Practical and Sustainable Preparation of Pyrrolo[2,3-*b*]indoles by Cu/Fe Catalyzed Intramolecular C(sp²)–H Amination

Matteo Corrieri, Lucia De Crescentini, Fabio Mantellini, Giacomo Mari, Stefania Santeusanio, and Gianfranco Favi*

Department of Biomolecular Sciences, Section of Chemistry and Pharmaceutical Technologies, University of Urbino "Carlo Bo", Via I Maggetti 24, 61029 Urbino, Italy

Email: gianfranco.favi@uniurb.it

Table of Contents

1.	General remarks	S1
2.	Synthesis and characterization of substrates	S4–S9
	2.1 Procedure for the synthesis of substrates 1a-v	S5
	2.2 Characterization of substrates	S5–S9
3.	Copper-Iron catalyzed Intramolecular C(sp ²)-H Amination	S9–S17
	3.1 Preliminary optimization studies	S9–S10
	3.2 Procedure for the synthesis of products 2a-t	S11
	3.3 Characterization of products	S11–S17
4.	Recycling of the aqueous catalytic system	S18
5.	Synthetic transformations	S19–S22
	5.1 Access to compound 3	S19
	5.2 Access to compound 4	S20
	5.3 Access to compound 5b	S20–S21
	5.4 Access to compound 6	S21
	5.5 Access to compound 7	S22
6.	¹ H and ¹³ C NMR spectra	S23–S48
7.	First Pass CHEM21 green metrics toolkit	S49
8.	References	S51

1. General Remarks

All the commercially available reagents and solvents were used without further purification. α -(Indol-3yl)hydrazones **1a–v** were prepared according to our previously reported method with a slight modification.^{1,2} Chromatographic purification of compounds was carried out on silica gel (60–200 µm). TLC analysis was performed on pre-loaded (0.25 mm) glass supported silica gel plates (Kieselgel 60); compounds were visualized by exposure to UV light and by dipping the plates in 1% Ce(SO₄)·4H₂O, 2.5% (NH₄)₆Mo₇O₂₄·4H₂O in 10% sulphuric acid followed by heating on a hot plate. All ¹H NMR and ¹³C NMR spectra were recorded at 400 and 100 MHz using DMSO-*d*₆ or CDCl₃ as solvent on a Bruker Ultrashield 400 spectrometer (Bruker, Billerica, MA, USA). Chemical shift (δ scale) are reported in parts per million (ppm) relative to the central peak of the solvent and are sorted in descending order within each group. The following abbreviations are used to describe peak patterns where appropriate: s = singlet, d = doublet, dd = doublet of doublet, dt = doublet of triplet, t = triplet, q = quartet, sept = septet, m = multiplet and br = broad signal. All coupling constants (J value) are given in Hertz [Hz]. Highresolution mass spectral (HRMS) analyses were performed using Orbitrap Exploris 240 Mass Spectrometers (Thermo Scientific) equipped with an ESI source. Melting points were determined in open capillary tubes and are uncorrected.

2. Synthesis and characterization of substrates

List of substrates **1a-v** prepared according to the general procedures.^{1,2}

2.1. Procedure for the synthesis of α -(indol-3-yl)hydrazones **1a-v**^{1,2}:

To a stirred mixture of indole (1 mmol) and azoalkene (1.5 mmol, 1.5 equiv) in dichloromethane (4 mL), zinc dichloride (13.6 mg, 0.1 mmol, 10 mol %) was added. After the disappearance of indole (0.25–18 h, TLC check), the solvent was removed and the crude mixture was purified by column chromatography on silica gel to afford, after crystallization, the α -(indol-3-yl)hydrazones **1** (23–95% yields).

2.2 Characterization of substrates

Methyl2-(4-methoxy-3-(1-methyl-1*H*-indol-3-yl)-4-oxobutan-2-lidene)hydrazinecarboxylate (1a): The chemical-physical data of compound1a are in agreement with those reported.2

Methyl2-(4-ethoxy-3-(1-methyl-1*H*-indol-3-yl)-4-oxobutan-2-ylidene)hydrazinecarboxylate(1b):Thechemical-physicaldataofcompound 1b are in agreement with those reported.2

tert-Butyl 2-(4-methoxy-3-(1-methyl-1*H*-indol-3-yl)-4-oxobutan-2ylidene)hydrazinecarboxylate (1c): Compound 1c was isolated by column chromatography (ethyl acetate/cyclohexane 35:65) in 60% yield (216.6 mg), 1 h; white solid; mp: 138–140 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 9.57 (br, 1H), 7.45 (d, *J* = 8.0 Hz, 1H), 7.41 (d, *J* = 8.4 Hz, 1H), 7.32 (s, 1H), 7.17–7.13 (m,

1H), 7.04–7.00 (m, 1H), 4.83 (s, 1H), 3.77 (s, 3H), 3.66 (s, 3H), 1.76 (s, 3H), 1.45 (s, 9H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 171.2, 153.0, 150.2, 136.5, 128.5, 126.8, 121.3, 118.9, 118.7, 109.8, 107.6, 79.1,

51.9, 51.3, 32.4, 28.1, 14.5. HRMS (ESI-Orbitrap, *m/z*): [M+H]⁺ calcd for C₁₉H₂₅N₃O₄ 360.1918, found 360.1923.

tert-Butyl 2-(4-isopropoxy-3-(1-methyl-1*H*-indol-3-yl)-4-oxobutan-2-ylidene)hydrazinecarboxylate: (1d): The chemical-physical data of compound 1d are in agreement with those reported.²

Methyl2-(4-(allyloxy)-3-(1-methyl-1*H*-indol-3-yl)-4-oxobutan-2-ylidene)hydrazinecarboxylate: (1e):

The chemical-physical data of compound **1e** are in agreement with those reported.²

tert-Butyl 2-(4-(benzyloxy)-3-(1-methyl-1*H*-indol-3-yl)-4-oxobutan-2ylidene)hydrazinecarboxylate (1f): The chemical-physical data of compound 1f are in agreement with those reported.²

Methyl 2-(1-(dimethoxyphosphoryl)-1-(1-methyl-1*H*-indol-3-yl)propan-2ylidene)hydrazinecarboxylate: (1g): The chemical-physical data of compound 1g are in agreement with those reported.²

Ethyl 3-(2-carbamoylhydrazono)-2-(1-methyl-1*H*-indol-3-yl)butanoate: (1h): The chemical-physical data of compound 1h are in agreement with those reported.²

Methyl2-(1-methoxy-2-(1-methyl-1*H*-indol-3-yl)-1-oxopentan-3-ylidene)hydrazinecarboxylate:(1i):Thechemical-physicaldataofcompound 1i are in agreement with those reported.2

Methyl2-(1-methoxy-2-(1-methyl-1H-indol-3-yl)-1-oxohexan-3-ylidene)hydrazinecarboxylate:(1j):Thechemical-physicaldataofcompound1j are in agreement with those reported.2

Methyl2-(4-methoxy-4-oxo-3-(1-propyl-1*H*-indol-3-yl)butan-2-ylidene)hydrazinecarboxylate:(1k):The chemical-physical data ofcompound 1k are in agreement with those reported.2

Methyl2-(3-(1*H*-indol-3-yl)-4-methoxy-4-oxobutan-2-ylidene)hydrazinecarboxylate:(11):Thechemical-physicaldataofcompound 1I are in agreement with those reported.2

Methyl2-(3-(1,5-dimethyl-1*H*-indol-3-yl)-4-methoxy-4-oxobutan-2-ylidene)hydrazinecarboxylate:(1m):Thechemical-physicaldataofcompound1mare in agreement with those reported.2

Methyl2-(3-(4-(benzyloxy)-1-methyl-1*H*-indol-3-yl)-4-methoxy-4-oxobutan-2-ylidene)hydrazinecarboxylate:(1n):Thechemical-physicaldata of compound 1n are in agreement with those reported.2

Methyl 2-(3-(7-chloro-1-methyl-1*H*-indol-3-yl)-4-methoxy-4-oxobutan-2ylidene)hydrazinecarboxylate: (10): The chemical-physical data of compound 1o are in agreement with those reported.²

Methyl 2-(3-(4-chloro-1-methyl-1*H*-indol-3-yl)-4-methoxy-4-oxobutan-2ylidene)hydrazinecarboxylate: (1p): The chemical-physical data of compound 1p are in agreement with those reported.²

Methyl 2-(3-(5-bromo-1-methyl-1*H*-indol-3-yl)-4-methoxy-4-oxobutan-2ylidene)hydrazinecarboxylate: (1q): The chemical-physical data of compound 1q are in agreement with those reported.²

Methyl 2-(3-(6-fluoro-1-methyl-1*H*-indol-3-yl)-4-methoxy-4-oxobutan-2ylidene)hydrazinecarboxylate: (1r): The chemical-physical data of compound 1r are in agreement with those reported.²

Methyl 3-(1-methoxy-3-(2-(methoxycarbonyl)hydrazono)-1-oxobutan-2yl)-1-methyl-1*H*-indole-4-carboxylate: (1s): The chemical-physical data of compound 1s are in agreement with those reported.²

Methyl 2-(3-(5,6-dihydro-4*H*-pyrrolo[3,2,1-*ij*]quinolin-1-yl)-4-methoxy-4oxobutan-2-ylidene)hydrazinecarboxylate: (1t): The chemical-physical data of compound 1t are in agreement with those reported.²

Methyl2-(1-(1-methyl-1*H*-indol-3-yl)-1-phenylpropan-2-ylidene)hydrazinecarboxylate:(1u):Thechemical-physicaldataofcompound1uarein agreement with those reported.2

Methyl 2-(1-methyl-1*H*-indol-3-yl)-3-(2-phenylhydrazono)butanoate (1v): Compound 1v was isolated by column chromatography (ethyl acetate/cyclohexane 30:70) in 64% yield (215.0 mg), 4 h; pale yellow solid; mp: 121-122 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 8.90 (s, 1H), 7.50 (d, J = 8.0 Hz, 1H), 7.41 (d, J = 8.0 Hz, 1H), 7.32 (s, 1H), 7.20–7.12 (m, 3H), 7.10–7.07 (m, 2H),

7.02–6.98 (m, 1H), 6.74–6.69 (m, 1H), 4.91 (s, 1H), 3.77 (s, 3H), 3.69 (s, 3H), 1.83 (s, 3H). ¹³C NMR (100 MHz, DMSO- d_6) δ 171.6, 146.3, 142.7, 136.6, 128.8, 128.4, 127.0, 121.2, 118.9, 118.8, 118.4, 112.4, 109.7, 108.3, 51.8, 51.3, 32.4, 14.1. HRMS (ESI-Orbitrap, m/z): [M+H]⁺ calcd for C₂₀H₂₁N₃O₂ 336.1707, found: 336.1701.

3. Copper-Iron catalyzed Intramolecular C(sp²)-H Amination

3.1 Preliminary optimization studies

Optimization of Reaction Conditions for the Intramolecular Oxidative Cyclization of 1a (Table S1). First, we tested the conversion of α -indolylhydrazone **1a** to 1-amino pyrrolo[2,3-b]indole **2a** using a combination of a palladium catalyst and an oxidant. To our delight, product 2a was obtained in 90% yield in the presence of Pd(OAc)₂ (0.1 mmol) and AgOAc (2 equiv) in DCM at room temperature (entry 1). A further investigation of the process revealed that the palladium catalyst was not needed since both Cu(OAc)₂·H₂O (0.1 mmol) or FeCl₃·6H₂O (0.1 mmol) alone catalyze the reaction albeit with scarce yield and poor conversion (entries 2 and 3). On the other hand, we were pleased to find that the intramolecular C-N coupling was successful in the presence of catalytic amounts of both Cu(OAc)₂·H₂O and FeCl₃·6H₂O (82% yield, entry 4). A comparable yield of 2a (76%) within a shorter reaction time was registered when the reaction was conducted in DCE at 50 °C (entry 5). Extra additives such as acid (PivOH) and base (K₂CO₃) gave inferior results (entries 6 and 7). Doubling the co-catalyst loading led to a slightly increase in the yield of 2a (entry 8). A contextual reducing of the half the amount of catalyst (0.05 mmol) and doubling that of co-catalyst (0.1 mmol) did not lead to a significant improvement in yield (76%, entry 9). Other copper salts with different oxidation states (I, II) tested (e.g., CuO, Cu(OTf)₂, CuCl₂, Cul, and CuCl) in combination with FeCl₃·6H₂O co-catalyst also performed well (entries 10–14). Finally, different solvents were explored, and the best result was obtained when acetone/H₂O, or neat H₂O was used, albeit with slower conversion for the latter (entries 15-20). Based on these preliminary studies and considering the economic and environmental issue we decided to employ H_2O as a solvent for the transformation. Therefore, conditions involving 10 mol% of Cu(OAc)₂·H₂O and 5 mol% of FeCl₃·6H₂O in H₂O at room temperature were selected as base to further optimize this intramolecular C–H amination.

ELECTRONIC SUPPORTING INFORMATION Table S1: Preliminary experiments^a

$\begin{array}{c} \begin{array}{c} \begin{array}{c} WeO_2C \\ \downarrow \downarrow \downarrow H \\ V \\ Pd(O_2)P \\ \hline \\ 1a \end{array} \end{array} \begin{array}{c} \begin{array}{c} conditions \\ \hline \\ conditions \end{array} \end{array} \begin{array}{c} \begin{array}{c} conditions \\ \downarrow \downarrow \downarrow H \\ CO_2Me \end{array} \end{array} \begin{array}{c} \begin{array}{c} conditions \\ \downarrow \downarrow \downarrow H \\ CO_2Me \end{array} \end{array} \begin{array}{c} \begin{array}{c} \begin{array}{c} conditions \\ \downarrow \downarrow \downarrow H \\ CO_2Me \end{array} \end{array} \begin{array}{c} \begin{array}{c} \begin{array}{c} conditions \\ \downarrow \downarrow \downarrow H \\ CO_2Me \end{array} \end{array} \end{array} \begin{array}{c} \begin{array}{c} \begin{array}{c} conditions \\ \downarrow \downarrow \downarrow H \\ CO_2Me \end{array} \end{array} \begin{array}{c} \begin{array}{c} \begin{array}{c} conditions \\ \hline \\ conditions \end{array} \end{array} \begin{array}{c} \begin{array}{c} \begin{array}{c} conditions \\ \hline \\ conditions \end{array} \end{array} \begin{array}{c} \begin{array}{c} \begin{array}{c} conditions \\ \hline \\ conditions \end{array} \end{array} \begin{array}{c} \begin{array}{c} \begin{array}{c} conditions \\ \hline \\ conditions \end{array} \end{array} \begin{array}{c} \begin{array}{c} \begin{array}{c} conditions \\ \hline \\ conditions \end{array} \end{array} \begin{array}{c} \begin{array}{c} \begin{array}{c} conditions \\ \hline \\ conditions \end{array} \end{array} \begin{array}{c} \begin{array}{c} \begin{array}{c} conditions \\ \hline \\ conditions \end{array} \end{array} \begin{array}{c} \begin{array}{c} \begin{array}{c} conditions \\ conditions \end{array} \end{array} \begin{array}{c} \begin{array}{c} \end{array} \end{array} \begin{array}{c} \begin{array}{c} conditions \\ conditions \end{array} \end{array} \begin{array}{c} \begin{array}{c} \end{array} \end{array} \begin{array}{c} \begin{array}{c} conditions \\ conditions \end{array} \end{array} \begin{array}{c} \begin{array}{c} \end{array} \end{array} \begin{array}{c} \begin{array}{c} \end{array} \end{array} \begin{array}{c} \end{array} \end{array} \begin{array}{c} \begin{array}{c} conditions \end{array} \end{array} \begin{array}{c} \end{array} \end{array} \end{array} \begin{array}{c} \end{array} \end{array} \begin{array}{c} \end{array} \end{array} \end{array} \end{array} \begin{array}{c} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \begin{array}{c} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \begin{array}{c} \end{array} \end{array}$							
		 0-Me		Ň			
	/ 3 1a	021110		1	2a		
entry	catalyst [equiv.]	co-catalyst [equiv.]	additive [equiv.]	solvent	t [h]	yield [%] ^b	
1 ^c	Pd(OAc) ₂ (0.1)	-	-	DCM	3	90	
2	FeCl₃·6H₂O (0.1)	-	-	DCM	12	28 ^{<i>d,e</i>}	
3	Cu(OAc)₂⋅H₂O (0.1)	-	-	DCM	12	33	
4	Cu(OAc)₂⋅H₂O (0.1)	FeCl ₃ ·6H ₂ O (0.05)	-	DCM	5	82	
5	Cu(OAc)₂⋅H₂O (0.1)	FeCl ₃ ·6H ₂ O (0.05)	-	DCE ^f	0.8	76	
6	Cu(OAc)₂⋅H₂O (0.1)	FeCl ₃ ·6H ₂ O (0.05)	PivOH (5.0)	DCM	18	60	
7	Cu(OAc) ₂ ·H ₂ O (0.1)	FeCl ₃ ·6H ₂ O (0.05)	K ₂ CO ₃ (2.0)	DCM	6	47	
8	Cu(OAc)₂⋅H₂O (0.1)	FeCl₃·6H₂O (0.1)	-	DCM	4	83	
9	Cu(OAc)₂⋅H₂O (0.05)	FeCl₃·6H₂O (0.1)	-	DCM	5	76	
10	CuO (0.1)	FeCl ₃ .6H ₂ O (0.05)	-	DCM	4	83	
11	Cu(OTf)₂ (0.1)	FeCl₃·6H₂O (0.05)	-	DCM	8	76	
12	CuCl ₂ (0.1)	FeCl₃·6H₂O (0.05)	-	DCM	12	82	
13	Cul (0.1)	FeCl₃·6H₂O (0.05)	-	DCM	24	79	
14	CuCl (0.1)	FeCl₃·6H₂O (0.05)	-	DCM	24	68	
15	Cu(OAc)₂⋅H₂O (0.1)	FeCl₃·6H₂O (0.05)	-	toluene	24	traced	
16	Cu(OAc)₂⋅H₂O (0.1)	FeCl₃·6H₂O (0.05)	-	MeCN	1	35	
17	Cu(OAc)₂⋅H₂O (0.1)	FeCl₃·6H₂O (0.05)	-	MeOH	1	54	
18	Cu(OAc)₂⋅H₂O (0.1)	FeCl₃·6H₂O (0.05)	-	Me ₂ CO	1	57	
19	Cu(OAc)₂⋅H₂O (0.1)	FeCl₃·6H₂O (0.05)	-	H ₂ O(9)/ Me ₂ CO(1)	3	95 ^g	
20	Cu(OAc)₂⋅H₂O (0.1)	FeCl₃·6H₂O (0.05)	-	H ₂ O	24	99 ^g	

^aAll reaction were performed on 0.2 mmol scale of **1a** in 2 mL of solvent (0.1 M) under air atmospher for the indicate time. ^bAll yields refer to the isolated product after column chromatography, unless otherwise noted. ^cAgOAc (2.0 eq.) as an external oxidant was used. ^dThe unreacted

starting material was recovered. ^e38% Yield of **2a** with complete consumption of **1a** was observed with 1.0 equiv. of FeCl₃·6H₂O. ^fPerformed at 50 °C. ^gWithout column chromatography.

3.2 Procedure for the synthesis of products 2a-t

In a round-bottom flask, α -indolylhydrazone **1** (0.2 mmol), Cu(OAc)₂·H₂O (0.02 mmol, 4.0 mg), FeCl₃·6H₂O (0.01 mmol, 2.7 mg) and water (2 mL) were added. The aqueous suspension was stirred at 50 °C (oil bath) until consumption of the starting material (TLC check). Then, the reaction mixture was diluted with brine and extracted with ethyl acetate (3 x 10 mL). The organic phase was dried over anhydrous sodium sulphate and the solvent was removed under vacuum. The crude product was purified by crystallization or by flash chromatography on silica gel (cyclohexane/ethyl acetate) to give the corresponding product **2** (52-99% yields).

3.3 Characterization of products

Methyl 1-((methoxycarbonyl)amino)-2,8-dimethyl-1,8-dihydropyrrolo[2,3b]indole-3-carboxylate (2a)²: compound 2a was obtained by simple extraction with ethyl acetate and crystallization from diethyl ether in 99% yield (62.8 mg), 3 h; pale brown solid; The chemical-physical data of compound 2a are in

agreement with those reported.² mp: 164–166 °C; ¹H NMR (400 MHz, DMSO- d_6) δ 10.99 (br, 1H), 7.93 (dd, J = 8.0 Hz, 0.8 Hz, 1H), 7.44 (d, J = 8.0 Hz, 1H), 7.19–7.14 (m, 1H), 7.12–7.08 (m, 1H), 3.89 (s, 3H), 3.79 (s, 6H), 2.48 (s, 3H); ¹³C NMR (100 MHz, DMSO- d_6) δ 165.1, 156.2, 139.7, 136.5, 136.3, 120.6, 120.1, 119.7, 119.2, 109.5, 102.7, 102.1, 53.3, 50.9, 29.1, 10.2; HRMS (ESI-Orbitrap, m/z): [M+H]⁺ Calcd for C₁₆H₁₈N₃O₄ 316.1292; Found 316.1288.

Ethyl 1-((methoxycarbonyl)amino)-2,8-dimethyl-1,8-dihydropyrrolo[2,3*b*]indole-3-carboxylate (2b): compound 2b was isolated by column chromatography (ethyl acetate/cyclohexane 40:60) in 71% yield (46.6 mg); 4 h; whitish solid; mp: 149–151 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ 11.04 (br,

1H), 7.96 (d, J = 8.0 Hz, 1H), 7.45 (d, J = 8.0 Hz, 1H), 7.18–7.14 (m, 1H), 7.12–7.08 (m, 1H), 4.36 (q, J = 7.2 Hz, 2H), 3.81 (s, 3H), 3.79 (s, 3H), 2.49 (s, 3H), 1.42 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, DMSO- d_6) δ 164.6, 156.2, 139.7, 136.5, 136.6, 120.5, 120.1, 119.7, 119.1, 109.5, 102.6, 102.4, 59.3,

53.2, 29.1, 14.6, 10.2. HRMS (ESI-Orbitrap, *m/z*): [M+H]⁺ calcd for C₁₇H₁₉N₃O₄ 330.1448, found 330.1452.

Methyl 1-((*tert*-butoxycarbonyl)amino)-2,8-dimethyl-1,8dihydropyrrolo[2,3-b]indole-3-carboxylate (2c): compound 2c was isolated by simple extraction with ethyl acetate and crystallization from diethyl

throo₂t but ether/petroleum ether in 92% yield (66.0 mg); 4 h; whitish solid; mp: 179–180; ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.73 (br, 1H), 7.92 (d, *J* = 7.2 Hz, 1H), 7.44 (d, *J* = 8.0 Hz, 1H), 7.18– 7.14 (m, 1H), 7.11–7.07 (m, 1H), 3.89 (s, 3H), 3.79 (s, 3H), 2.47 (s, 3H), 1.51 (s, 9H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 165.1, 154.7, 139.7, 136.5, 136.4, 120.5, 120.1, 119.6, 119.1, 109.4, 102.5, 101.8, 81.5, 50.8, 29.0, 27.8, 10.2. HRMS (ESI-Orbitrap, *m/z*): [M+H]⁺ calcd for C₁₉H₂₃N₃O₄ 358.1761, found 358.1752.

Isopropyl 1-((*tert*-butoxycarbonyl)amino)-2,8-dimethyl-1,8dihydropyrrolo[2,3-b]indole-3-carboxylate (2d): compound 2d was obtained by simple extraction with ethyl acetate and crystallization from diethyl ether/petroleum ether in 97% yield (74.5 mg); 12 h; pale grey solid; mp: 152–

154 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.73 (br, 1H), 7.96 (d, *J* = 7.6 Hz, 1H), 7.43 (d, *J* = 7.6 Hz, 1H), 7.17–7.07 (m, 2H), 5.19 (sept, *J* = 6.4 Hz, 2H), 3.79 (s, 3H), 2.45 (s, 3H), 1.51 (s, 3H), 1.40 (d, *J* = 6.0 Hz, 6H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 164.2, 154.7, 139.7, 136.5, 136.4, 120.4, 120.2, 119.7, 119.1, 109.4, 102.7, 102.6, 81.5, 66.4, 29.0, 27.8, 22.2, 10.4. HRMS (ESI-Orbitrap, *m/z*): [M+H]⁺ calcd for C₂₁H₂₇N₃O₄ 386.2074, found 386.2077.

Allyl 1-((methoxycarbonyl)amino)-2,8-dimethyl-1,8-dihydropyrrolo[2,3b]indole-3-carboxylate (2e): compound 2e was isolated by column chromatography (ethyl acetate/cyclohexane 40:60) in 64% yield (49.2 mg); 20 h; white solid; mp: 134–136 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ 11.06 (br, 1H),

7.94 (d, J = 8.0 Hz, 1H), 7.45 (d, J = 8.0 Hz, 1H), 7.18–7.14 (m, 1H), 7.10–7.06 (m, 1H), 6.19–6.10 (m, 1H), 5.46–5.40 (m, 1H), 5.32–5.29 (m, 1H), 4.87–4.86 (m, 2H), 3.80 (s, 3H), 3.79 (s, 3H), 2.49 (s, 3H); ¹³C NMR (100 MHz, DMSO- d_6) δ 164.2, 156.2, 139.7, 136.7, 136.3, 133.4, 120.6, 120.0, 119.7, 119.1, 117.9, 109.5, 102.6, 102.0, 63.9, 53.3, 29.1, 10.2. HRMS (ESI-Orbitrap, m/z): [M+H]⁺ calcd for C₁₈H₁₉N₃O₄ 342.1448, found 342.1450.

Benzyl 1-((*tert*-butoxycarbonyl)amino)-2,8-dimethyl-1,8dihydropyrrolo[2,3-b]indole-3-carboxylate (2f): compound 2f was obtained by simple extraction with ethyl acetate and crystallization from ethyl acetate/diethyl ether in 85% yield (74.1 mg); 20 h at 50 °C then 24 h to 70 °C;

brown solid; mp: 188–190 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.76 (br, 1H), 7.77 (d, *J* = 7.6 Hz, 1H), 7.50 (m, 2H), 7.43–7.40 (m, 3H), 7.38–7.34 (m, 1H), 7.11 (t, *J* = 7.6 Hz, 1H), 6.93 (t, *J* = 7.6 Hz, 1H), 5.41 (s, 2H), 3.78 (s, 3H), 2.47 (s, 3H), 1.50 (s, 9H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 164.4, 154.6, 139.6, 136.9, 136.8, 136.4, 128.5, 128.1, 127.9, 120.4, 120.0, 119.8, 119.0, 109.3, 102.6, 101.9, 81.5, 64.9, 29.0, 27.8, 10.2. HRMS (ESI-Orbitrap, *m/z*): [M+H]⁺ calcd for C₂₅H₂₇N₃O₄ 434.2074, found 434.2082.

Methyl (3-(dimethoxyphosphoryl)-2,8-dimethylpyrrolo[2,3-*b*]indol-1(8*H*)yl)carbamate (2g): compound 2g was obtained by simple extraction with ethyl acetate and crystallization from ethyl acetate/petroleum ether in 99% yield

2g (72.5 mg); 12 h; brown solid; mp: 184–186 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.98 (br, 1H), 7.74 (d, *J* = 8.0 Hz, 1H), 7.45 (d, *J* = 8.0 Hz, 1H), 7.17–7.13 (m, 1H), 7.08 (t, *J* = 7.2 Hz, 1H), 3.80 (s, 3H), 3.78 (s, 3H), 3.65 (d, ³*J*_{HP} = 8.4 Hz, 3H), 3.62 (d, ³*J*_{HP} = 8.4 Hz, 3H), 2.40 (s, 3 H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 156.3, 139.6, 137.8 (d, ²*J*_{CP} = 26.2 Hz), 137.0 (d, ²*J*_{CP} = 14.7 Hz), 120.5, 119.7, 119.3, 118.6, 109.6, 104.2 (d, ²*J*_{CP} = 11.0 Hz), 93.4 (d, ¹*J*_{CP} = 215 Hz), 53.2, 51.8, 51.7, 29.1, 10.2. HRMS (ESI-Orbitrap, *m/z*): [M+H]⁺ calcd for C₁₆H₂₀N₃O₅P 366.1213, found 366.1216.

Ethyl2,8-dimethyl-1-ureido-1,8-dihydropyrrolo[2,3-b]indole-3-carboxylate (2h):compound 2h was obtained by simple extraction with ethylacetate and crystallization from diethyl ether in 85% yield (53.2 mg); 36 h; grey

2h solid; mp: 240–242 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.55 (br, 1H), 7.95 (d, *J* = 7.6 Hz, 1H), 7.42 (d, *J* = 7.6 Hz, 1H), 7.13 (t, *J* = 7.2 Hz, 1H), 7.07 (t, *J* = 7.2 Hz, 1H), 6.55 (br, 2H), 4.35 (q, *J* = 6.8 Hz, 2H), 3.80 (s, 3H), 2.48 (s, 3H), 1.41 (t, *J* = 6.8 Hz, 3H). ¹³C NMR (100 MHz, DMSO *d*₆) δ 164.8, 157.6, 139.6, 137.3, 137.0, 120.3, 120.2, 119.6, 118.9, 109.3, 102.4, 101.9, 59.1, 29.0, 14.7, 10.4. HRMS (ESI-Orbitrap, *m/z*): [M+H]⁺ calcd for C₁₆H₁₈N₄O₃ 315.1452, found 315.1454.

Methyl 2-ethyl-1-((methoxycarbonyl)amino)-8-methyl-1,8dihydropyrrolo[2,3-b]indole-3-carboxylate (2i): compound 2i was isolated by column chromatography (ethyl acetate/cyclohexane 30:70) in 80% yield (52.6 mg); 4 h; pale yellow solid; mp: 188–190 °C; ¹H NMR (400 MHz, DMSO-

 d_6) δ 11.10 (br, 1H), 7.94 (d, *J* = 8.0 Hz, 1H), 7.45 (d, *J* = 8.0 Hz, 1H), 7.19–7.15 (m, 1H), 7.12–7.08 (m, 1H), 3.90 (s, 3H), 3.81 (s, 3H), 3.78 (s, 3H), 3.06–2.97 (m, 1H), 2.87–2.78 (m, 1H), 1.14 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (100 MHz, DMSO- d_6) δ 164.8, 156.4, 142.3, 139.8, 136.2, 120.6, 120.1, 119.7, 119.1, 109.4, 102.7, 101.3, 53.2, 50.8, 29.0, 17.5, 14.0. HRMS (ESI-Orbitrap, *m/z*): [M+H]⁺ calcd for C₁₇H₁₉N₃O₄ 330.1448, found 330.1441.

Methyl 1-((methoxycarbonyl)amino)-8-methyl-2-propyl-1,8dihydropyrrolo[2,3-b]indole-3-carboxylate (2j): compound 2j was isolated by column chromatography (ethyl acetate/cyclohexane 30:70) in 85% yield (58.7 mg); 12 h; pale yellow solid; mp: 122–124 °C; ¹H NMR (400 MHz, DMSO d_6) δ 11.07 (br, 1H), 7.94 (d, J = 8.0 Hz, 1H), 7.45 (d, J = 8.0 Hz, 1H), 7.19–7.15 (m, 1H), 7.12–7.08 (m, 1H), 3.90 (s, 3H), 3.81 (s, 3H), 3.78 (s, 3H), 3.04–2.97 (m, 1H), 2.83–2.76 (m, 1H), 1.65–1.50 (m, 2H), 0.93 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, DMSO- d_6) δ 164.9, 156.3, 140.8, 139.8, 136.3, 120.6, 120.1,

119.7, 119.1, 109.4, 102.7, 101.9, 53.2, 50.8, 29.0, 25.9, 22.4, 13.7. HRMS (ESI-Orbitrap, *m/z*): [M+H]⁺ calcd for C₁₈H₂₁N₃O₄ 344.1605, found 344.1609.

Methvl 5-methoxy-1-((methoxycarbonyl)amino)-2-methyl-8-propyl-1,8-dihydropyrrolo[2,3-b]indole-3-carboxylate (2k): compound 2k was isolated by column chromatography (ethyl acetate/cyclohexane 40:60) in 99% yield (73.9 mg); 6 h; whitish solid; mp: 186–188 °C; ¹H NMR (400 MHz, DMSO- d_6) δ 11.02 (br, 1H), 7.45 (d, J = 2.4 Hz, 1H), 7.36 (d, J = 8.8 Hz, 1H), 6.77 (dd, J = 8.8, 2.4 Hz, 1H), 4.23–4.04 (m, 2H), 3.89 (s, 3H), 3.79 (s,

6H), 2.46 (s, 3H), 1.75–1.58 (m, 2H), 0.82 (t, J = 7.4 Hz, 3H). ¹³C NMR (100 MHz, DMSO-d₆) δ 165.0, 156.1, 153.3, 136.6, 136.4, 134.3, 120.5, 110.3, 109.0, 103.1, 102.8, 102.1, 55.3, 53.1, 50.8, 44.3, 23.1, 11.1, 10.2. HRMS (ESI-Orbitrap, *m/z*): [M+H]⁺ calcd for C₁₉H₂₃N₃O₅ 374.1710, found 374.1715.

1-((methoxycarbonyl)amino)-2-methyl-1,8-dihydropyrrolo[2,3-Methyl b]indole-3-carboxylate (21)²: compound 21 was isolated by column chromatography (ethyl acetate/cyclohexane 55:45) in 52% yield (31.1 mg); 12 h; white solid; for compound 21, a spontaneous ring enlargement reaction to azacarboline was observed²; ¹H NMR (400 MHz, DMSO-*d*₆) δ 11.50 (br, 1H),

10.88 (br, 1H), 7.90–7.88 (m, 1H), 7.34–7.32 (m, 1H), 7.10–7.02 (m, 2H), 3.89 (s, 3H), 3.78 (s, 3H), 2.48 (s, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 165.2, 155.7, 138.6, 137.3, 135.6, 120.9, 120.3, 119.5, 118.8, 111.7, 102.4, 102.0, 52.9, 50.7, 10.3. HRMS (ESI-Orbitrap, *m/z*): [M+H]⁺ calcd for C₁₅H₁₅N₃O₄ 302.1135, found 302.1131.

During the course of the reaction, the following work-up, and the long standing in the presence or absence of DMSO- d_6 solution, the compound **2I** gives a partial conversion to azacarboline **5a**.

Methyl 3-methyl-9H-pyridazino[3,4-b]indole-4-carboxylate (5a): The chemicalphysical data of compound 5a are in agreement with those reported.²

Methyl 1-((methoxycarbonyl)amino)-2,5,8-trimethyl-1,8dihydropyrrolo[2,3-*b*]indole-3-carboxylate (2m): compound 2m was isolated by column chromatography (ethyl acetate/cyclohexane 40:60) in 93% yield (61.4 mg); 5 h; pale brown solid; mp: 201–203 °C; ¹H NMR (400 MHz, DMSO- d_6) δ 11.00 (br, 1H), 7.72 (s, 1H), 7.32 (d, J = 8.4 Hz, 1H), 6.98 (dd, J =

8.4, 1.2 Hz, 1H), 3.89 (s, 3H), 3.80 (s, 3H), 3.74 (s, 3H), 2.47 (s, 3H), 2.42 (s, 3H). ¹³C NMR (100 MHz, DMSO- d_6) δ 165.1, 156.2, 138.2, 136.5, 136.2, 127.6, 121.8, 120.2, 119.7, 109.1, 102.4, 102.1, 53.2, 50.8, 29.1, 21.3, 10.2. HRMS (ESI-Orbitrap, *m/z*): [M+H]⁺ calcd for C₁₇H₁₉N₃O₄ 330.1448, found 330.1449.

Methyl 4-(benzyloxy)-1-((methoxycarbonyl)amino)-2,8-dimethyl-1,8dihydropyrrolo[2,3-*b*]indole-3-carboxylate (2n): compound 2n was obtained by simple extraction with ethyl acetate/diethyl ether and crystallization from ethyl acetate/diethyl ether in 96% yield (80.7 mg); 48 h; whitish solid; mp: 150-152 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.98 (br, 1H), 7.49–7.47 (m,

2H), 7.38–7.34 (m, 2H), 7.31–7.27 (m, 1H), 7.05–7.02 (m, 2H), 6.67–6.65 (m, 1H), 5.25 (s, 2H), 3.80 (s, 3H), 3.75 (s, 3H), 3.38 (s, 3H), 2.36 (s, 3H). ¹³C NMR (100 MHz, DMSO- d_6) δ 165.8, 156.3, 151.6, 140.9, 138.0, 135.5, 134.3, 128.3, 127.6, 127.5, 121.3, 110.6, 103.9, 102.7, 100.6, 69.3, 53.2, 50.3, 29.3, 10.1. HRMS (ESI-Orbitrap, m/z): [M+H]⁺ calcd for C₂₃H₂₃N₃O₅ 422.1710, found 422.1708.

Methyl 7-chloro-1-((methoxycarbonyl)amino)-2,8-dimethyl-1,8dihydropyrrolo[2,3-*b*]indole-3-carboxylate (20): compound 20 was obtained by simple extraction with ethyl acetate and crystallization from diethyl ether/petroleum ether in 97% yield (67.6 mg); 24 h; brownish solid; mp: 189–191 °C; ¹H NMR (400 MHz, DMSO- d_6) δ 11.10 (br, 1H), 7.95 (dd, *J*

= 7.6, 1.2 Hz, 1H), 7.15 (dd, J = 7.6, 1.2 Hz, 1H), 7.08 (t, J = 7.2 Hz, 1H), 4.12 (s, 3H), 3.89 (s, 3H), 3.80 (s, 3H). ¹³C NMR (100 MHz, DMSO- d_6) δ 164.8, 156.1, 137.9, 137.1, 134.4, 123.4, 122.5, 120.5, 119.0, 115.6, 102.9, 102.0, 53.3, 50.9, 32.2, 10.2. HRMS (ESI-Orbitrap, m/z): [M+H]⁺ calcd for C₁₆H₁₆ClN₃O₄, 350.0902, found 350.0909.

2p

Methyl 4-chloro-1-((methoxycarbonyl)amino)-2,8-dimethyl-1,8dihydropyrrolo[2,3-*b*]indole-3-carboxylate (2p): compound 2p was obtained by simple extraction with ethyl acetate and crystallization from diethyl ether/petroleum ether in 99% yield (69.1 mg); 2 h; brownish solid; mp: 170– 172 °C; ¹H NMR (400 MHz, DMSO- d_6) δ 11.02 (br, 1H), 7.48–7.43 (m, 1H),

7.16–7.11 (m, 2H), 3.81 (s, 6H), 3.78 (s, 3H), 2.34 (s, 3H). 13 C NMR (100 MHz, DMSO- d_6) δ 165.6, 156.3,

140.5, 137.0, 134.7, 123.7, 121.1, 120.2, 118.4, 108.4, 104.1, 100.0, 53.3, 50.7, 29.4, 10.0. HRMS (ESI-Orbitrap, *m/z*): [M+H]⁺ calcd for C₁₆H₁₆ClN₃O₄, 350.0902, found 350.0911.

Methyl5-bromo-1-((methoxycarbonyl)amino)-2,8-dimethyl-1,8-dihydropyrrolo[2,3-b]indole-3-carboxylate(2q):compound2qwasobtained by simple extraction with ethyl acetate and crystallization fromdiethyl ether in 98% yield (77.3 mg); 9 h; brownish solid; mp: 194–196 °C; ¹H

2q NMR (400 MHz, DMSO-*d*₆) δ 11.07 (br, 1H), 8.02 (d, J = 2.0 Hz, 1H), 7.46 (d, J = 8.4 Hz, 1H), 7.29 (dd, J = 8.8, 2.0 Hz, 1H), 3.89 (s, 3H), 3.79 (s, 6H), 2.48 (s, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 164.8, 156.2, 138.4, 137.3, 137.0, 122.8, 121.7, 121.5, 111.7, 111.5, 102.0, 53.4, 51.1, 29.3, 10.3. HRMS (ESI-Orbitrap, *m/z*): [M+H]⁺ calcd for C₁₆H₁₆BrN₃O₄, 394.0397, found 394.0404.

Methyl 6-fluoro-1-((methoxycarbonyl)amino)-2,8-dimethyl-1,8dihydropyrrolo[2,3-*b*]indole-3-carboxylate (2r): compound 2r was obtained by simple extraction with ethyl acetate and crystallization from diethyl ether in 98% yield (65.4 mg); 8 h; brownish solid; mp: 200–202 °C; ¹H NMR (400 MHz, DMSO- d_6) δ 11.07 (br, 1H), 7.88 (dd, J = 8.8 Hz, ⁴ $J_{HF} =$

6.0 Hz, 1H), 7.38 (dd, ${}^{3}J_{HF}$ = 10.8 Hz, J = 2.4 Hz, 1H), 6.96–6.91 (m, 1H), 3.89 (s, 3H), 3.80 (s, 3H), 3.77 (s, 3H), 2.47 (s, 3H). 13 C NMR (100 MHz, DMSO- d_{6}) δ 165.0, 158.3 (d, ${}^{1}J_{CF}$ = 232.4 Hz), 156.2, 139.8 (d, ${}^{3}J_{CF}$ = 12.2 Hz), 136.3, 120.3 (d, ${}^{3}J_{CF}$ = 9.9 Hz), 116.8, 106.7 (d, ${}^{2}J_{CF}$ = 23.4 Hz), 102.5, 101.9, 96.8 (d, ${}^{2}J_{CF}$ = 26.9 Hz), 59.7, 53.3, 50.9, 29.4, 10.1. HRMS (ESI-Orbitrap, m/z): [M+H]⁺ calcd for C₁₆H₁₆FN₃O₄, 334.1198, found 334.1201.

2s

Dimethyl

dihydropyrrolo[2,3-*b*]indole-3,4-dicarboxylate (2s): compound 2s was obtained by simple extraction with ethyl acetate and crystallization from diethyl ether in 99% yield (74.8 mg); 6 h; whitish solid; mp: 210–212 °C; ¹H NMR (400 MHz, DMSO- d_6) δ 11.04 (br, 1H), 7.68 (d, J = 8.0 Hz, 1H), 7.39 (d, J = 8.0 Hz,

1-((methoxycarbonyl)amino)-2,8-dimethyl-1,8-

1H), 7.20 (t, J = 8.0 Hz, 1H), 3.83 (s, 3H), 3.81 (s, 3H), 3.75 (s, 3H), 3.72 (s, 3H), 2.36 (s, 3H). ¹³C NMR (100 MHz, DMSO- d_6) δ 168.8, 165.4, 156.3, 139.9, 137.8, 135.2, 123.0, 120.4, 119.5, 117.9, 113.0, 104.4, 101.9, 53.3, 51.4, 51.0, 29.2, 10.0. HRMS (ESI-Orbitrap, m/z): [M+H]⁺ calcd for C₁₈H₁₉N₃O₆, 374.1347, found 374.1349.

Methyl 8-((methoxycarbonyl)amino)-9-methyl-4,5,6,8tetrahydropyrrolo[3',2':4,5]pyrrolo[3,2,1-*ij*]quinoline-10-carboxylate (2t): compound 2t was obtained by simple extraction with ethyl acetate and crystallization from diethyl ether in 97% yield (65.9 mg); 4 h; whitish solid; mp: $169-171 \degree$ C; ¹H NMR (400 MHz, DMSO- d_6) δ 11.00 (br, 1H), 7.66 (d, J = 7.6

Hz, 1H), 6.98 (t, J = 7.6 Hz, 1H), 6.87 (d, J = 7.2 Hz, 1H), 4.32–4.27 (m, 1H), 4.09–4.02 (m, 1H), 3.89 (s, 3H), 3.79 (s, 3H), 2.93 (t, J = 6.0 Hz, 2H), 2.48 (s, 3H), 2.18–2.13 (m, 2H). ¹³C NMR (100 MHz, DMSO- d_6) δ 165.1, 156.2, 135.9, 135.9, 135.6, 121.5, 119.0, 118.4, 118.1, 117.2, 102.6, 102.1, 53.2, 50.8, 41.2, 23.9, 21.9, 10.1. HRMS (ESI-Orbitrap, m/z): [M+H]⁺ calcd for C₁₈H₁₉N₃O₄, 342.1448, found 342.1451.

4. Recycling of the aqueous catalytic system

Recycling of $Cu(OAc)_2 \cdot H_2O/FeCl_3 \cdot 6H_2O$, and water in the intramolecular oxidative cyclization of **1a**.

In a round-bottom flask, α -indolylhydrazone **1a** (0.4 mmol), Cu(OAc)₂·H₂O (0.04 mmol, 8.0 mg), FeCl₃·6H₂O (0.02 mmol, 5.4 mg) and water (4 mL) were added. The aqueous suspension was stirred at 50 °C (oil bath) until consumption of the starting material (TLC check). At the end, the reaction mixture was extracted with ethyl acetate (3 x 3 mL). The aqueous phase containing the catalyst system was reused for the five runs with the catalyst activities indicated in the Table S2.

On the other hand, the collected organic phase was dried over anhydrous sodium sulphate and the solvent was removed under vacuum. The crude was purified by crystallization (for the first 3 cycles) or by flash chromatography on silica gel (cyclohexane/ethyl acetate 60:40 for the last 2 cycles) to give the corresponding product **2a** (Table S2).

Cycle	Yield (%)	Time (h)
Fresh	99	4
1 st	99	4
2 nd	82	6.5
3 rd	81	24
4 th	74	28
5 th	52	48

Table S2. Recycling of the aqueous catalytic system.

5. Synthetic transformations

5.1 Access to compound 3

Compound **3** was prepared according to a modified version of the Magnus method.³ To a solution of **2a** (63.1 mg, 0.2 mmol) in acetonitrile (5 mL), ethyl bromoacetate (0.033 mL, 0.3 mmol) and Cs₂CO₃ (162.9 mg, 0.5 mmol) were added. The mixture was stirred at 50 °C (oil bath) until the disappearance of the starting material (0.5 h). The solvent was removed under vacuum, water (5 mL) was added and the mixture was extracted with ethyl acetate (3 x 10 mL). The combined organic layer was dried over Na₂SO₄ and filtered. After the solvent was removed under reduced pressure, the residue was dissolved in acetonitrile (5 mL) and Cs₂CO₃ (162.9 mg, 0.5 mmol) was added. The mixture was stirred at 80 °C until TLC showed complete consumption of intermediate (1 h). The solvent was removed under vacuum, water (5 mL) was added and the mixture was extracted with ethyl acetate (3 x 10 mL). The collected organic phase was washed with brine, dried over Na₂SO₄ and filtered. After the solvent was purified by column chromatography (ethyl acetate) to afford compound **3** as a red solid (16.5 mg, 34% yield).

Methyl 2,8-dimethyl-1,8-dihydropyrrolo[2,3-*b*]indole-3-carboxylate (3): mp 88–90 °C (dec.); ¹H NMR (400 MHz, CDCl₃) δ 9.95 (br, 1H), 7.82 (d, J = 6.8 Hz, 1H), 7.37–7.30 (m, 3H), 4.02 (s, 3H), 3.71 (s, 3H), 2.34 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 179.8, 169.5, 165.7, 144.8, 135.7, 124.2, 123.8, 123.8, 120.3, 110.4,

101.5, 53.0, 32.9, 24.4. HRMS (ESI-Orbitrap, m/z): $[M+H]^+$ calcd for $C_{14}H_{14}N_2O_2$, 243.1128, found 234.1121.

5.2 Access to compound 4

Compound **4** was prepared according to the literature procedure⁴. To a solution of **2c** (357.4 mg, 1.0 mmol) in trifluoroethanol (2 mL), CsOAc (96.0 mg, 0.5 mmol) was added. The mixture was stirred at 80 °C (oil bath) for 24 hours. Upon the completion of reaction (TLC check), the solvent was removed by vacuum and the residue was purified by column chromatography (ethyl acetate/cyclohexane 30:70) to afford compound **4** as a red solid (120.2 mg, 47% yield b.r.s.m.).

Methyl 1-amino-2,8-dimethyl-1,8-dihydropyrrolo[2,3-*b*]indole-3-carboxylate (4): mp 228–230 °C; ¹H NMR (400 MHz, DMSO- d_6) δ 7.91–7.88 (m, 1H), 7.40–7.37 (m, 1H), 7.13–7.03 (m, 2H), 6.04 (s, 2H), 4.01 (s, 3H), 3.86 (s, 3H), 2.63 (s, 3H). ¹³C NMR (100 MHz, DMSO- d_6) δ 165.4, 139.9, 137.5, 137.3, 120.3, 119.9, 119.4,

118.6, 109.1, 102.2, 99.8, 50.5, 29.6, 10.6. HRMS (ESI-Orbitrap, m/z): $[M+H]^+$ calcd for $C_{14}H_{15}N_3O_2$, 258.1237, found 258.1243.

5.3 Access to compound **5b**²

To a solution of compound **4** (48.6 mg, 0.2 mmol) in dichloromethane, PhIO₂ (108.6 mg, 0.46 mmol) and trifluoroacetic acid (0.05 mL, 0.06 mmol) were added. The solution was stirred at room temperature for

0.5 hour. After completion of the reaction (TLC check), the solvent was removed under vacuum and the residue was purified by column chromatography (ethyl acetate/cyclohexane 50:50) to afford compound **5b** as a yellow solid (27.6 mg, 54% yield).²

5.4 Access to compound 6

Compound 6 was prepared according to the literature procedure.⁵ To a solution of compound 4 (48.6 mg, 0.2 mmol) in dichloroethane/toluene 1:1 (2 mL), 1,4-diphenylbutane-1,4-dione (47.7 mg, 0.2 mmol) and p-toluenesulfonic acid (34.4 mg, 0.2 mmol) were added. The solution was heated at 80°C for 48 hours. After the disappearance of the starting material (TLC check), the solvent was removed under and the residue purified column vacuum was by chromatography (ethvl acetate/cyclohexane/dichloromethane 20:80:10) to afford compound 6 as a colorless oil (37.7 mg, 41% yield).

Methyl 1-(2,5-diphenyl-1*H*-pyrrol-1-yl)-2,8-dimethyl-1,8-dihydropyrrolo[2,3*b*]indole-3-carboxylate(6): ¹H NMR (400 MHz, DMSO- d_6) δ 7.97–7.95 (m, 1H), 7.83–7.81 (m, 1H), 7.47–7.43 (m, 1H), 7.38–7.36 (m, 1H), 7.25–7.15 (m, 7H), 7.05–7.03 (m, 3H), 6.87 (s, 2H), 3.90 (s, 3H), 3.29 (s, 3H), 2.23 (s, 3H). ¹³C NMR (100 MHz, DMSO- d_6) δ 164.7, 152.6, 139.9, 135.2, 135.0, 130.1, 129.8, 129.0,

128.9, 127.7, 127.5, 126.1, 123.4, 121.1, 120.1, 119.9, 119.6, 109.9, 109.2, 108.2, 103.5, 102.9, 51.1, 28.5, 10.3. HRMS (ESI-Orbitrap, m/z): $[M+H]^+$ calcd for $C_{30}H_{25}N_3O_2$, 460.2020, found 460.2013.

5.5 Access to compound 7

Compound **7** was prepared according to the literature procedure.⁶ To a solution of **2a** (94.6 mg, 0.3 mmol) in toluene (1 mL) dimethyl acetylenedicarboxylate (0.049 mL, 0.36 mmol) was added and the reaction mixture was refluxed for 12 hours. After the disappearance of the starting material (TLC check), the solvent was removed under vacuum and the residue was purified by column chromatography (ethyl acetate/cyclohexane 40:60) to afford compound **7** as a red oil (64.3 mg, 58% yield).

Trimethyl 3,9-dimethyl-9*H*-carbazole-1,2,4-tricarboxylate (7): ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.76 (d, J = 7.6 Hz, 1H), 7.73 (d, J = 8.4 Hz, 1H), 7.63–7.58 (m, 1H), 7.32–7.28 (m, 1H), 4.10 (s, 3H), 3.96 (s, 3H), 3.88 (s, 3H), 3.75 (s, 3H), 2.36 (s, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 168.5, 167.8, 166.8, 142.8, 134.7, 129.9, 129.0, 128.0, 121.7, 121.0, 120.8, 120.5, 118.6, 116.3,

110.3, 53.2, 53.1, 52.8, 31.7, 16.2. HRMS (ESI-Orbitrap, m/z): $[M+H]^+$ calcd for $C_{20}H_{19}NO_6$, 370.1285, found 370.1279.

6. ¹H and ¹³C NMR spectra

7. First Pass CHEM21 green metrics toolkit

Reaction carried out on a gram scale. Typical procedure.

In a round-bottom flask, methyl 2-(4-methoxy-3-(1-methyl-1*H*-indol-3-yl)-4-oxobutan-2-lidene)hydrazinecarboxylate **1a** (3.15 mmol, 1 g), $Cu(OAc)_2 \cdot H_2O$ (0.315 mmol, 62.9 mg), $FeCI_3 \cdot 6H_2O$ (0.157 mmol, 42.4 mg) and water (30 mL) were added. The aqueous suspension was stirred at 50 °C (oil bath) until consumption of the starting material (12 h, TLC check). Then, the crude product that precipitates was collected on a Büchner funnel, washed with water (5 mL), and dried in air or a vacuum desiccator to give the corresponding product **2a** (0.933 g, 94% yields).

Yield, AE, RME, MI/PMI Reactant (Limiting	and OE Mass (g)	MW	Mol	Catalyst	Mass (g)	Reagent	Mass (g)	Reaction	Volume (cm ³)	Density	Mass (g)	Work up	Mass (g)	Workup	Volume	Density	Mass (g)
Reactant First)								solvent		(g ml ⁻¹)		chemical		solvent	(cm3)	(g ml ⁻¹)	
1a	1,00	317,345	0,00315	Cu(OAc) ₂ ·H ₂ O	0,0629			H ₂ O	30,00	1,00	30,00			water	5,00	1,00	5,00
			#DIV/0! #DIV/0!	FeCl ₃ ·6H ₂ O	0,0424						0,00						0,00
			#DIV/0! #DIV/0!								0,00 0,00						0,00 0,00
			#DIV/0! #DIV/0!								0,00 0,00						0,00 0,00
Total	1,00	317,35			0,11]	0,00]	Flag		30,00]	0,00				5,00
							Yield Conversion	93,9 100,0	93,9								_
$RME = \frac{mass of isolated product}{100} \times 100$							Selectivity AE	93,9 99,4	93,9			Produ	ct 2a	Mass 0,933	MW 315,329	Mol 0,0030	
total mass of	reactants						RME	93,3	OE	93,9		Unreacted	l limiting	mass			
$AE = \frac{molecular}{total molecular}$	lr weight of pr	reactants ×	100				PMI total PMI Reaction	38,7 33,3				react	ant	0,00			
mass intensity = $\frac{t_0}{t_0}$	otal mass in	a process of	r process st	ep			reagents, catlyst	1.2									
	ma	ıss of prodı	ıct				PMI reaction	_,_									
$OE = \frac{RML}{AE} \times 100$							solvents	32,2									
							PMI Workup PMI Workup	5,4									
							chemical PMI workup	0,0									
							solvents	5,4									
Solvents (First Pass) Preferred solve	ents	water, Et(OH, nBuOH, A	AcOipr, AcOnBu,	PhOMe, M	eOH, tBuOH,	List solver	nts below									
		BnOH, eth	nylene glycol	, acetone, MEK,	MIBK, AcO	Et, sulfolane	wa	ter									
Problematic solvents:	(acceptable	DMSO, cycl	ohexanone, I	DMPU, AcOH, A	c2O, Acetor	hitrile, AcOMe,											
advantages)	cyclohex	cane, chlorol	benzene, formic	acid, pyridi	ne, Me-THF											
Hazardous solvents: Th	ese solvents	dioxane, pe	ntane, TEA, o	diisopropyl ethe	r, DME, DC	M, DMF, DMA,											
concerns.	arety		- NIVIP, I	ethoxyethanioi	, ne kane												
solvents which are agre	ed not to be	Et ₂ O, Benz	ene, CCl ₄ , chl	lorotorm, DCE, r	ntromethar	ie, CS ₂ , HMPA											
used, even in scre	eening								I		•						
Catalyst/enzyme (First P Catalyst or enzyme use	ass) d, or reaction	takes place	Green	Tick		Facile re	covery of catalys	t/enzvme	Green Flag	Tick							
without any c	atalyst/reagen	reagents	Flag Amber			cataly	st/enzyme not re	overed	Amber Flag								
Use of rear	ants in excess		Flag Rod Flag								J						
	,ents in excess		Red Hug														
Supply remaining	Flag colour	Note	г	1	Remaining ye until depletio	n of				Не							
5-50 years	Red Flag	element	1.00794 J	Be	known reser (based on current extraction)	ves rate of		в		Ne							
50-500 years	Amber Flag	Cu	11 Na	9002182 12 Mg	5		10 411 12 44 10 54 Al S	14.00674 15.9994 18.99840 1 15 16 17 17 5 Cl	00.1297 58 Ar								
+500 years	Green Flag		22.9857 19	7 24.3050 20 24 22 Ca Sc T		Mo Fe	n a n	26.98353 28.09 26 11 11	15 19.97336 32.066 35.4537 13 M 35 0 A5 Se Br	22.948 36 Kr							
			28.0943 37 Rb	40.078 44.05501 47.80 30 20 40 51 27 40	7 30.9415 51.9 41 42 Nh M	43 54 55 645	58.03320 58.6934 63.546 45 45 47 8b Pd Ar	an am m a a s	1 78.57100 78.96 79.904 1 50 52 53 1	13.80 54 Xe							
			85.4678 55	87.62 86.9005 96.22 56 57 82 Ba La* H	4 92.906.96 95.90 73 95	(m)	202 Series Don AV EXPLANAE 27 Za 25 14 Pt Au		No L21 /NO 127 /AD 134, 9044 83 84 85 1 Bi Po At	111.29 95 Rn							
			112,905 87	4 137.327 138.9955 134 88 89 334 Pa Act D	100 100 100 100 100 100 100 100 100 100	100 10021 100217 10021 107 108	100 212 200 200 200 200 200 200 200 200	200.59 200.3131 220.2 132 133 134	115 116 117 1	222) 118							
			(2211)	228.025 (227) (257)	DHRI DHRI	(242) (245)	(246) (271) (272)	(285) (286) (286)	(288) (292)								
				Lanthanides *	58 59 Ce Pr 140.9077 144.24	AD AD AD Nd Pm 200.06 1	2 62 64 Sm Eu Gd 51.964 157.25 156.9353	es es es Tb Dy Ho 158.0553 562.50 564.03	68 69 70 1 68 Er Tm Yb 1 61 567.36 568.9347 175.04 1	Lu 174.947							
				Actinides ‡	50 51 Th Pa 232-0141 231-0245	U 101 1	e 95 96 Pu Am Cm (44] [243] (247)	N7 N8 N9 Bk Cf Es (247) (251) (252)	380 311 302 1 Fm Md No 1 (257) (254) (259) (Lr 242)							
Energy (First Pass)			Tick	1					Tick]							
Reaction run between	n 0 to 70°C	Green Flag	x			Reaction run a	t reflux	Red Flag									
Reaction run between - to 140°C	20 to 0 or 70	Amber Flag			Paset	n run 5°C or	ore below the										
Reaction run below -2	0 or above	Red Flag			Reactio	solvent boiling	g point	Green Flag	x								
140°C]							
Batch/flow Flow	Gree	n Flag	Tick		Work Up	quenchir	g		List								
Batch	Ambe	er Flag	X			filtration centrifugat	n tion	Green Flag	filtration								
						crystallisat Low temper	ature										
					solver	n/evaporation nt exchange, qi	uenching into	Amber Flag									
					chro	aqueous sol matography/ic	ivent on exchange										
					m	high temper ultiple recryst	ature allisation	Red Flag									
Hoolth 9 color							List substance	s and H-codes	List substances ar	d H-codes	List su	bstances and I	1-codes				
Highly over store	Red	Flag	Am	ber Flag	Gro	een Flag											
Fighting the second	H200, H201,	H202, H203	H205,	H241	flagged H	codes present											
runaway	H200 H2	10,11230	11204	U211 U221	then	Secon nag	no	ne	none			none					
Long Term toxicity	H300, H3 H340, H350,	H360, H330 H360, H370,	H301, H341, H35	1, H361, H371, H272													
Environmental	H3 H400, H410,	, H411, H420	H40	n373 01, H412													
Inter of the state	la of orailer	nental			Lister	stoneousfu	u biak como							I			
Use of chemica Chemical identified as	Substances of	Very High Co	oncern by	Red Flag	List sub	stances of ver	y nigh concern										
ChemS	iec which are u	utilised		incu riag		Hone		l									

8. References

- (a) C. Ciccolini, L. De Crescentini, F. Mantellini, S. Santeusanio, G. Favi, *Org. Lett.* 2019, *21*, 4388–4391; (b)
 C. Ciccolini, G. Mari, G. Gatti, G. F. Gatti, G. Giorgi, F. Mantellini, G. Favi, *J. Org. Chem.* 2020, *85*, 11409–11425.
- 2 M. Corrieri, L. De Crescentini, F. Mantellini, G. Mari, S. Santeusanio, G. Favi, *J. Org. Chem.* 2021, *86*, 17918–17929.
- 3 (a) P. Magnus, N. Garizi, K. A. Seibert, A. Ornholt, *Org. Lett.* 2009, *11*, 5646–5648; (b) G.-J. Mei, X. Tang, Y. Tasdan, Y. Lu, *Angew. Chem. Int. Ed.* 2020, *59*, 648–652.
- 4 P. Shi, L. Wang, S. Guo, K. Chen, J. Wang, J. Zhu, *Org. Lett.* 2017, *19*, 4359–4362.
- 5 M. McLeod, N. Boudreault, Y. Leblanc, J. Org. Chem. 1996, 61, 1180–1183.
- 6 A. G. Schultz, M. Shen, *Tetrahedron Lett.* 1979, **20**, 2969–2972.