Supplementary information

All-biomass-based Eco-friendly Waterproof Coating for Paper Based

Green Packaging

Yuyuan Wang, Xiaoqian Zhang^{*}, Lijun Kan, Feng Shen, Hao Ling, Xiaohui Wang^{*}

State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, China.

^{*} Corresponding author. E-mail address: fewangxh@scut.edu.cn (X. H. Wang); zhangxq.163@163.com (X. Q. Zhang).

Materials		WVTR (g mm/m²/day)	References
Conventional plastics	LDPE	0.71 ± 0.12	1
	PET	1.49 ± 0.11	1
Biopolymers coating	Carnauba wax	0.70 ± 2.8	2
	Starch	34.15 ± 3.16	2
	Protein	29.93 ± 4.57	2
	Pectin	140.14 ± 10.56	2
	PLA	177.465 ± 12.67	2
	H-LA-Wax	5.05 ± 0.4	This work

Table S1. The water barrier performance of H-LA-Wax coated paper compared with reported materials.

 Table S2. Materials cost calculation.

Materials	Price (\$/kg)	Quality (g/m ²)	Cost (\$/m ²)
Beeswax	5.58	7.6	0.0056
Hemicellulose	1.24	0.19	0.0002
Lauric acid	1.70	0.57	0.0010
Others			0.0015
Total cost			0.0083

Tape-peeling test

The tape-peeling test was performed according to the reported method with some modifications³⁻⁵. The grid lines were draw on the waterproof coating by a Cross-Cut Tester. The adhesive tape (3M, Scotch 600) was applied to the coating surface under a 100 g weight for 30 s, and then peeled off from the surface, which is one cycle. The water contact angle of the coating was measured after every 4 cycles of tape peeling.

Fig. S1 (a) Schematic diagram of tape-peeling test; (b) Changes of water contact angles with different tape-peeling test cycles; (c) Scratching with a Cross-Cut Tester on the coated surface; (d) Surface hydrophobicity of the coated paper with 32 cycles tape-peeling test.

Fig. S2 The tensile stress-strain curves of the recycled paper.

References

- A. Sangroniz, J. B. Zhu, X. Tang, A. Etxeberria, E. Y. Chen and H. Sardon, *Nat Commun.*, 2019, 10, 3559.
- S. Jung, Y. Cui, M. Barnes, C. Satam, S. Zhang, R. A. Chowdhury, A. Adumbumkulath, O. Sahin, C. Miller, S. M. Sajadi et al., *Adv. Mater.*, 2020, **32**, e1908291.
- T. Zhu, Y. Cheng, J. Huang, J. Xiong, M. Ge, J. Mao, Z. Liu, X. Dong, Z. Chen and Y. Lai, *Chem. Eng. J.*, 2020, **399**, 125746.
- C. Cao, B. Yi, J. Zhang, C. Hou, Z. Wang, G. Lu, X. Huang and X. Yao, *Chem. Eng. J.*, 2020, 392, 124834.
- 5. B.-Y. Liu, C.-H. Xue, Q.-F. An, S.-T. Jia and M.-M. Xu, *Chem. Eng. J.*, 2019, **371**, 833-841.