.

(Z)-1-benzyl-4-(1-iodoethylidene)-3-(iodomethyl)-3-methylpyrrolidine-2,5-dione (3ao) Yellow solid, MP:78.3-79.1 °C ¹H NMR (600 MHz, CDCl₃) δ 7.42 – 7.37 (m, 2H), 7.31 (ddt, *J* = 8.0, 6.4, 1.1 Hz, 2H), 7.28 – 7.26 (m, 1H), 4.78 – 4.69 (m, 2H), 4.10 (d, *J* = 10.0 Hz, 1H), 3.44 (d, *J* = 10.0 Hz, 1H), 3.39 (s, 3H), 1.66 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 177.7, 165.7, 135.3, 135.0, 128.7, 128.6, 128.0, 119.0, 51.3, 42.5, 34.5, 20.4, 7.3. HRMS m/z (ESI⁺) calcd for C₁₅H₁₅I₂NNaO₂[M+Na]⁺:517.9084; found:517.9094.

1-benzyl-4-(iodo(phenyl)methylene)-3-(iodomethyl)-3-methylpyrrolidine-2,5-dione (3ba) (1.63:1 Z/E mixture) Yellowish solid, MP:104.6- 105.5 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.45 – 7.38 (m, 1.62H), 7.38 – 7.26 (m, 3.76H), 7.23 (dt, *J* = 6.6, 2.5 Hz, 2.49H), 7.21 – 7.16 (m, 1.52H), 7.15-7.05 (m, 0.62H), 4.75 (s, 1.24H), 4.58 (s, 0.76H), 4.17 (d, *J* = 10.0 Hz, 0.38H), 3.46 (d, *J* = 10.0 Hz, 0.38H), 3.25 (d, *J* = 10.0 Hz, 0.62H), 2.54 (d, *J* = 9.9 Hz, 0.62H), 1.72 (s, 1.14H), 1.25 (s, 1.86H). ¹³C NMR (100 MHz, CDCl₃) δ 177.8, 176.2, 166.1, 164.0, 144.9, 143.6, 137.2, 135.8, 135.4, 129.5, 129.4, 129.2, 128.9, 128.8, 128.7, 128.3, 128.2, 128.1, 126.8, 116.8, 106.6, 51.4, 51.2, 43.5, 42.8, 23.4, 20.5, 9.7, 7.2. HRMS m/z (ESI⁺) calcd for C₂₀H₁₇I₂NNaO₂[M+Na]⁺:579.9241; found:579.9242.

1-([1,1'-biphenyl]-4-ylmethyl)-4-(iodo(phenyl)methylene)-3-(iodomethyl)-3-methylpyrrolidine-2,5-dione (3bb) (2:1 Z/E mixture) Pale orange foamy, MP:60.0- 60.8 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.61 – 7.52 (m, 4.67H), 7.52 – 7.48 (m, 0.99H), 7.47 – 7.37 (m, 5H), 7.37 – 7.29 (m, 2.67H), 7.19 (s, 0.67H), 4.86 (d, J = 1.3 Hz, 1.34H), 4.70 (s, 0.67H), 4.25 (d, J = 10.1 Hz, 0.33H), 3.55 (d, J = 10.0 Hz, 0.33H), 3.34 (d, J = 10.0 Hz, 0.67H), 2.63 (d, J = 10.0 Hz, 0.67H), 1.81 (s, 1H), 1.34 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 177.9, 176.3, 166.2, 164.0, 145.0, 143.6, 141.1, 141.0, 140.9, 140.8, 137.2, 135.9, 134.4, 129.7, 129.5, 129.4, 129.0, 128.9, 128.5, 128.3, 127.6, 127.5, 127.4, 127.3, 127.2, 126.9, 116.9, 106.7, 51.5, 51.2, 43.2, 42.5, 23.4, 20.6, 9.8, 7.2. HRMS m/z (ESI⁺) calcd for C₂₆H₂₁I₂NNaO₂[M+Na]⁺:655.9554; found:655.9537. 1H NMR (400 MHz, Chloroform-d) δ

1-(4-ethoxybenzyl)-4-(iodo(phenyl)methylene)-3-(iodomethyl)-3-methylpyrrolidine-2,5-dione (3bc) (2:1 Z/E mixture) White solid, MP:97.2- 98.1 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.46-7.26 (m, 2.98H), 7.26 – 7.24(m, 0.67H), 7.23-7.11 (m, 2.68H), 7.10-6.95 (m, 0.67H), 6.74 – 6.68 (m, 1.34H), 6.67 – 6.62 (m, 0.66H), 4.62 (s, 1.34H), 4.45 (s, 0.67H), 4.09 (d, *J* = 10.1 Hz, 0.33H), 3.91 – 3.81 (m, 2H), 3.38 (d, *J* = 10.1 Hz, 0.33H), 3.18 (d, *J* = 10.0 Hz, 0.67H), 2.48 (d, *J* = 10.0 Hz, 0.67H), 1.64 (s, 1H), 1.26 (dt, *J* = 8.7, 7.0 Hz, 3H), 1.17 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 177.8, 176.2, 166.2, 164.0, 158.9, 158.8, 145.0, 143.6, 137.3, 135.9, 130.7, 130.5, 129.5, 129.3, 128.3, 127.5, 126.9, 116.6, 114.6, 114.5, 106.4, 63.6, 63.6, 51.3, 51.1, 42.9, 42.3, 23.3, 20.5, 15.0, 15.0, 9.8, 7.2. HRMS m/z (ESI⁺) calcd for C₂₂H₂₁I₂NNaO₃[M+Na]⁺:623.9503; found:623.9507.

1-(benzo[d][1,3]dioxol-5-ylmethyl)-4-(iodo(phenyl)methylene)-3-(iodomethyl)-3-methylpyrrolidine-2,5-dione (**3bd**) (1.5:1 Z/E mixture) Orange solid, MP:119.8- 120.3 °C. ¹H NMR (**400** MHz, **CDCl**₃) δ 7.58 – 7.26 (m, 4.8H), 7.18 (t, J = 7.8 Hz, 0.6H), 6.97 (s, 0.8H), 6.95 (d, J = 1.8 Hz, 0.4H), 6.85 – 6.80 (m, 0.8H), 6.76 (d, J = 0.8 Hz, 0.6H), 6.74 (d, J = 0.8 Hz, 0.4H), 6.69 – 6.66 (m, 1.2H), 5.94 (s, 0.8H), 5.90 (s, 0.4H), 4.71 (d, J = 1.8 Hz, 1.2H), 4.55 (s, 0.8H), 4.23 (d, J = 10.1 Hz, 0.4H), 3.52 (d, J = 10.0 Hz, 0.4H), 3.31 (d, J = 10.0 Hz, 0.6H), 2.61 (d, J = 9.9 Hz, 0.6H), 1.78 (s, 1.2H), 1.31 (s, 1.8H). ¹³C NMR (100 MHz, CDCl₃) δ 177.8, 176.2, 166.1, 164.0, 147.8, 147.8, 147.5, 147.4, 144.9, 143.6, 137.2, 135.8, 129.5, 129.4, 129.1, 129.1, 128.3, 126.8, 123.0, 122.8, 116.8, 109.9, 109.6, 108.4, 108.3, 106.7, 101.3, 101.2, 51.3, 51.1, 43.2, 42.5, 23.3, 20.5, 9.8, 7.2. HRMS m/z (ESI⁺) calcd for C₂₁H₁₇I₂NNaO₄[M+Na]⁺:623.9139; found:623.9144.

4-(iodo(phenyl)methylene)-3-(iodomethyl)-3-methyl-1-(4-(methylsulfonyl)benzyl)

pyrrolidine-2,5-dione (3be) (1:1 Z/E mixture) Yellowish solid, MP:139.0- 139.7 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.80 – 7.73 (m, 1H), 7.72 – 7.64 (m, 1H), 7.58 – 7.48 (m, 1H), 7.44 – 7.35 (m, 1H), 7.34 – 7.17 (m, 3.5H), 7.17 – 7.11 (m,

1H), 7.03 (s, 0.5H), 4.79 - 4.66 (m, 1H), 4.56 (d, J = 3.9 Hz, 1H), 4.10 (d, J = 10.2 Hz, 0.5H), 3.37 (d, J = 10.2 Hz, 0.5H), 3.17 (d, J = 10.0 Hz, 0.5H), 2.88 (s, 1.5H), 2.85 (s, 1.5H), 2.47 (d, J = 10.0 Hz, 0.5H), 1.66 (s, 1.5H), 1.19 (s, 1.5H). ¹³C NMR (100 MHz, CDCl₃) δ 178.0, 176.4, 166.3, 164.1, 145.1, 143.8, 141.6, 141.5, 140.7, 140.6, 137.1, 135.8, 130.4, 130.1, 130.0, 129.8, 128.9, 128.7, 128.3, 128.2, 127.0, 118.1, 108.1, 51.9, 51.6, 45.0, 45.0, 43.1, 42.4, 23.7, 20.9, 10.1, 7.6. HRMS m/z (ESI⁺) calcd for C₂₂H₂₁I₂NNaO₄[M+Na]⁺:657.9016; found:657.9004.

1-(2-chlorobenzyl)-4-(iodo(phenyl)methylene)-3-(iodomethyl)-3-methylpyrrolidine-2,5-dione (3bf) (1.56:1 Z/E mixture) White solid, MP:147.3- 147.7 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.71 – 7.49 (m, 0.61H), 7.48 – 7.40 (m, 1.22H), 7.40 – 7.29 (m, 4.39H), 7.25 – 7.11 (m, 2.78H), 5.04 – 4.92 (m, 1.22H), 4.80 (q, *J* = 15.6 Hz, 0.78H), 4.27 (d, *J* = 10.1 Hz, 0.39H), 3.58 (d, *J* = 10.1 Hz, 0.39H), 3.36 (d, *J* = 10.0 Hz, 0.61H), 2.60 (d, *J* = 10.0 Hz, 0.61H), 1.85 (s, 1.17H), 1.39 (s, 1.83H). ¹³C NMR (150 MHz, CDCl₃) δ 177.5, 175.8, 165.9, 163.8, 144.7, 143.4, 136.9, 135.5, 133.2, 133.0, 132.2, 132.1, 129.6, 129.5, 129.4, 129.4, 129.2, 129.1, 128.9, 128.6, 128.4, 128.1, 126.9, 126.8, 126.6, 126.1, 125.4, 117.2, 106.9, 51.5, 51.3, 40.9, 40.3, 23.7, 20.7, 9.4, 7.1. HRMS m/z (ESI⁺) calcd for C₂₀H₁₆Cll₂NNaO₂[M+Na]⁺:613.8851; found:613.8844.

4-(iodo(phenyl)methylene)-3-(iodomethyl)-3-methyl-1-(2,4,6-trimethylbenzyl)pyrrolidine-2,5-dione (3bg) (1.78:1 Z/E mixture) Pale orange foamy, MP:46.3- 47.8 °C ¹H NMR (400 MHz, CDCl₃) δ 7.64 – 7.36 (m, 2.44H), 7.33 (td, J = 7.1, 1.4 Hz, 1.92H), 7.15 (d, J = 15.7 Hz, 0.64H), 6.86 (s, 1.28H), 6.81 (s, 0.72H), 4.92 – 4.77 (m, 1.28H), 4.66 (q, J = 14.7 Hz, 0.72H), 4.21 (d, J = 10.1 Hz, 0.36H), 3.47 (d, J = 10.1 Hz, 0.36H), 3.29 (d, J = 9.9 Hz, 0.64H), 2.56 (d, J = 10.0 Hz, 0.64H), 2.43 (s, 3.84H), 2.32 (s, 2.16H), 2.26 (s, 1.92H), 2.24 (s, 1.08H), 1.74 (s, 1.08H), 1.31 (s, 1.92H). ¹³C NMR (100 MHz, CDCl₃) δ 177.6, 176.0, 166.0, 163.9, 145.0, 143.6, 138.2, 138.1, 137.6, 137.5, 137.2, 135.8, 129.5, 129.4, 129.4, 129.3, 128.2, 127.8, 126.9, 116.7, 106.3, 51.4, 51.0, 38.9, 38.3, 23.7, 21.1, 21.1, 20.8, 20.7, 20.7, 9.8, 7.4. HRMS m/z (ESI⁺) calcd for C₂₃H₂₃I₂NNaO₂[M+Na]⁺:621.9710; found:621.9705.

4-(iodo(phenyl)methylene)-3-(iodomethyl)-3-methyl-1-(4-methylphenethyl)pyrrolidine-2,5-dione (3bh) (3:1 Z/E mixture) White solid, MP: 101.7- 103.1 °C. ¹**H NMR (600 MHz, CDCl₃)** δ 7.55 – 7.45 (m, 0.75H), 7.44 – 7.38 (m, 2H), 7.37 – 7.27 (m, 1.75H), 7.18 (d, *J* = 8.0 Hz, 2H), 7.12 (d, *J* = 7.8 Hz, 1.5H), 7.07 (s, 1H), 4.22 (d, *J* = 10.1 Hz, 0.25H), 3.86 (ddd, *J* = 9.9, 5.9, 2.2 Hz, 1.5H), 3.70 (dt, *J* = 9.3, 6.5 Hz, 0.5H), 3.51 (d, *J* = 10.0 Hz, 0.25H), 3.31 (d, *J* = 10.0 Hz, 0.75H), 2.99 – 2.92 (m, 1.5H), 2.87 – 2.78 (m, 0.5H), 2.62 (d, *J* = 10.0 Hz, 0.75H), 2.33 (s, 2.25H), 2.30 (s, 0.75H), 1.72 (s, 0.75H), 1.27 (s, 2.25H). ¹³**C NMR (150 MHz, CDCl₃)** δ 177.6, 176.0, 166.2, 164.1, 144.8, 143.4, 137.1, 136.3, 136.2, 135.7, 134.6, 134.5, 129.4, 129.3, 129.2, 128.8, 128.4, 128.1, 126.6, 126.3, 125.4, 116.2, 106.0, 51.1, 50.9, 41.0, 40.2, 33.2, 33.0, 23.1, 21.0, 20.2, 9.7, 7.1. **HRMS** m/z (ESI⁺) calcd for C₂₂H₂₁I₂NNaO₂[M+Na]⁺:607.9554; found:607.9551.

1-(3,4-dimethoxyphenethyl)-4-(iodo(phenyl)methylene)-3-(iodomethyl)-3-methylpyrrolidine-2,5-dione (3bi) (1.7:1 Z/E mixture) Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.51 – 7.36 (m, 2.52H), 7.36 – 7.24 (m, 1.85H), 7.21 – 7.10 (m, 0.63H), 6.83 – 6.76 (m, 1.89H), 6.75 – 6.67 (m, 1.11H), 4.20 (d, *J* = 10.1 Hz, 0.37H), 3.88 (s, 1.89H), 3.87 – 3.85 (m, 1.27H), 3.84 (s, 1.89H), 3.82 (s, 1.11H), 3.81 (s, 1.11H), 3.73 – 3.64 (m, 0.74H), 3.48 (d, *J* = 10.1 Hz, 0.37H), 3.28 (d, *J* = 10.0 Hz, 0.63H), 2.97 – 2.90 (m, 1.26H), 2.85 – 2.75 (m, 0.74H), 2.59 (d, *J* = 10.0 Hz, 0.63H), 1.70 (s, 1.11H), 1.23 (s, 1.89H). ¹³C NMR (100 MHz, CDCl₃) δ 177.5, 175.9, 166.1, 164.0, 148.8, 148.7, 147.7, 147.6, 144.7, 143.3, 136.9, 135.5, 130.0, 129.9, 129.3, 129.0, 128.0, 126.5, 120.8, 116.1, 111.9, 111.8, 111.2, 111.0, 106.0, 55.8, 55.8, 55.7, 51.0, 50.7, 40.7, 40.0, 33.0, 32.8, 22.9, 20.1, 9.5, 7.0. HRMS m/z (ESI⁺) calcd for C₂₃H₂₃I₂NNaO₄[M+Na]⁺: 653.9609; found653.9621.

4-(iodo(phenyl)methylene)-3-(iodomethyl)-1-isopentyl-3-methylpyrrolidine-2,5-dione (3bj)

(1.7:1 Z/E mixture) Yellow solid, MP:99.9- 101.3 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.52 – 7.36 (m, 2.52H), 7.36 – 7.27 (m, 1.85H), 7.24 – 7.07 (m, 0.63H), 4.23 (d, *J* = 10.0 Hz, 0.37H), 3.66 (td, *J* = 7.1, 2.2 Hz, 1.26H), 3.54 – 3.44 (m, 1.11H), 3.31 (dd, *J* = 9.9, 1.0 Hz, 0.63H), 2.63 (d, *J* = 9.9 Hz, 0.63H), 1.79 (s, 1.11H), 1.65 (dq, *J* = 13.1, 6.6 Hz, 1H), 1.60 – 1.54 (m, 1.26H), 1.47 – 1.40 (m, 0.74H), 1.31 (s, 1.89H), 0.96 (dd, *J* = 6.5, 2.5 Hz, 3.78H), 0.88 (d, *J* = 6.5 Hz, 2.22H). ¹³C NMR (100 MHz, CDCl₃) δ 178.2, 176.6, 166.8, 164.7, 145.3, 143.9, 137.6, 136.2, 129.8, 129.6, 128.8, 128.6, 127.0, 116.5, 106.3, 51.5, 51.2, 38.7, 38.2, 36.7, 36.6, 26.6, 26.6, 23.5, 22.8, 22.8, 22.7, 20.7, 10.4, 7.8. HRMS m/z (ESI⁺) calcd for C₁₈H₂₁I₂NNaO₂[M+Na]⁺:559.9554; found:559.9554.

4-(iodo(phenyl)methylene)-3-(iodomethyl)-3-methyl-1-propylpyrrolidine-2,5-dione (3bk)

(1:1 Z/E mixture) White solid, MP:75.8- 76.2 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.53 – 7.28 (m, 4.5H), 7.25-7.10 (m, 0.5H), 4.24 (d, J = 10.0 Hz, 0.5H), 3.62 (ddd, J = 8.3, 6.3, 0.9 Hz, 1H), 3.53 (d, J = 10.1 Hz, 0.5H), 3.45 (dd, J = 7.8, 7.0 Hz, 1H), 3.32 (d, J = 10.0 Hz, 0.5H), 2.62 (d, J = 9.9 Hz, 0.5H), 1.80 (s, 1.5H), 1.71 (q, J = 7.4 Hz, 1H), 1.58 (dtd, J = 14.8, 7.4, 2.6 Hz, 1H), 1.33 (s, 1.5H), 0.98 (t, J = 7.4 Hz, 1.5H), 0.87 (t, J = 7.4 Hz, 1.5H). ¹³C NMR (100 MHz, CDCl₃) δ 177.8, 176.2, 166.3, 164.3, 144.8, 143.5, 137.2, 135.7, 129.3, 129.1, 128.1, 126.5, 116.0, 105.9, 51.1, 50.8, 41.3, 40.7, 23.2, 21.0, 20.9, 20.3, 11.5, 11.4, 9.8, 7.2. HRMS m/z (ESI⁺) calcd for C₁₆H₁₇I₂NNaO₂ [M+Na]⁺:531.9241; found:531.9236.

4-(iodo(phenyl)methylene)-3-(iodomethyl)-3-methyl-1-(2-(methylthio)ethyl)pyrrolidine-2,5-dione (3bl) (1.38:1 Z/E mixture) Yellow solid, MP:87.0- 88.8 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.11 (m, 4.58H), 7.08-6.95 (m, 0.42H), 4.09 (d, *J* = 10.1 Hz, 0.42H), 3.72 (td, *J* = 7.0, 2.5 Hz, 1.16H), 3.61 – 3.50 (m, 0.84H), 3.37 (d, *J* = 10.0 Hz, 0.42H), 3.16 (d, *J* = 10.0 Hz, 0.58H), 2.64 (t, *J* = 7.2 Hz, 1.16H), 2.54 – 2.49 (m, 0.84 H), 2.46 (d, *J* = 10.0 Hz, 0.58H), 2.03 (s, 1.74H), 1.92 (s, 1.26H), 1.67 (s, 1.26H), 1.20 (s, 1.74H). ¹³C NMR (100 MHz, CDCl₃) δ 177.8, 176.2, 166.3, 164.2, 145.0, 143.6, 137.2, 135.8, 129.6, 129.4, 128.5, 128.3, 126.8, 116.8, 106.7, 51.5, 51.3, 38.2, 37.6, 31.2, 31.1, 23.5, 20.6, 15.4, 15.3, 9.8, 7.3. HRMS m/z (ESI⁺) calcd for C₁₆H₁₇I₂NNaO₂S[M+Na]⁺: 563.8962; found:563.8963.

Ethyl (Z)-3-(4-(iodo(phenyl)methylene)-3-(iodomethyl)-3-methyl-2,5-dioxopyrrolidin-1-yl)propanoate (3bm) (2:1 Z/E mixture) Yellowish oil. ¹H NMR (600 MHz, CDCl₃) δ 7.57 – 7.38 (m, 2.67H), 7.38 – 7.33 (m, 1H), 7.30 (d, J = 7.4 Hz, 0.66H), 7.18 (s, 0.67H), 4.24 (d, J = 10.0 Hz, 0.33H), 4.16 (q, J = 7.1 Hz, 1.32H), 4.09 (q, J = 7.1 Hz, 0.67H), 4.02 – 3.92 (m, 1.34H), 3.80 (ddd, J = 8.1, 6.9, 3.8 Hz, 0.67H), 3.52 (d, J = 10.0 Hz, 0.33H), 3.32 (d, J = 10.1 Hz, 0.67H), 2.73 (ddd, J = 8.1, 6.9, 2.4 Hz, 1.34H), 2.64 (d, J = 10.0 Hz, 0.67H), 2.60 (s, 0.66H), 1.81 (s, 1H), 1.34 (s, 2H), 1.27 (t, J = 7.2 Hz, 2H), 1.21 (t, J = 7.2 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 177.4, 175.8, 170.5, 170.4, 165.9, 163.9, 144.7, 143.4, 136.9, 135.5, 129.4, 129.2, 128.3, 128.1, 126.5, 116.6, 60.9, 60.8, 51.2, 50.9, 35.3, 34.6, 31.9, 31.8, 23.0, 20.1, 14.2, 14.1, 9.8, 7.2. HRMS m/z (ESI⁺) calcd for C₁₈H₁₉l₂NNaO₄[M+Na]⁺:589.9296; found:589.9284.

3-(4-(iodo(phenyl)methylene)-3-(iodomethyl)-3-methyl-2,5-dioxopyrrolidin-1-yl)

propanenitrile (3bn) (1.78:1 Z/E mixture) Yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.70 – 7.39 (m, 2.56H), 7.39 – 7.32 (m, 1.08H), 7.31 (d, *J* = 6.9 Hz, 0.72H), 7.18 (s, 0.64H), 4.26 (d, *J* = 10.1 Hz, 0.36H), 4.01 (ddd, *J* = 13.3, 7.7, 7.0 Hz, 0.64H), 3.95 (ddd, *J* = 13.5, 7.8, 6.0 Hz, 0.64H), 3.84 (dt, *J* = 13.4, 7.4 Hz, 0.36H), 3.80 – 3.74 (m, 0.36H), 3.52 (d, *J* = 10.1 Hz, 0.36H), 3.32 (d, *J* = 10.0 Hz, 0.64H), 2.87-2.76 (m, 1.28H), 2.71 – 2.67 (m, 0.72H), 2.66 (d, J = 10.0 Hz, 0.64H), 1.85 (s, 1.08H), 1.37 (s, 1.92H). ¹³C NMR (150 MHz, CDCl₃) δ 177.2, 175.7, 165.6, 163.5, 144.6, 143.3, 136.4, 135.2, 129.6, 129.4, 128.5, 128.2, 126.5, 126.1, 125.1, 118.0, 116.4, 116.3, 108.1, 51.5, 51.2, 34.9, 34.2, 23.1, 20.3, 16.1, 16.0, 9.6, 7.0. HRMS m/z (ESI⁺) calcd for C₁₆H₁₄I₂N2NaO₂[M+Na]⁺: 542.9037; found:542.9032.

4-(iodo(phenyl)methylene)-3-(iodomethyl)-3-methyl-1-phenylpyrrolidine-2,5-dione(3bo) (1.44:1 Z/E mixture) Yellow solid, Mp:156.7- 158.2 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.62 – 7.48 (m, 1.77H), 7.48 – 7.40 (m, 3.59H), 7.40 – 7.33 (m, 2.87H), 7.33 – 7.27 (m, 1.77H), 4.36 (d, *J* = 10.0 Hz, 0.41H), 3.63 (d, *J* = 10.0 Hz, 0.41H), 3.43 (d, *J* = 9.9 Hz, 0.59H), 2.77 (d, *J* = 9.9 Hz, 0.59H), 1.95 (s, 1.23H), 1.45 (s, 1.77H).¹³C NMR (100 MHz, CDCl₃) δ 177.3, 175.7, 165.6, 163.5, 145.1, 143.8, 137.0, 135.7, 132.0, 131.4, 129.6, 129.3, 129.2, 129.0, 128.4, 126.8, 126.7, 126.6, 117.8, 108.0, 51.3, 51.0, 23.3, 20.6, 10.7, 7.9. HRMS m/z (ESI⁺) calcd for C₁₉H₁₅I₂NNaO₂ [M+Na]⁺:565.9084; found:565.9083.

1-benzyl-4-(diphenylmethylene)-3-(iodomethyl)-3-methylpyrrolidine-2,5-dione (4) Yellow powder, MP:151.6-152.8 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.41 – 7.35 (m, 5H), 7.35 – 7.30 (m, 5H), 7.30 – 7.22 (m, 5H), 4.72 (s, 2H), 3.41 (d, *J* = 9.8 Hz, 1H), 2.66 (d, *J* = 9.8 Hz, 1H), 1.46 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 177.9, 167.5, 155.1, 140.8, 139.2, 135.7, 129.6, 128.8, 128.7, 128.5, 128.5, 128.4, 128.2, 128.0, 127.8, 127.3, 49.5, 42.6, 24.5, 10.4. HRMS m/z (ESI⁺) calcd forC₂₆H₂₂INNaO₂ [M+Na]⁺:530.0587; found:530.0581.

1-benzyl-4-(1,3-diphenylprop-2-yn-1-ylidene)-3-(iodomethyl)-3-methylpyrrolidine-2,5-dione (5) (1.7:1 Z/E mixture) Yellow foamy, MP:68.7- 70.7 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.58 – 7.55 (m, 1.26H), 7.55 – 7.52 (m, 0.74H), 7.50 – 7.47 (m, 1.26H), 7.47 – 7.42 (m, 5.22H), 7.41 – 7.36 (m, 1.89H), 7.36 – 7.30 (m, 3.15H), 7.30 – 7.26 (m, 1.48H), 4.84 (s, 1.28H), 4.72 (s, 0.74H), 4.22 (d, J = 9.7 Hz, 0.37H), 3.71 (d, J = 9.6 Hz, 0.37H), 3.38 (d, J = 9.9 Hz, 0.63H), 2.66 (d, J = 9.8 Hz, 0.63H), 1.87 (s, 1.11H), 1.35 (s, 1.89H). ¹³C NMR (150 MHz, CDCl₃) δ 177.6, 177.4, 166.8, 166.0, 136.5, 136.5, 136.1, 135.6, 135.5, 135.3, 134.2, 133.2, 132.3, 131.6, 130.1, 129.5, 129.2, 129.0, 128.9, 128.8, 128.7, 128.7, 128.6, 128.5, 128.5, 128.3, 128.0, 127.8, 127.8, 127.3, 122.5, 121.5, 104.8, 104.0, 89.6, 87.6, 49.6, 49.4, 42.7, 42.5, 23.5, 21.0, 10.0, 7.4. HRMS m/z (ESI⁺) calcd forC₂₈H₂₂INNaO₂ [M+Na]⁺:554.0587; found:554.0582.

1-benzoyl-3-benzyl-5-methyl-3-azabicyclo[3.1.0]hexane-2,4-dione (6) White solid, MP:89.9- 91.8 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.61 – 7.53 (m, 3H), 7.40 – 7.30 (m, 7H), 4.62 (s, 2H), 2.27 (d, *J* = 4.6 Hz, 1H), 1.76 (d, *J* = 4.6 Hz, 1H),

1.41 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 189.9, 173.9, 171.6, 135.3, 134.7, 132.8, 127.8, 127.7, 127.3, 127.2, 41.8, 41.4, 35.7, 29.6, 9.0. HRMS m/z (ESI⁺) calcd forC₂₀H₁₇NNaO₃ [M+Na]⁺:342.1101; found:342.1094.

(1-benzyl-4-(iodo(phenyl)methylene)-3-methyl-2,5-dioxopyrrolidin-3-yl)methyl nitrate (7) (1.13:1 Z/E mixture) White foamy, MP:63.9- 65.2 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.43 – 7.37 (m, 3.12H), 7.37 – 7.27 (m, 3.41H), 7.27 – 7.26 (m, 0.52H), 7.25 – 7.20 (m, 1.88H), 7.18 – 7.13 (m, 1.06H), 5.51 (d, *J* = 10.2 Hz, 0.47H), 4.82 (s, 1.06H), 4.68 (d, *J* = 10.2 Hz, 0.47H), 4.66 (d, *J* = 2.5 Hz, 0.94H), 4.49 (d, *J* = 9.7 Hz, 0.53H), 3.72 (d, *J* = 9.8 Hz, 0.53H), 1.68 (s, 1.41H), 1.20 (s, 1.59H). ¹³C NMR (150 MHz, CDCl₃) δ 176.5, 174.8, 165.9, 163.8, 144.4, 143.3, 135.0, 135.0, 133.6, 132.4, 129.5, 129.4, 128.8, 128.8, 128.7, 128.3, 128.2, 128.1, 127.9, 126.7, 126.7, 117.0, 107.0, 72.5, 71.4, 49.0, 48.4, 43.3, 42.6, 21.1, 18.0. HRMS m/z (ESI⁺) calcd forC₂₀H₁₇NNaO₃ [M+Na]⁺:515.0074; found:515.0061.

(1-benzyl-4-(iodo(phenyl)methylene)-3-methyl-2,5-dioxopyrrolidin-3-yl)methyl 4-phenylbutanoate (8) (1.5:1 Z/E mixture) Yellowish oil. ¹H NMR (600 MHz, CDCl₃) δ 7.38 – 7.33 (m, 1.2H), 7.30 (t, *J* = 7.7 Hz, 1.2H), 7.27 – 7.21 (m, 4H), 7.2-7.17(m, 2.6H), 7.13 (dtd, *J* = 5.4, 3.8, 1.3 Hz, 2.2H), 7.10 – 7.00 (m, 3.8H), 5.10 (d, *J* = 10.8 Hz, 0.4H), 4.71 (d, *J* = 1.5 Hz, 1.2H), 4.60 – 4.50 (m, 0.8H), 4.08 (d, *J* = 10.8 Hz, 0.4H), 3.91 (d, *J* = 10.7 Hz, 0.6H), 3.77 (d, *J* = 10.8 Hz, 0.6H), 2.52 – 2.41 (m, 2H), 1.97 – 1.86 (m, 2H), 1.68 (pd, *J* = 7.4, 3.2 Hz, 2H), 1.57 (s, 1.2H), 0.97 (s, 1.8H). ¹³C NMR (150 MHz, CDCl₃) δ 176.7, 175.0, 171.3, 165.6, 163.4, 143.8, 142.4, 140.0, 134.5, 133.9, 132.9, 128.3, 128.0, 127.8, 127.6, 127.5, 127.4, 127.4, 127.4, 127.3, 127.1, 127.0, 126.9, 125.5, 125.0, 125.0, 114.7, 105.2, 66.3, 63.8, 49.1, 48.8, 42.0, 41.4, 33.9, 33.9, 31.9, 31.8, 25.1, 25.1, 18.2, 16.3. HRMS m/z (ESI⁺) calcd forC₃₀H₂₈INNaO₄ [M+Na]⁺:616.0955; found:616.0953.

(1-benzyl-4-(iodo(phenyl)methylene)-3-methyl-2,5-dioxopyrrolidin-3-yl)methyl 2-propylpentanoate (9) (1.7:1 Z/E mixture) White foamy. MP: 66.3- 67.3 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.45 – 7.37 (m, 1.26H), 7.30 (dt, J = 11.0, 7.6 Hz, 2.11H), 7.24 (q, J = 7.2, 6.5 Hz, 3.52H), 7.19 – 7.15 (m, 1.26H), 7.10 (d, J = 7.6 Hz, 0.74H), 7.08 – 7.02 (m, 1.11H), 5.17 (d, J = 10.8 Hz, 0.37H), 4.76 – 4.69 (m, 1.26H), 4.60 – 4.53 (m, 0.74H), 4.02 (d, J = 10.8 Hz, 0.37H), 3.93 (d, J = 10.7 Hz, 0.63H), 3.80 (d, J = 10.7 Hz, 0.63H), 1.98 (ddq, J = 14.0, 9.6, 5.1, 4.6 Hz, 1H), 1.57 (s, 1.11H), 1.35 – 1.23 (m, 2H), 1.20 – 1.01 (m, 6H), 0.97 (s, 1.89H), 0.82 – 0.71 (m, 6H). ¹³C NMR (150 MHz, CDCl₃) δ 176.7, 175.1, 174.4, 174.3, 165.5, 163.4, 143.8, 142.4, 134.5, 134.5, 133.9, 132.9, 128.2, 128.1, 128.0, 127.8, 127.6, 127.5, 127.3, 127.0, 126.9, 125.6, 124.8, 114.5, 105.2, 66.1, 63.6, 49.0, 48.8, 44.0, 43.9, 42.1, 41.4, 33.5, 33.2, 19.6, 19.5, 19.5, 18.1, 16.4, 13.1, 13.1, 13.0, 13.0. HRMS m/z (ESI⁺) calcd forC₂₈H₃₂INNaO₄ [M+Na]⁺:596.1268; found:596.1261.

(1-benzyl-4-(iodo(phenyl)methylene)-3-methyl-2,5-dioxopyrrolidin-3-yl)methyl 2-(1H-indol-3-yl)acetate (10) (1.5:1 Z/E mixture) Pale orange foamy, MP:61.7- 62.8 °C ¹H NMR (600 MHz, CDCl₃) δ 8.12 (s, 0.6H), 7.97 (s, 0.4H), 7.50 (d, *J* = 7.8 Hz, 0.6H), 7.48 – 7.45 (m, 1.2H), 7.43 (d, *J* = 7.9 Hz, 0.4H), 7.34 (td, *J* = 7.8, 2.4 Hz, 3H), 7.30 – 7.26 (m, 1.8H), 7.25 – 7.15 (m, 3.6H), 7.11 (t, *J* = 7.5 Hz, 0.6H), 7.07 – 6.96 (m, 1H), 6.78 (d, *J* = 2.3 Hz, 0.6H), 6.72 (d, *J* = 2.3 Hz, 0.4H), 6.26(s, 0.4H), 5.24 (d, *J* = 10.9 Hz, 0.4H), 4.72 (d, *J* = 14.0 Hz, 0.6H), 4.64 (d, *J* = 14.0 Hz, 0.6H), 4.57 (d, *J* = 14.1 Hz, 0.4H), 4.45 (d, *J* = 14.2 Hz, 0.4H), 4.18 (d, *J* = 10.9 Hz, 0.4H), 4.04 (d, *J* = 10.8 Hz, 0.6H), 3.52 (dt, *J* = 11.3, 7.9 Hz, 1.6H), 3.44 (d, *J* = 3.7 Hz, 0.6H), 3.41(d, *J* = 3.2Hz, 0.4H) 1.62 (s, 1.2H), 1.02 (s, 1.8H). ¹³C NMR (150MHz, CDCl₃) δ 177.8, 176.1, 170.8, 170.5, 166.5, 164.3, 144.8, 143.2, 136.1, 135.9, 135.8, 135.7, 134.5, 133.5, 129.1, 128.9, 128.9, 128.9, 128.8, 128.7, 128.2, 128.1, 128.0, 127.0, 127.0, 126.5, 125.8, 123.2, 123.1, 122.4, 122.3, 120.1, 120.0, 118.7, 118.6, 115.9, 111.5, 111.2, 107.9, 107.7, 106.2, 67.1, 65.1, 50.1, 49.8, 43.0, 42.3, 31.1, 30.7, 19.5, 17.4. **HRMS** m/z (ESI⁺) calcd forC₃₀H₂₅IN₂NaO₄ [M+Na]⁺:627.0751; found:627.0758.

(1-benzyl-4-(iodo(phenyl)methylene)-3-methyl-2,5-dioxopyrrolidin-3-yl)methyl (2R,5S,6S)-3,3-dimethyl-7-oxo-6-(2-phenylacetamido)-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxylate (11) (1:1 Z/E mixture) Yellowish foamy, MP:73.3- 74.9 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.46 (tt, J = 6.5, 1.5 Hz, 1H), 7.38 (tt, J = 7.4, 3.1 Hz, 4.25H), 7.36 − 7.30 (m, 5H), 7.28 (ddd, J = 7.3, 5.4, 2.2 Hz, 2.5H), 7.25 (d, J = 2.6 Hz, 0.5H), 7.22 - 7.18 (m, 0.75H), 7.16 - 7.14 (m, 0.5H), 7.12 (d, J = 7.5 Hz, 0.5H), 5.99 (dd, J = 9.6, 3.6 Hz, 1H), 5.61 (dd, J = 9.1, 4.3 Hz, 0.25H), 5.54 (dd, J = 9.1, 4.3 Hz, 0.25H), 5.46 (dd, J = 9.0, 4.3 Hz, 0.25H), 5.35 (dd, J = 9.1, 4.3 Hz, 0.25H), 5.30 (d, J = 11.1 Hz, 0.25H), 5.18 (dd, J = 7.7, 3.4 Hz, 0.5H), 5.15 (dd, J = 4.2, 1.4 Hz, 0.5H), 5.02 (d, J = 4.3 Hz, 0.25H), 4.84 – 4.65 (m, 1.5H), 4.60 (d, J = 4.0 Hz, 0.25H), 4.55 (d, J = 14.0 Hz, 0.25H), 4.23 (dd, J = 16.2, 10.0 Hz, 1H), 4.10 (dd, J = 10.9, 2.4 Hz, 0.5H), 4.06 (s, 0.25H), 3.97 (s, 0.25H), 3.71 (s, 0.5H), 3.66 (s, 0.5H), 3.65 - 3.62 (m, 1.5H), 1.66 (s, 0.75H), 1.64 (s, 0.75H), 1.32 (s, 0.75H), 1.30 (s, 0.75H), 1.25 (s, 1.5H), 1.16 (s, 1.5H), 1.14 – 1.02 (m, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 177.3, 177.2, 175.7, 175.7, 173.4, 173.3, 173.2, 170.1, 170.0, 166.6, 166.6, 166.4, 166.3, 166.3, 164.2, 164.2, 164.2, 144.5, 144.4, 143.3, 143.2, 135.4, 135.4, 135.2, 135.2, 134.6, 134.1, 133.8, 133.8, 133.5, 133.1, 129.7, 129.6, 129.5, 129.5, 129.4, 129.3, 129.2, 129.2, 129.2, 129.0, 129.0, 129.0, 128.9, 128.9, 128.8, 128.4, 128.4, 128.3, 128.3, 128.2, 128.2, 127.7, 127.7, 126.7, 126.5, 116.8, 116.2, 107.2, 107.0, 70.1, 70.1, 70.0, 69.9, 68.1, 67.9, 67.9, 67.2, 66.2, 65.6, 64.0, 64.0, 63.9, 63.9, 59.0, 59.0, 59.0, 58.7, 49.8, 49.7, 49.5, 49.5, 43.4, 43.4, 43.4, 42.7, 42.7, 41.0, 32.2, 32.2, 32.1, 31.6, 26.9, 26.5, 26.5, 26.4, 20.3, 19.5, 17.8, 17.2. **HRMS** m/z (ESI⁺) calcd forC₃₆H₃₄IN3NaO₆S [M+Na]⁺:786.1105; found:786.1110.

10 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

10 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

10 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

 Image: Image:

fl (ppm)

0 -

10

10 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 - f1 $(\rm ppm)$

10 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

10 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

10 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

-2.11

10 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

10 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

10 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 - f1 (ppm)

10 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 - fl $(\rm ppm)$

10 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

10 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

10 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

10 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 - f1 (ppm)

10 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

10 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

^{200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0} fl (ppm)

^{10 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0} f1 (ppm)

^{10 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0} f1 (ppm)

^{200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0} f1 (ppm)

^{10 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0} f1 (ppm)

10 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

2:1 Z/E Mixture

10 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 - f1 (ppm)

10 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

10 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

10 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

10 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

10 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

¹H-¹H COSY of compound **3ba** (400MHz, in CDCl₃)

HMQC of compound 3ba (400MHz, in CDCl₃)

HMBC of compound **3ba** (400MHz, in CDCl₃)

^{10 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0} f1 (ppm)

fl (ppm)

1.5:1 Z/E Mixture

^{10 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0} f1 (ppm)

10 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

fl (ppm)

^{00 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0} f1 (ppm)

^{10 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0} f1 (ppm)

fl (ppm)

^{10 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0} f1 (ppm)

9.0

7.0

8.0

5.0

6.0

4.0 f2 (ppm) 3.0

2.0

1.0

0.0

-9

-1.0

HSQC of compound 6 (600MHz, in CDCl₃)

HMBC of compound 6 (600MHz, in CDCl₃)

^{200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -} fl (ppm)

175.02 175.02 175.02 175.02 175.02 175.02 140.128 142.78 142.78 142.78 142.78 142.78 142.78 142.78 127.62 127.42 127.43 126.43 1

10 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 - f1 (ppm)

10 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

4)X-Crystal data of 3ba

Table 1. Crystal data and structure refinement for	or 1.			
Identification code	1			
Empirical formula	C20 H17 I2 N O2			
Formula weight	557.15	557.15		
Temperature	293(2) K			
Wavelength	1.54178 Å			
Crystal system	Monoclinic			
Space group	P21/c			
Unit cell dimensions	a = 7.61260(10) Å	α= 90°.		
	b = 23.4046(2) Å	β=103.8590(10)°.		
	c = 11.28240(10) Å	$\gamma = 90^{\circ}$.		
Volume	1951.66(4) Å ³			
Z	4			
Density (calculated)	1.896 Mg/m ³	1.896 Mg/m ³		
Absorption coefficient	25.412 mm ⁻¹			
F(000)	1064			
Crystal size	0.250 x 0.180 x 0.150 mm ³			
Theta range for data collection	4.456 to 73.796°.			
Index ranges	-9<=h<=9, -29<=k<=28, -14<=l<=14			
Reflections collected	44819			
Independent reflections	3924 [R(int) = 0.0737]			
Completeness to theta = 67.679°	100.0 %			
Absorption correction	Semi-empirical from equivalents			
Refinement method	Full-matrix least-squares on F ²			
Data / restraints / parameters	3924 / 0 / 227			
Goodness-of-fit on F ²	1.096			
Final R indices [I>2sigma(I)]	R1 = 0.0432, wR2 = 0.1279			
R indices (all data)	R1 = 0.0433, $wR2 = 0.1280$			
Extinction coefficient	n/a			

Largest diff. peak and hole

2.994 and -1.731 e.Å⁻³

Table	2.	Atomic coordinates	(x 10	⁴) and equivalent	isotropic displacement parameters (Å ² x 10	3)
for 1.	U(e	eq) is defined as one th	nird of	the trace of the o	rthogonalized U ^{ij} tensor.	

	Х	У	Z	U(eq)
C(1)	8046(7)	5364(2)	6088(5)	24(1)
C(2)	9446(7)	4979(2)	6476(5)	26(1)
C(3)	10566(8)	5029(2)	7641(5)	28(1)
C(4)	10296(8)	5461(2)	8413(5)	29(1)
C(5)	8878(7)	5852(2)	8018(5)	25(1)
C(6)	7761(8)	5807(2)	6863(5)	25(1)
C(7)	6235(7)	6210(2)	6442(5)	22(1)
C(8)	6350(7)	6729(2)	5984(4)	22(1)
C(9)	4780(7)	7115(2)	5498(5)	26(1)
C(10)	7298(7)	7573(2)	5119(5)	23(1)
C(11)	8053(7)	7021(2)	5776(4)	20(1)
C(12)	9444(7)	7208(3)	6976(4)	32(1)
C(13)	9029(7)	6692(2)	4961(5)	25(1)
C(14)	4260(8)	8028(2)	4289(5)	26(1)
C(15)	3875(7)	8506(2)	5082(5)	24(1)
C(16)	2465(8)	8458(2)	5677(6)	30(1)
C(17)	2149(9)	8896(3)	6434(6)	38(1)
C(18)	3212(8)	9381(3)	6595(5)	31(1)
C(19)	4583(8)	9434(2)	6004(5)	28(1)
C(20)	4940(7)	8998(2)	5256(5)	24(1)
[(1)	3781(1)	5832(1)	6619(1)	23(1)
(2)	7274(1)	6432(1)	3251(1)	30(1)
N(1)	5450(6)	7586(2)	4986(4)	25(1)
0(1)	8149(5)	7935(2)	4739(4)	29(1)
O(2)	3210(5)	7054(2)	5503(4)	35(1)

C(1)-C(2)	1.384(7)
C(1)-C(6)	1.407(7)
C(1)-H(1)	0.9300
C(2)-C(3)	1.390(8)
C(2)-H(2)	0.9300
C(3)-C(4)	1.383(8)
C(3)-H(3)	0.9300
C(4)-C(5)	1.404(8)
C(4)-H(4)	0.9300
C(5)-C(6)	1.379(8)
C(5)-H(5)	0.9300
C(6)-C(7)	1.484(7)
C(7)-C(8)	1.330(7)
C(7)-I(1)	2.119(5)
C(8)-C(9)	1.493(7)
C(8)-C(11)	1.533(7)
C(9)-O(2)	1.205(7)
C(9)-N(1)	1.397(7)
C(10)-O(1)	1.205(7)
C(10)-N(1)	1.379(7)
C(10)-C(11)	1.532(7)
C(11)-C(13)	1.522(7)
C(11)-C(12)	1.568(7)
C(12)-H(12A)	0.9600
C(12)-H(12B)	0.9600
С(12)-Н(12С)	0.9600
C(13)-I(2)	2.154(5)
C(13)-H(13A)	0.9700
C(13)-H(13B)	0.9700
C(14)-N(1)	1.472(7)
C(14)-C(15)	1.505(7)
C(14)-H(14A)	0.9700
C(14)-H(14B)	0.9700
C(15)-C(20)	1.395(8)
C(15)-C(16)	1.400(8)
C(16)-C(17)	1.391(9)
C(16)-H(16)	0.9300

Table 3.Bond lengths [Å] and angles [°] for1.	Table 3.	Bond lengths [Å] and angles [°] for	1.
---	----------	-------------------------------------	----

C(17)-C(18)	1.381(9)
С(17)-Н(17)	0.9300
C(18)-C(19)	1.372(9)
C(18)-H(18)	0.9300
C(19)-C(20)	1.393(8)
С(19)-Н(19)	0.9300
C(20)-H(20)	0.9300
C(2)-C(1)-C(6)	120.3(5)
C(2)-C(1)-H(1)	119.8
C(6)-C(1)-H(1)	119.8
C(1)-C(2)-C(3)	119.7(5)
C(1)-C(2)-H(2)	120.1
C(3)-C(2)-H(2)	120.1
C(4)-C(3)-C(2)	120.5(5)
C(4)-C(3)-H(3)	119.8
C(2)-C(3)-H(3)	119.8
C(3)-C(4)-C(5)	119.7(5)
C(3)-C(4)-H(4)	120.1
C(5)-C(4)-H(4)	120.1
C(6)-C(5)-C(4)	120.3(5)
C(6)-C(5)-H(5)	119.9
C(4)-C(5)-H(5)	119.9
C(5)-C(6)-C(1)	119.5(5)
C(5)-C(6)-C(7)	120.8(5)
C(1)-C(6)-C(7)	119.7(5)
C(8)-C(7)-C(6)	125.8(5)
C(8)-C(7)-I(1)	124.0(4)
C(6)-C(7)-I(1)	110.1(3)
C(7)-C(8)-C(9)	125.0(5)
C(7)-C(8)-C(11)	127.1(5)
C(9)-C(8)-C(11)	107.8(4)
O(2)-C(9)-N(1)	123.8(5)
O(2)-C(9)-C(8)	129.4(5)
N(1)-C(9)-C(8)	106.8(4)
O(1)-C(10)-N(1)	124.6(5)
O(1)-C(10)-C(11)	126.4(5)
N(1)-C(10)-C(11)	109.0(4)
C(13)-C(11)-C(10)	108.4(4)
C(13)-C(11)-C(8)	114.8(4)
---------------------	----------
C(10)-C(11)-C(8)	102.6(4)
C(13)-C(11)-C(12)	109.7(4)
C(10)-C(11)-C(12)	106.2(4)
C(8)-C(11)-C(12)	114.4(4)
С(11)-С(12)-Н(12А)	109.5
C(11)-C(12)-H(12B)	109.5
H(12A)-C(12)-H(12B)	109.5
С(11)-С(12)-Н(12С)	109.5
H(12A)-C(12)-H(12C)	109.5
H(12B)-C(12)-H(12C)	109.5
C(11)-C(13)-I(2)	113.3(3)
С(11)-С(13)-Н(13А)	108.9
I(2)-C(13)-H(13A)	108.9
С(11)-С(13)-Н(13В)	108.9
I(2)-C(13)-H(13B)	108.9
H(13A)-C(13)-H(13B)	107.7
N(1)-C(14)-C(15)	112.8(4)
N(1)-C(14)-H(14A)	109.0
C(15)-C(14)-H(14A)	109.0
N(1)-C(14)-H(14B)	109.0
C(15)-C(14)-H(14B)	109.0
H(14A)-C(14)-H(14B)	107.8
C(20)-C(15)-C(16)	119.0(5)
C(20)-C(15)-C(14)	120.5(5)
C(16)-C(15)-C(14)	120.4(5)
C(17)-C(16)-C(15)	120.0(5)
C(17)-C(16)-H(16)	120.0
C(15)-C(16)-H(16)	120.0
C(18)-C(17)-C(16)	120.3(6)
С(18)-С(17)-Н(17)	119.9
С(16)-С(17)-Н(17)	119.9
C(19)-C(18)-C(17)	120.1(6)
C(19)-C(18)-H(18)	120.0
C(17)-C(18)-H(18)	120.0
C(18)-C(19)-C(20)	120.6(5)
C(18)-C(19)-H(19)	119.7
C(20)-C(19)-H(19)	119.7
C(19)-C(20)-C(15)	120.0(5)

C(19)-C(20)-H(20)	120.0
С(15)-С(20)-Н(20)	120.0
C(10)-N(1)-C(9)	113.7(4)
C(10)-N(1)-C(14)	123.7(4)
C(9)-N(1)-C(14)	122.4(4)

Symmetry transformations used to generate equivalent atoms:

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
C(1)	24(3)	26(2)	24(2)	2(2)	8(2)	2(2)
C(2)	26(3)	29(3)	30(3)	0(2)	15(2)	2(2)
C(3)	24(3)	27(3)	35(3)	6(2)	10(2)	5(2)
C(4)	27(3)	26(3)	32(3)	3(2)	3(2)	-1(2)
C(5)	21(3)	25(3)	30(3)	-2(2)	9(2)	-1(2)
C(6)	32(3)	21(2)	24(3)	3(2)	12(2)	-3(2)
C(7)	17(2)	26(2)	24(2)	-2(2)	9(2)	2(2)
C(8)	18(2)	26(2)	21(2)	-1(2)	6(2)	-1(2)
C(9)	25(3)	25(2)	28(3)	3(2)	9(2)	1(2)
C(10)	26(3)	24(2)	20(2)	-1(2)	8(2)	2(2)
C(11)	23(2)	21(2)	18(2)	-3(2)	7(2)	-5(2)
C(12)	14(2)	66(4)	13(2)	16(2)	-4(2)	-14(2)
C(13)	23(3)	28(3)	24(2)	0(2)	7(2)	1(2)
C(14)	29(3)	23(2)	25(2)	3(2)	5(2)	5(2)
C(15)	23(3)	25(2)	23(2)	5(2)	4(2)	4(2)
C(16)	23(3)	27(3)	43(3)	7(2)	15(2)	3(2)
C(17)	41(3)	37(3)	40(3)	11(3)	21(3)	9(3)
C(18)	34(3)	34(3)	26(3)	3(2)	9(2)	11(2)
C(19)	29(3)	25(3)	27(3)	-2(2)	3(2)	2(2)
C(20)	22(2)	29(3)	22(2)	7(2)	8(2)	3(2)
I(1)	20(1)	24(1)	27(1)	2(1)	7(1)	-2(1)
I(2)	33(1)	32(1)	23(1)	-6(1)	5(1)	1(1)
N(1)	28(2)	22(2)	26(2)	2(2)	9(2)	4(2)
O(1)	32(2)	26(2)	31(2)	4(2)	13(2)	-2(2)
O(2)	22(2)	29(2)	56(3)	9(2)	12(2)	4(2)

Table 4.Anisotropic displacement parameters $(Å^2x \ 10^3)$ for 1.The anisotropicdisplacement factor exponent takes the form: $-2\pi^2[h^2 \ a^{*2}U^{11} + ... + 2h \ k \ a^* \ b^* \ U^{12}]$

	х	у	Z	U(eq)
H(1)	7290	5329	5311	29
H(2)	9638	4688	5958	32
H(3)	11503	4769	7904	34
H(4)	11051	5493	9192	35
H(5)	8691	6143	8537	30
H(12A)	9916	6876	7443	49
H(12B)	8850	7448	7450	49
H(12C)	10418	7416	6770	49
H(13A)	9585	6355	5394	30
H(13B)	9987	6930	4796	30
H(14A)	3126	7853	3870	31
H(14B)	4823	8184	3675	31
H(16)	1738	8133	5566	36
H(17)	1218	8862	6833	45
H(18)	2999	9672	7104	37
H(19)	5281	9765	6105	34
H(20)	5888	9034	4873	29

Table 5. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³)

for 1.

C(6)-C(1)-C(2)-C(3)	0.5(8)
C(1)-C(2)-C(3)-C(4)	-0.3(8)
C(2)-C(3)-C(4)-C(5)	0.2(8)
C(3)-C(4)-C(5)-C(6)	-0.2(8)
C(4)-C(5)-C(6)-C(1)	0.4(8)
C(4)-C(5)-C(6)-C(7)	178.8(5)
C(2)-C(1)-C(6)-C(5)	-0.6(8)
C(2)-C(1)-C(6)-C(7)	-179.0(5)
C(5)-C(6)-C(7)-C(8)	82.9(7)
C(1)-C(6)-C(7)-C(8)	-98.7(7)
C(5)-C(6)-C(7)-I(1)	-98.9(5)
C(1)-C(6)-C(7)-I(1)	79.5(5)
C(6)-C(7)-C(8)-C(9)	176.2(5)
I(1)-C(7)-C(8)-C(9)	-1.7(7)
C(6)-C(7)-C(8)-C(11)	0.8(9)
I(1)-C(7)-C(8)-C(11)	-177.2(4)
C(7)-C(8)-C(9)-O(2)	5.6(9)
C(11)-C(8)-C(9)-O(2)	-178.2(6)
C(7)-C(8)-C(9)-N(1)	-173.6(5)
C(11)-C(8)-C(9)-N(1)	2.6(6)
O(1)-C(10)-C(11)-C(13)	-55.9(7)
N(1)-C(10)-C(11)-C(13)	122.0(4)
O(1)-C(10)-C(11)-C(8)	-177.7(5)
N(1)-C(10)-C(11)-C(8)	0.2(5)
O(1)-C(10)-C(11)-C(12)	61.9(6)
N(1)-C(10)-C(11)-C(12)	-120.2(4)
C(7)-C(8)-C(11)-C(13)	57.1(7)
C(9)-C(8)-C(11)-C(13)	-119.0(5)
C(7)-C(8)-C(11)-C(10)	174.4(5)
C(9)-C(8)-C(11)-C(10)	-1.7(5)
C(7)-C(8)-C(11)-C(12)	-71.0(7)
C(9)-C(8)-C(11)-C(12)	112.9(5)
C(10)-C(11)-C(13)-I(2)	-62.6(5)
C(8)-C(11)-C(13)-I(2)	51.3(5)
C(12)-C(11)-C(13)-I(2)	-178.2(3)
N(1)-C(14)-C(15)-C(20)	93.3(6)
N(1)-C(14)-C(15)-C(16)	-85.4(6)

C(20)-C(15)-C(16)-C(17)	-0.4(8)
C(14)-C(15)-C(16)-C(17)	178.3(5)
C(15)-C(16)-C(17)-C(18)	0.6(9)
C(16)-C(17)-C(18)-C(19)	0.2(9)
C(17)-C(18)-C(19)-C(20)	-1.2(9)
C(18)-C(19)-C(20)-C(15)	1.3(8)
C(16)-C(15)-C(20)-C(19)	-0.5(8)
C(14)-C(15)-C(20)-C(19)	-179.2(5)
O(1)-C(10)-N(1)-C(9)	179.5(5)
C(11)-C(10)-N(1)-C(9)	1.6(6)
O(1)-C(10)-N(1)-C(14)	4.1(8)
C(11)-C(10)-N(1)-C(14)	-173.8(4)
O(2)-C(9)-N(1)-C(10)	178.1(5)
C(8)-C(9)-N(1)-C(10)	-2.6(6)
O(2)-C(9)-N(1)-C(14)	-6.5(9)
C(8)-C(9)-N(1)-C(14)	172.8(4)
C(15)-C(14)-N(1)-C(10)	-95.7(6)
C(15)-C(14)-N(1)-C(9)	89.4(6)

Symmetry transformations used to generate equivalent atoms: