SUPPORTING INFORMATION

Efficient microwave-assisted selective alkaline hydrolysis of diversely

substituted phosphonate esters.

Lucas Mele,^a Raphael El Bekri Saudain,^a Jean-Luc Pirat,^a Tahar Ayad^{*a} and David Virieux^{*a}

^a ICGM Univ Montpellier, CNRS, ENSCM, Montpellier, France

* E-mail: <u>david.virieux@enscm.fr</u>, <u>tahar.ayad@enscm.fr</u>

Table of contents

1.	General Information	1
2.	Procedures	2
3.	Unsuccessful substrates	9
4.	Thermal vs MW activation	9
5.	NMR data	10
6.	Metrics	37
7.	References	39

1. General Information

Unless specified, all of the reagents and starting materials were purchased from Fluorochem[®], TCI[®], Alfa Aesar[®] or Sigma-Aldrich[®] and used as received. All NMR spectroscopy measurements were performed with a Bruker AC 400 MHz spectrometer and are calibrated using the residual proton in the deuterated solvent (CHCl₃ at 7.26 ppm ¹H NMR, 77.16 ppm ¹³C NMR; DMSO at 2.50 ppm ¹H NMR, 39.52 ppm ¹³C NMR; MeOH at 3.31 ppm ¹H NMR, 49.00 ppm ¹³C NMR). The chemical shifts are reported in ppm, and the coupling constant (*J*) are reported in Hz. The following abbreviations were used to explain multiplicities: s = singlet, br s = broad singlet, d = doublet, t = triplet, q = quartet, p = pentuplet and m = multiplet. For ¹³C

NMR (101 MHz) and ³¹P NMR (162 MHz) all spectra were decoupled from the proton unless stated otherwise. High-resolution mass spectra (HRMS) were recorded on an Agilent 6210 ESI (electrospray ionization) TOF (time of flight) mass spectrometer. Microwave reactions were performed using a CEM Discover SP[®] apparatus. The temperature of the mixture was determined using a volume-independent infrared (IR) temperature measurement.

2. Procedures

Synthesis of starting materials

Starting materials **1c-g** are known and they were synthesized by an Arbuzov reaction following the procedure reported by Kekeç and co-workers.¹

Starting materials **1a,i-j** are known and they were synthesized by an α, α '-dialkylation reaction following the procedure reported by Collignon and co-workers.²

Starting materials **10-p** are known and they were synthesized by Hirao coupling following the procedure reported by Stawinski and co-workers.³

General procedure for the microwave assisted selective hydrolysis of substituted phosphonates

Substituted phosphonate (1.0 mmol, 1.0 eq), sodium hydroxide (2.4 mmol, 2.4 eq) and the appropriate alcohol (EtOH, MeOH, *i*-PrOH or *n*-BuOH, 1 mL) were placed in a 10 mL microwave reaction vial equipped with a magnetic stirrer. The microwave reaction vial was sealed with a rubber cap and then placed in the microwave oven to be heated at 200 W to reach the appropriate temperature reported in Table 1 usually within 30 s to 1 min 30. Full conversion for each substrate (monitored by ³¹P NMR analysis on the crude mixture with a DMSO-d₆

probe) were observed after the time described on Table 1. The reaction mixture was partitioned between EtOAc (5 mL) and 1N HCl (5 mL), decanted and the organic layer was washed with brine (5 mL). The combined aqueous layers were extracted with EtOAc (3×10 mL), then the combined organic layers were dried over MgSO₄ (1.5 g) and concentrated under reduced pressure to give the desired phosphonic acid monoester.

Greener procedure for the microwave assisted selective hydrolysis of substituted phosphonates

Substituted phosphonate (1.0 mmol, 1.0 eq), sodium hydroxide (2.4 mmol, 2.4 eq) and the appropriate alcohol (EtOH, MeOH, *i*-PrOH or *n*-BuOH, 1 mL) were placed in a 10 mL microwave reaction vial along with a magnetic stirrer. The microwave reaction vial was sealed with a rubber cap and then placed in the microwave oven to be heated at 200 W to reach the appropriate temperature reported in Table 1 usually within 30 s to 1 min 30. Full conversion for each substrate (monitored by ³¹P NMR analysis on the crude mixture with a DMSO-d₆ probe) were observed after the time described on Table 1. The reaction mixture was partitioned between EtOAc (5 mL) and citric acid 10%wt (5 mL). The aqueous layers were extracted with EtOAc (2 × 5 mL), then the combined organic layers were dried over MgSO₄ (1.5 g) and concentrated under reduced pressure to give the desired phosphonic acid monoester.

Grams scale procedure for the microwave assisted selective hydrolysis of 1b

Diethyl benzylphoshonate **1b** (3.60 g, 15.8 mmol, 1.0 eq), sodium hydroxide (1.51 g, 37.8 mmol, 2.4 eq) and EtOH (16 mL) were placed in a 35 mL microwave reaction vial along with a magnetic stirrer. The microwave reaction vial was sealed with a rubber cap and then placed in the microwave oven to be heated at 200 W to reach 130 °C within 1 min 30. After 10 minutes of heating, full conversion was observed (monitored by ³¹P NMR analysis on the crude mixture with a DMSO-d₆ probe). The reaction mixture was partitioned between EtOAc (80 mL) and 1N HCl (80 mL), decanted and the organic layer was washed with brine (80 mL). The combined aqueous layers were extracted with EtOAc (3 × 150 mL), then the combined organic layers were dried over MgSO₄(20 g) and concentrated under reduced pressure to give the desired ethyl hydrogen benzylphosphonate **2b** as a white solid (2.95 g, 94%).

 Table 1: Substrate scope

Cyclohexylbenzylphosphonic acid monoethyl ester (2a)

White solid (255 mg, 95%). ¹H NMR (400 MHz, MeOD) δ 7.53 – 7.44 (m, 2H, ArH), 7.40 – 7.31 (m, 2H, ArH), 7.30 – 7.18 (m, 1H, ArH), 3.88 – 3.75 (m, 2H, OCH₂), 2.64 – 2.55 (m, 2H, CH_{2(Cy)}), 2.05 – 1.94 (m, 2H, CH_{2(Cy)}), 1.57 (m, 3H, CH_{2(Cy)}), 1.41 – 1.22 (m, 3H, CH_{2(Cy)}) 1.17 (t, *J* = 7.1 Hz, 3H, CH₃). ¹³C NMR (101 MHz, MeOD) δ 138.3 (d, *J* = 6.4 Hz), 130.6 (d, *J* = 5.4 Hz), 129.2 (d, *J* = 3.3 Hz), 127.4 (d, *J* = 3.7 Hz), 63.0 (d, *J* = 7.7 Hz), 45.1 (d, *J* = 136.7 Hz), 30.7 (d, *J* = 4.2 Hz), 27.3 (d, *J* = 1.4 Hz), 22.0 (d, *J* = 12.7 Hz), 16.7 (d, *J* = 5.9 Hz). ³¹P NMR (162 MHz, MeOD) δ 29.3. HRMS (ESI-TOF): calc'd for C₁₄H₂₂O₃P [M+H]⁺: 269.1301, found: 269.1305.

Benzylphosphonic acid monoethyl ester (2b)

White solid (196 mg, 98%). ¹H NMR (400 MHz, CDCl₃) δ 9.60 (br s, 1H, OH), 7.34 - 7.18 (m, 5H, ArH), 3.88 (dq, J = 8.1, 7.1 Hz, 2H, OCH₂), 3.03 (d, J = 22.1 Hz, 2H, CH₂P), 1.20 (t, J = 7.0 Hz, 3H, CH₃). ³¹P NMR (162 MHz, CDCl₃) δ 29.4.

Benzylphosphonic acid monomethyl ester (2c)

White solid (181 mg, 97%). ¹H NMR (400 MHz, CDCl₃) δ 12.10 (br s, 1H, OH), 7.36 – 7.24 (m, 5H, ArH), 3.56 (d, J = 11.0 Hz, 3H, OCH₃), 3.11 (d, J = 22.2 Hz, 2H, CH₂P). ¹³C NMR (101 MHz, CDCl₃) δ 131.8 (d, J = 9.3 Hz), 129.9 (d, J = 6.5 Hz), 128.5 (d, J = 2.7 Hz), 126.8 (d, J = 3.4 Hz), 52.2 (d, J = 6.9 Hz), 33.4 (d, J = 140.2 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 28.3. HRMS (ESI-TOF): calc'd for C₈H₁₂O₃P [M+H]⁺: 187.0519, found: 187.0521.

Benzylphosphonic acid monoisopropyl ester (2d)

Light yellow solid (212 mg, 98%). ¹H NMR (400 MHz, CDCl₃) δ 12.36 (br s, 1H, OH), 7.32 – 7.15 (m, 5H, ArH), 4.45 (dh, J = 7.8, 6.1 Hz, 1H, OCH), 3.01 (d, J = 22.1 Hz, 2H, CH₂P), 1.18 (d, J = 6.2 Hz, 6H, (CH₃)₂). ¹³C NMR (101 MHz, CDCl₃) δ 132.0 (d, J = 9.2 Hz), 129.9 (d, J = 6.6 Hz), 128.3 (d, J = 3.0 Hz), 126.6 (d, J = 3.6 Hz), 70.6 (d, J = 7.3 Hz), 34.3 (d, J = 140.8 Hz), 23.9 (d, J = 4.4 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 27.3. HRMS (ESI-TOF): calc'd for C₁₀H₁₆O₃P [M+H]⁺: 215.0832, found: 215.0834.

Benzylphosphonic acid n-monobutyl ester (2e)

White solid (220 mg, 96%). ¹H NMR (400 MHz, CDCl₃) δ 11.85 (br s, 1H, OH), 7.31 .16 (m, 5H, ArH), 3.83 (dt, J = 6.7, 6.7 Hz, 2H, OCH₂), 3.05 (d, J = 22.3 Hz, 2H, CH₂P), 1.56 – 1.47 (m, 2H, CH₂), 1.34 – 1.24 (m, 2H, CH₂), 0.86 (t, J = 7.4 Hz, 3H, CH₃). ¹³C NMR (101 MHz, CDCl₃) δ 131.9 (d, J = 9.2 Hz), 129.9 (d, J = 6.6 Hz), 128.4 (d, J = 3.0 Hz), 126.7 (d, J = 3.5 Hz), 65.3 (d, J = 7.1 Hz), 33.8 (d, J = 140.1 Hz), 32.4 (d, J = 6.4 Hz), 18.6, 13.6. ³¹P NMR (162 MHz, CDCl₃) δ 27.6. HRMS (ESI-TOF): calc'd for C₁₁H₁₈O₃P [M+H]⁺: 229.0988, found: 229.0991.

2-Bromobenzylphosphonic acid monoethyl ester (2f)

White solid (269 mg; 96%). ¹H NMR (400 MHz, CDCl₃) δ 12.39 (br s, 1H, OH), 7.56 (d, J = 8.0 Hz, 1H, ArH), 7.46 (d, J = 7.6 Hz, 1H, ArH), 7.26 (t, J = 7.4 Hz, 1H, ArH), 7.10 (t, J = 7.7 Hz, 1H, ArH), 3.98 (dq, J = 7.2, 7.2 Hz, 2H, OCH₂), 3.37 (d, J = 22.0 Hz, 2H, CH₂P), 1.25 (t, J = 7.0 Hz, 3H, CH₃). ¹³C NMR (101 MHz, CDCl₃) δ 132.9 (d, J = 2.2 Hz), 132.0 (d, J = 8.7 Hz), 131.7 (d, J = 4.7 Hz), 128.4 (d, J = 2.9 Hz), 127.4 (d, J = 2.7 Hz), 125.1 (d, J = 8.6 Hz), 62.0 (d, J = 6.3 Hz), 33.6 (d, J = 141.1 Hz), 16.3 (d, J = 5.9 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 26.7. HRMS (ESI-TOF): calc'd for C₉H₁₃BrO₃P [M+H]⁺: 278.9780, found: 278.9784.

2-Chloro-5-trifluoromethylbenzylphosphonic acid monoethyl ester (2g)

4-Carbamoylbenzylphosphonic acid monoethyl ester (2h)

(101 MHz, MeOD) δ 172.06, 138.13 (d, J = 9.2 Hz), 133.33 (d, J = 3.7 Hz), 131.06 (d, J = 6.3 Hz), 128.78 (d, J = 3.1 Hz), 62.96 (d, J = 6.6 Hz), 34.62 (d, J = 136.2 Hz), 16.73 (d, J = 6.4 Hz). ³¹P NMR (162 MHz, MeOD) δ 24,92. HRMS (ESI-TOF): calc'd for C₁₀H₁₅NO₄P [M+H]⁺: 244.0739, found: 244.0734.

Naphthalen-1-ylmethylphosphonic acid monoethyl ester (2i)

Light yellow solid (246 mg, 98%). 1H NMR (400 MHz, CDCl₃) δ 7.99 (d, J = 8.3 Hz, 1H, ArH), 7.84 – 7.68 (m, 2H, ArH), 7.47 (dddd, J = 17.7, 8.0, 6.7, 1.4 Hz, 2H, ArH), 7.43 – 7.30 (m, 2H, ArH), 3.69 (dq, J = 7.2, 7.2 Hz, 2H, OCH₂), 3.42 (d, J = 22.4 Hz, 2H, CH₂P), 1.06 (t, J = 7.1 Hz, 3H, CH₃). ¹³C NMR (101 MHz, CDCl₃) δ 133.8 (d, J = 2.9 Hz), 132.0 (d, J = 5.1 Hz), 128.7 (d, J = 7.6 Hz), 128.5, 127.9 (d, J = 9.9 Hz), 127.7 (d, J = 4.2 Hz), 126.1, 125.7, 125.4 (d, J = 4.2 Hz), 124.6 (d, J = 1.9 Hz), 61.6 (d, J = 7.2 Hz), 30.7 (d, J = 141.4 Hz), 16.1 (d, J = 6.5 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 29.1. HRMS (ESI-TOF): calc'd for C₁₃H₁₆O₃P [M+H]⁺: 251.0832, found: 251.0835.

4'-((ethoxy(hydroxy)phosphoryl)methyl)-[1,1'-biphenyl]-3-carboxylic acid (2j)

ноос

White solid (272 mg; 85%). ¹H NMR (400 MHz, MeOD) δ 8.24 (t, J = 1.8 Hz, 1H, ArH), 7.99 (dt, J = 7.8, 1.4 Hz, 1H, ArH), 7.82 (ddd, J = 7.8, 2.0, 1.1 Hz, 1H, ArH), 7.65 – 7.57 (m, 2H, ArH), 7.56 – 7.50 (m,

1H, ArH), 7.41 (dd, J = 8.3, 2.5 Hz, 2H, ArH), 4.03 (dq, J = 7.9, 7.1 Hz, 2H, -OCH₂), 3.21 (d, J = 21.4 Hz, 2H, CH₂-P), 1.27 (t, J = 7.1 Hz, 3H, -CH₃). ¹³C NMR (101 MHz, MeOD) δ 169.70,

142.34, 139.87 (d, J = 3.9 Hz), 133.37 (d, J = 9.4 Hz), 132.52, 132.36, 131.61 (d, J = 6.5 Hz), 130.10, 129.48 (d, J = 6.7 Hz), 128.96, 128.03 (d, J = 3.2 Hz), 62.93 (d, J = 6.5 Hz), 34.30 (d, J = 136.5 Hz), 16.76 (d, J = 6.3 Hz). ³¹P NMR (162 MHz, MeOD) δ 25.80. HRMS (ESI-TOF): calc'd for C₁₆H₁₈O₅P [M+H]⁺: 321.0892, found: 321.0891.

Cyclopentylbenzylphosphonic acid monoethyl ester (2k)

White solid (194 mg, 94%). ¹H NMR (400 MHz, MeOD) δ 7.46 (ddd, J = 8.3, 2.7, 1.2 Hz, 2H, ArH), 7.33 – 7.25 (m, 2H, ArH), 7.23 – 7.14 (m, 1H, ArH), 3.82 (dq, J = 7.2, 7.2 Hz, 2H, OCH₂), 2.49 – 2.13 (m, 4H, 2 CH₂), 1.89 – 1.75 (m, 2H, CH₂), 1.64 – 1.48 (m, 2H, CH₂), 1.15 (t, J = 7.1 Hz, 3H, CH₃). ¹³C NMR (101 MHz, MeOD) δ 142.4 (d, J = 4.3 Hz), 129.7 (d, J = 5.1 Hz), 128.9 (d, J = 3.2 Hz), 127.5 (d, J = 3.4Hz), 62.9 (d, J = 7.5 Hz), 52.2 (d, J = 139.6 Hz), 35.6 (d, J = 1.1 Hz), 25.2, 16.7 (d, J = 6.0 Hz). ³¹P NMR (162 MHz, MeOD) δ 30.9. HRMS (ESI-TOF): calc'd for C₁₃H₂₀O₃P [M+H]⁺: 255.1145, found: 255.1148.

Diallylbenzylphosphonic acid monoethyl ester (21)

(m, 4H, $CH_{2(C=C)}$), 3.76 (dq, J = 7.2, 7.2 Hz, 2H, OCH_2), 3.03 - 2.79 (m, 4H, $CH_{2(allyl)}$), 1.16 (t, J = 7.0 Hz, 3H, CH_3). ¹³C NMR (101 MHz, $CDCl_3$) δ 138.4 (d, J = 6.1 Hz), 133.7 (d, J = 9.5 Hz), 129.1 (d, J = 5.4 Hz), 127.9 (d, J = 2.8 Hz), 126.7 (d, J = 3.0 Hz), 118.3, 61.8 (d, J = 7.9 Hz), 45.1 (d, J = 137.7 Hz), 37.0 (d, J = 2.8 Hz), 16.2 (d, J = 6.1 Hz). ³¹P NMR (162 MHz, $CDCl_3$) δ 32.2. HRMS (ESI-TOF): calc'd for $C_{15}H_{22}O_3P$ [M+H]⁺: 281.1301, found: 281.1305.

Ethylphosphonic acid monoethyl ester (2m)

White solid (87 mg, 63%). ¹H NMR (400 MHz, CDCl₃) δ 11.90 (br s, 1H, OH), 4.09 (dq, J = 7.3, 7.3 Hz, 2H, OCH₂), 1.74 (dq, J = 18.6, 7.5 Hz, 2H, CH₂P), 1.33 (t, J = 7.1 Hz, 3H, CH₃), 1.18 (dt, J = 20.1, 7.7 Hz, 3H, CH₃). ¹³C NMR (101 MHz, CDCl₃) δ 61.1 (d, J = 6.7 Hz), 19.1 (d, J = 145.0 Hz), 16.4 (d, J = 6.4 Hz), 6.4 (d, J = 6.6 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 35.8. HRMS (ESI-TOF): calc'd for C₄H₁₂O₃P [M+H]⁺: 139.0519, found: 139.0520.

Methylthiomethylphosphonic acid monoethyl ester (2n)

Cyclopropylmethylphosphonic acid monoethyl ester (20)

Phenylphosphonic acid monoethyl ester (2p)

Brown oil (174 mg, 93%). ¹H NMR (400 MHz, CDCl₃) δ 12.26 (br s, 1H, OH), (\mathcal{O} H 7.84 (dd, J = 13.7, 7.5 Hz, 2H, ArH), 7.54 (t, J = 7.6 Hz, 1H, ArH), 7.44 (dt, J = 11.2, 5.3 Hz, 2H, ArH), 4.07 (dq, J = 7.3, 7.3 Hz, 2H, OCH₂), 1.29 (t, J = 7.1 Hz, 3H, CH₃). ¹³C NMR (101 MHz, CDCl₃) δ 132.2 (d, J = 3.1 Hz), 131.5 (d, J = 10.1 Hz), 129.1 (d, J = 193.7Hz), 128.4 (d, J = 15.3 Hz), 62.0 (d, J = 5.7 Hz), 16.3 (d, J = 6.8 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 19.4. HRMS (ESI-TOF): calc'd for C₈H₁₂O₃P [M+H]⁺: 187.0519, found: 187.0523.

3-Fluorophenylphosphonic acid monoethyl ester (2q)

Brown oil (198 mg, 97%). ¹H NMR (400 MHz, DMSO) δ 7.61 – 7.50 (m, 2H, ArH), 7.48 – 7.38 (m, 2H, ArH), 3.95 – 3.85 (m, 2H, OCH₂), 1.18 (t, *J* = 7.0 Hz, 3H, CH₃). ¹³C NMR (101 MHz, DMSO) δ 162.2 (dd, *J* = 246.4, 20.4 Hz), 135.1 (dd, *J* = 182.2, 5.9 Hz), 131.4 (dd, *J* = 16.5, 7.7 Hz), 127.6 (dd, *J* = 8.9, 3.0 Hz), 119.1 (dd, *J* = 20.8, 3.0 Hz), 117.9 (dd, *J* = 21.7, 10.5 Hz), 61.4 (d, *J* = 5.3 Hz), 16.7 (d, *J* = 6.3 Hz). ³¹P NMR (162 MHz, DMSO) δ 12.5 (d, *J* = 8.3 Hz). HRMS (ESI-TOF): calc'd for C₈H₁₁FO₃P [M+H]⁺: 205.0424, found: 205.0428.

4-Methylphenylphosphonic acid monoethyl ester (2r)

Brown oil (196 mg, 98%). ¹H NMR (400 MHz, DMSO) δ 7.59 (dd, J = 12.8, 8.1 Hz, 2H, ArH), 7.33 – 7.28 (m, 2H, ArH), 3.85 (dq, J = 7.9, 7.1 Hz, 2H, OCH₂), 2.36 (s, 3H, CH₃C_q), 1.17 (t, J = 7.0 Hz, 3H, CH₃). ¹³C NMR (101 MHz, DMSO) δ 142.0 (d, J = 3.1 Hz), 131.5 (d, J = 10.1 Hz), 129.4 (d, J = 14.7 Hz), 128.6 (d, J = 185.0 Hz), 60.9 (d, J = 5.1 Hz), 21.6 (d, J = 1.3 Hz), 16.7 (d, J = 6.4 Hz). ³¹P NMR (162 MHz, DMSO) δ 15.4. HRMS (ESI-TOF): calc'd for C₉H₁₄O₃P [M+H]⁺: 201.0675, found: 201.0682.

3. Unsuccessful substrates

Figure 1: Unsuccessful substrates.

4. Thermal vs MW activation

General procedure for the microwave assisted selective hydrolysis of substituted phosphonates

Substituted phosphonate (1.0 mmol, 1.0 eq), sodium hydroxide (2.4 mmol, 2.4 eq) and ethanol (1 mL) were placed in a 10 mL Schott® sealed tube equipped with a magnetic stirrer. The reaction vessel was heated at the appropriate temperature with a heat-on. After the indicated time, the reaction mixture was cooled down in an ice bath, partitioned between EtOAc (5 mL) and 1N HCl (5 mL), decanted and the organic layer was washed with brine (5 mL). The

combined aqueous layers were extracted with EtOAc ($3 \times 10 \text{ mL}$), then the combined organic layers were dried over MgSO₄ (1.5 g) and concentrated under reduced pressure to give the desired phosphonic acid monoester.

Comparison of kinetics

The selective hydrolysis kinetic of substrate **1b** was evaluated at 100 °C for a reaction time of 5, 10 and 15 minutes with a conventional heating in a sealed tube and 1, 5 and 10 minutes with MW irradiation (Figure 2). On the other hand, the selective hydrolysis kinetic of substrate **1a** was evaluated at 150 °C for a reaction time of 15 and 30 minutes with a conventional heating in a sealed tube and with MW irradiation (Figure 3). The data were modelized according to a 2^{nd} order kinetic as suitable for a basic hydrolysis reaction without large excess of reagent. The reaction rate was manually optimized to fit as best as possible the experimental data hence the

relative rate $\frac{v_{MW}}{v_{thermal}}$ was evaluated.

Figure 2: Kinetic monitoring by ³¹P NMR for the formation of 2b.

Figure 3: Kinetic monitoring by ³¹P NMR for the formation of 2a.

5. NMR data

Cyclohexylbenzylphosphonic acid monoethyl ester (2a)

Benzylphosphonic acid monoethyl ester (2b)

Benzylphosphonic acid monomethyl ester (2c)

Benzylphosphonic acid monoisopropyl ester (2d)

2-Bromobenzylphosphonic acid monoethyl ester (2f)

2-Chloro-5-trifluoromethylbenzylphosphonic acid monoethyl ester (2g)

4-Carbamoylbenzylphosphonic acid monoethyl ester (2h)

REB280 brut.11.fid 31P-CPD MeOD {D:\icgd1} icgd1 13

MeOD 162 MHz

220 20 f1 (ppm) 200 180 160 140 120 100 80 60 40 0 -20 -40 -60 -80 -100 -120 -140 -160 -18

Naphthalen-1-ylmethylphosphonic acid monoethyl ester (2i)

RMN/LM202 dry 31P LM202 dry 31P{1H} CDCl3 /opt/topspin2.1 dept1a 4

D HO OEt 2i ³¹ P NMR CDCl ₃	
162 MHz	
seeneen his al Anthon Constitute an Anthon An International and an an Anthon An Anthon An Anthon An Anthon An	vali a i na i na ina da manifesta manifesta ina da

50 230 50 f1 (ppm) -110 -130 -1 210 190 170 150 130 110 90 70 30 10 -10 -30 -50 -70 -90

4'-((ethoxy(hydroxy)phosphoryl)methyl)-[1,1'-biphenyl]-3-carboxylic acid (2j)

Cyclopentylbenzylphosphonic acid monoethyl ester (2k)

Diallylbenzylphosphonic acid monoethyl ester (2l)

Methylthiomethylphosphonic acid monoethyl ester (2n)

50 f1 (ppm) 50 10 -10 -30 -70 -130 -1 230 210 190 170 150 130 110 90 70 30 -50 -90 -110

Cyclopropylmethylphosphonic acid monoethyl ester (20)

In president of the pre

50 f1 (ppm)

Phenylphosphonic acid monoethyl ester (2p)

f1 (ppm)

S37

4-Methylphenylphosphonic acid monoethyl ester (2r)

RMN/LM229 31P LM229 31P{1H} DMSO /opt/topspin2.1 dept1a 4 O ∽ŕ`OEt OH 2r ³¹P NMR DMSO-d₆ 162 MHz

50 230 50 f1 (ppm) 210 190 150 130 110 90 70 30 10 -10 -30 -50 -70 -90 -110 -130 -1 170

6. Metrics

Figure 4: Power consumption for the synthesis of compound 2a monitored by CEM Explorer software.

ne (cm3) Density (g ml-1 Mass (g) e (cm3 Density (g ml-1 Mass (g) 35 0,89 31,1 aCI 45.516 3,185 41.15 o-Scale 85,5 95,2 100,0 79,8 65,1 $RME = \frac{mass \ of \ isolated \ product}{total \ mass \ of \ reactants}$ × 100 molecular weight of product total molecualr weight of reactants mass intensity = total mass in a process or process step mass of product $OE = \frac{RME}{AE} \times 100$

Figure 5: Green Metrics for the general procedure applied on the synthesis of compound 2a.

Reactant (Lin Mass (g) MW Mol	Catalyst Mas	ss (g) Reagent Mass	(g) Reaction S	ioly Volume (cm3 De	ensity (g m Mass (g)	Work up che	1 Mass (g)	Work up solv	Volume (cm3 De	nsity (g m Ma	ass (g)		
Phosphonat 0,296 296,35 0,0	00099882		EtOH	1	0,789 0,789	Citric acid	0,5	Water	5	1	5		
NaOH 0,096 40	0,0024				0	MgSO4	1,5	EtOAc	15	0,89	13,35		
#1	DIV/0!				0	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.					0		
#[DIV/01				0						0		
#0	DIV/01				0						0		
#0	DIV/0!				0						0		
#1	DIV/01				0						0		
#1	DIV/0!				0						0		
#1	iDIV/0!	-	-		0						0	-	
10tai 0,392 336,35		0	0		0,789		2			100	18,35	Total mass	21,551
			M-14	70.0									
			Tield	/1,6					10-1				
			Conversion	1 100,0		Department	Mass 0 102	1VIW 268 20	0.00071564				
			PME	19,0		FIGURE	0,152	200,25	0,000/1504				
			OF	61.4			mace	1					
			Different	112.1		Unconstant	mass						
			PMI concti	6.2		onreacted							
			reagent ca	tal 2.0									
			solvent	41									
			PMI Work	106.0									
			chemical	10.4									
			solvent	95,6									

Figure 6: Green Metrics for the greener procedure applied on the synthesis of compound 2a.

Reactant (Lir Mass (g) MW Mol Catalyst Mass (g)	Reagent Mass (g)	Reaction So	Volume (cm: De	sity (g m Mass	(g)	Work up ch	e Mass (g)	Work up s	oh Volume (cm: l	Density (g m l	Mass (g)		
Phosphonate 0,296 296,35 0,00099882	and the second second second	EtOH	1	0,789	0,789	HCI	0,185	Water	10	1	10		
NaOH 0,096 40 0,0024					0	NaCl	1,5	EtOAc	35	0,89	31,15		
#DIV/01					0	MgSO4	1,5				0		
#DIV/01					0						0		
#DIV/01					0						0		
#DIV/0!					0						0		
#DIV/0!					0						0		
#DIV/0!					0						0		
#DIV/0!					0						0		
Total 0,392 336,35	0	0			0,789		3,185				41,15	Total mass	45,516
		Eco-Scale	73,5										
PMF - mass of isolated product × 100		Yield	69,0										
total mass of reactants		Conversion	100,0				Mass	MW	Mol				
		AE	79,8			Product	0,185	268,	29 0,0006896				
malan lan uniakt af maduat		RME	47,2										
$AE = \frac{molecular weight of product}{100} \times 100$		OE	59,2				mass						
total molecualr weight of reactants		PMI total	246,0			Unreacted I	lii O						
		PMI reactio	n 6,4					0					
total mass in a process or process st	ep	reagent cata	a 2,1										
mass intensity =	-	solvent	4,3										
mass of produce		PMI Worku	p 239,6										
DME		chemical	17,2										
$OE = \frac{RML}{LR} \times 100$		solvent	222,4										
AL													

Figure 7: Green Metrics for the batch procedure applied on the synthesis of compound 2a.

	includy Eccay a	.,																		
Re	teactant (Lir M	lass (g)	MW	Mol	Catalyst	Mass (g)	Reagent	Mass (g)	Reaction Solvent	Volume (cm l	Density (g m	Mass (g)	Work up che	Mass (g)	Work up so	Volume (cm3	Density (g m N	fass (g)		
P	hosphonate	0,045646	228,23	0,0002					DCM	1	1,33	1,33	HCI	0,25	Water	7	1	7		
Tf	120	0,085	282,13	0,000300011								(NaOH	0,028	Et2O	2	0,713	1,426		
P	yridine	0,032	79,1	0,0004			1					(Na2SO4	1,5	DCM	30	1,33	39,9		
H	120	0,072	18	0,004								(0		
												(0		
												(0		
												(0		
												(0		
												(0		
Te	otal	0,233928	607,46			(0	0				1,33		1,778				48,326	Total mass	51,667928
									Eco-Scale	80			5							
									Yield	93,7										
									Conversion	100,0				Mass	MW	Mol				
									AE	33,0			Product	0,0375	200,17	7 0,000187341				
									RME	16,0			Second 101	1999 - A. 1999 -						
									OE	48,6				mass						
									PMI total	1377,8			Unreacted li	0						
									PMI reaction	41,7	58,3									
									reagent catalyst	6,2										
									solvent	35,5										
									PMI Workup	1336,1										
									chemical	47,4										
									solvent	1288,7										

Figure 8: Green Metrics comparison between reported procedure⁴⁻⁶ and our applied on the synthesis of compound **2b**.

7. References

- ¹ Y. Gök, S. Küloğlu, H. Z. Gök and L. Kekeç, Appl. Organometal. Chem., 2014, 28, 835–838.
- ² J. Nasser, E. About-Jaudet and N. Collignon, *Phosphorus Sulfur*, 1990, 1/4, 171–190.
- ³ M. Kalek, M. Jezowska and J. Stawinski, Adv.Synth. Catal., 2009, **351**, 3207–3216.
- ⁴ J. Ash, H. Huang, P. Cordero and J. Y. Kang, Org. Biomol. Chem., 2021, 19, 6007–6014.
- ⁵ S. Chowdhury, N. J. Muni, N. P. Greenwood, D. R. Pepperberg and R. F. Standaerdt, *Bioorg. Med. Chem. Lett.*, 2007, **17**, 3745–3748.
- ⁶ B. P. Rempel and S.G. Withers, Org. Biomol. Chem., 2014, **12**, 2592–2595.