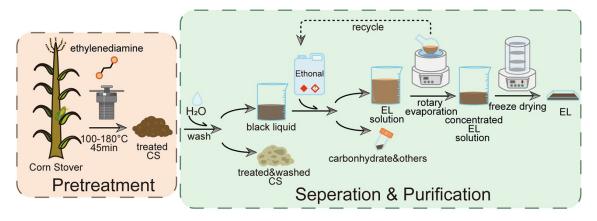
Supporting Information for

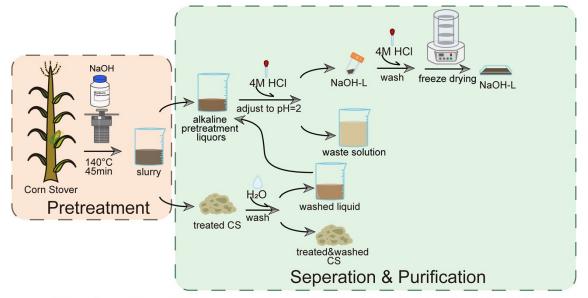
Aminated and amidated structures introduced by ethylenediamine pretreatment endow lignin with bright fluorescence

Tao Shi, ‡^a Li Xu, ‡^a Ya-Nan Wang,^b Shi-Chang Liu,^a Zhi-Hua Liu,^a Guang-Jiu Zhao,^b

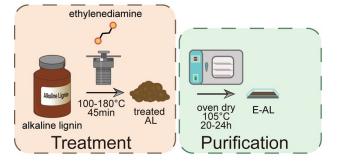
Bing-Zhi Li *a and Ying-Jin Yuana


- a. Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China.
- Molecular Dynamic Chemistry Center, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, China.
- ‡ These authors contributed equally to this work.
- * Corresponding author, Email: bzli@tju.edu.cn

This supporting information contains:


Total number of pages: 12

Total number of Figures: 11


Total number of Tables: 3

The fractionation process to obtain EDA-Lignin (EL)

The fractionation process to obtain NaOH Lignin (NaOH-L)

The fractionation process to obtain EDA-Alkaline Lignin (E-AL)

Fig. S1 The pretreatment processes to prepare different lignin samples.

Fig. S2 Appearance of aminated lignin (120EL), which presents in a brown to black

sheet-like solid form.

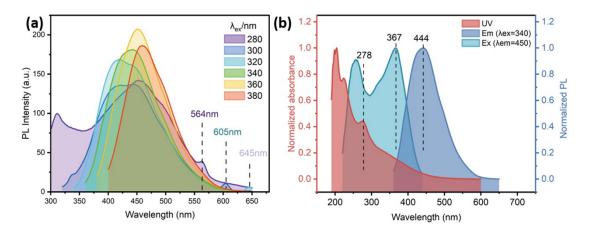


Fig. S3 a) Emission spectrum excited at difference λ_{ex} and b) excitation spectrum emitted at 340 nm, PL spectra excited at 340 nm, and UV-vis spectrum of 180EL (c=

0.1g/L).

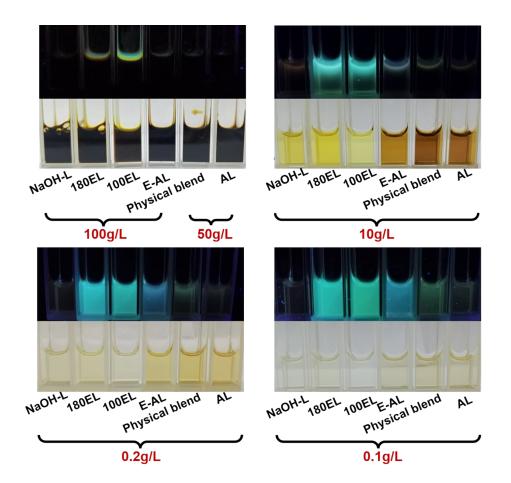


Fig. S4 Fluorescent images of lignin aqueous solutions taken under 365 nm UV light

(from a top light);

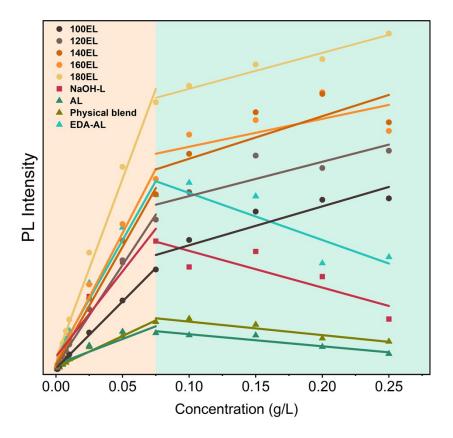


Fig. S5 Two stages of linear regions of concentration-fluorescence intensity; related

parameters were shown in tables S1 and S2.

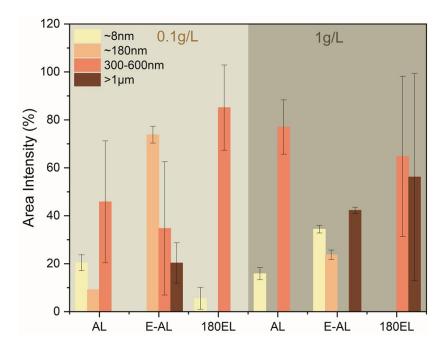


Fig. S6 Particle diameter distribution at two different concentrations (0.1g/L and 1g/L).

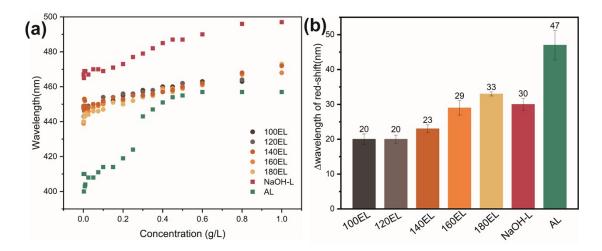


Fig. S7 Red-shift of max emission wavelength affected by increasing concentration.

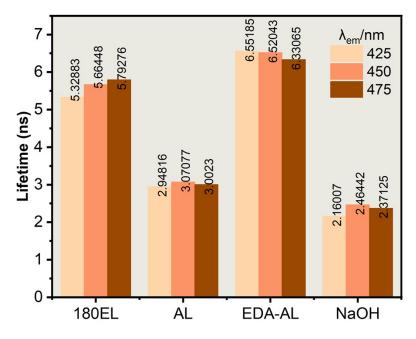


Fig. S8 PL lifetimes at different emission wavelength (c=0.1g/L)

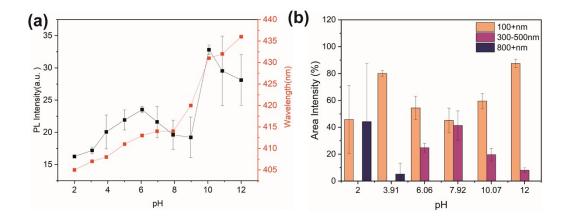
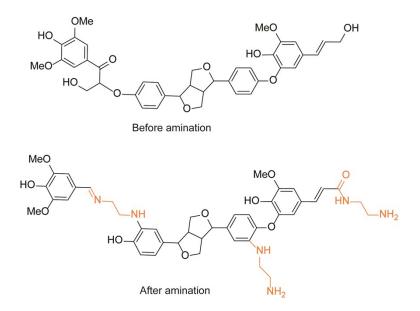



Fig. S9 PL intensity of AL in different pH solution. a) Max fluorescence intensity of AL in different pH and emission wavelengths, b) Size distributions in three ranges (100+ nm, 300-500nm and 800+ nm) of AL (c=0.1 g/L) solution at different pH values.

Fig. S10 Molecular structures of model lignin used in theoretical calculations. The aminated molecule contains 4 different types of N-containing groups (-NH2, -NH-,

-C=N-, and -CR-NH-), shown in orange color.

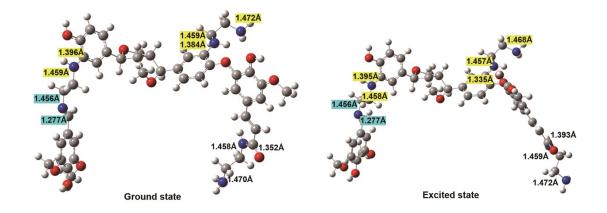


Fig. S11 Bond length of N-C at the ground state and excited state respectively. Yellow ones were shorter after excitement, while blue ones remained unchanged.

cluster formation).							
sample	Intercept	Slope	R-Square (COD)				
NaOH	8.03 ± 3.03	984.16 ± 90.51	0.95171				
AL	1.82 ± 0.66	361.63 ± 19.88	0.9822				
E-AL	6.98 ± 3.12	1365.88 ± 93.36	0.97273				
AL	3.51 ± 1.39	293.69 ± 41.69	0.89212				
100EL	1.20 ± 0.42	772.93 ± 12.69	0.99839				
120EL	2.67 ± 1.14	1165.17 ± 34.10	0.99489				
140EL	3.35 ± 1.37	1360.50 ± 41.06	0.99456				
160EL	5.16 ± 2.28	1483.74 ± 68.07	0.98753				
180EL	6.89 ± 2.96	2075.58±88.63	0.98918				

 Table S1. Parameters of Linear fit in concentration-fluorescence intensity (stage 1:

		,		
sample	Intercept	Slope	R-Square	
			(COD)	
NaOH	89.76 ± 19.75	-209.50 ± 107.50	0.65505	
AL	39.56 ± 2.84	-95.16 ± 15.47	0.94977	
E-AL	142.69 ± 20.10	-334.78 ± 109.39	0.82403	
AL	29.63 ± 3.30	-78.04 ± 17.98	0.90404	
100EL	63.69 ± 9.11	157.52 ± 49.60	0.83454	
120EL	95.15 ± 13.47	129.00 ± 73.30	0.60764	
140EL	121.48 ± 23.73	130.40 ± 129.20	0.33747	
160EL	137.12 ± 21.45	44.60 ± 116.78	0.06797	
180EL	146.08 ± 5.62	187.40 ± 30.60	0.94939	

 Table S2. Parameters of Linear fit in concentration-fluorescence intensity (stage 2:

increase of cluster numbers).

11

samples	Calculated results		Experimental results	
	absorption	emission	absorption	emission
Un-aminated lignin	286 nm	403 nm	242 nm	420 nm
Aminated lignin	321 nm	486 nm	201 nm	447 nm

Table S3. The comparison of calculated and experimental values based on model lignin