Metal-free, visible-light-induced decarboxylative alkylation

of Baylis-Hillman acetates with N-(acyloxy)phthalimides

De-Run Zhang,^a Lin-Ping Hu,^a Feng-Lin Liu,^a Xiao-Hong Huang,^a Xia Li,^b Bo Liu^a

and Guo-Li Huang*a

^a School of Chemistry and Chemical Engineering, ^b Department of Library, Yunnan Normal University, Kunming, P. R. China

Tel & Fax: +86-871-65941087; E-mail: hgli2005@126.com

Table of Contents

1.	Experimental section	S2
2.	Experimental procedures	S3-S4
3.	¹ H and ¹³ C NMR data of trisubstituted alkyl acrylates (3aa-3ma,3ab-	S5-S12
	3aq)	
4.	Evidence for a radical pathway	S13-S14
5.	¹ H and ¹³ C NMR spectra of trisubstituted alkyl acrylates (3aa-3ma ,	S15-S44
	3ab-3aq)	

1. Experimental section

All chemicals were purchased from the Wencai New Material Technology and Merck in high purity and were used directly without any purification. Solvents were freshly distilled prior to use. All reactions were carried out under argon atmosphere unless noted. ¹H NMR and ¹³C NMR spectra were recorded with a Bruker Avance III 500 or Avance HD 600 MHz spectrometer in CDCl₃ solution. High resolution mass (HRMS) spectra were measured with a VG Auto Spec-3000 spectrometer. Melting points (m.p.) were determined with a digital electro thermal apparatus without further correction. TLC analyses were performed on commercial glass plates bearing a 0.25mm layer of Merck silica gel 60 F254. Silica gel (200-300mesh) was used for column chromatography.

2. Experimental procedures

A. General procedure for preparation of Baylis-Hillman acetates (1a-m)¹

The Morita-Baylis-Hillman (MBH) adducts was synthesized by literature². To a stirred solution of MBH products (1.0 equiv.) in dichloromethane was added acetic anhydride (1.5 equiv.) and N,N-dimethylaminopyridine (0.2 equiv.) at room temperature. After stirring at the same temperature for 1 hour, the reaction mixture was treated with water and extracted with dichlorormethane. The combined organic layers were dried over anhydrous magnesium sulfate and the solvent was removed under reduced pressure and purified by silica gel column chromatography.

Baylis-Hillman acetates (1a-m) were synthesized using the above method:

B. General procedure for preparation of NHPI Esters (2a-q)³

To an oven-dried round-bottom flask with a magnetic stir bar was added acid (1.0 equiv.), N-hydroxyphthalimide (1.1 equiv.), DCC (1.2 equiv.) and DMAP (0.1 equiv.). Dry dichloromethane (10 mL) was added and the mixture was allowed to stir at room temperature until the acid was consumed (followed by TLC). Typical reaction times were between 0.5 h and 12 h. The white precipitates were filtered off and the solvent was removed under reduced pressure. The desired products were obtained in the corresponding yields after purification by flash chromatography on silica gel eluting with hexane/ethyl acetate or hexane/dichloromethane.

NHPI Esters (2a-q) were synthesized using the above method:

C. General Procedure for Synthesis of trisubstituted alkyl acrylate derivatives

An 25 mL oven-dried Schlenk tube was equipped with a stirring bar, Baylis-Hillman acetates **1** (0.2 mmol), *N*-(acyloxy)phthalimides **2** (0.3 mmol, 1.5 equiv.), and Rose bengal (0.01 mmol, 5 mol%). The mixture was degassed by using standard Schlenk techniques with an oil pump. Then DIPEA (0.4 mmol, 2.0 equiv.) and DCE/H₂O (v:v = 5:1, 2 mL) were in jected into the reaction tube. The solution was placed in a distance of 3 cm from 15 W blue LED at room temperature for 12 h. Upon completion, quench the reaction with saturated NaCl (10 mL), and the mixture was extracted with dichloromethane (3×15 mL). The combined organic layer was washed three times with H₂O (3×10 mL), dried over anhydrous MgSO₄, and concentrated in vacuo. The crude product was purified by SiO₂ column chromatography to afford the desired products.

3. ¹H and ¹³C NMR data of trisubstituted alkyl acrylates (3aa-3ma, 3ab-3aq)

methyl (*E*)-2-benzylidene-4,4-dimethylpentanoate (3aa): Colourless
liquid. ¹H NMR (500 MHz, CDCl₃) δ 7.68 (s, 1H), 7.35 (d, *J* = 4.7 Hz,
4H), 7.29 (s, 1H), 3.80 (s, 3H), 2.65 (s, 2H), 0.75 (s, 9H). ¹³C NMR (126
MHz, CDCl₃) δ 170.3, 139.9, 136.6, 132.7, 128.9, 128.3, 127.8, 51.9, 38.3,

33.3, 29.6. HRMS (ESI) [M+H⁺] Calcd For C₁₅H₂₁O₂: 233.1536, Found: 233.1540.

methyl (*E*)-4,4-dimethyl-2-(4-methylbenzylidene)pentanoate (3ba): White solid, Mp: 56-58 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.65 (s, 1H), 7.28 (d, *J* = 8.0 Hz, 2H), 7.16 (d, *J* = 8.0 Hz, 2H), 3.79 (s, 3H), 2.67 (s, 2H), 2.35 (s, 3H), 0.77 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 170.4,

139.9, 137.8, 133.6, 131.8, 129.1, 129.1, 51.8, 38.3, 33.4, 29.6, 21.3. HRMS (ESI) [M+H⁺] Calcd For C₁₆H₂₃O₂: 247.1693, Found: 247.1696.

methyl (*E*)-2-(4-methoxybenzylidene)-4,4-dimethylpentanoate (3ca): Colourless liquid. ¹H NMR (600 MHz, CDCl₃) δ 7.63 (s, 1H), 7.36 (d, *J* = 8.7 Hz, 2H), 6.89 (d, *J* = 8.7 Hz, 2H), 3.81 (s, 3H), 3.78 (s, 3H), 2.68 (s, 2H), 0.79 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 170.6,

159.3, 139.7, 130.8, 129.6, 128.9, 113.8, 55.2, 51.9, 38.2, 33.5, 29.6. HRMS (ESI) [M+H⁺] Calcd For C₁₆H₂₃O₃: 263.1642, Found: 263.1646.

methyl (*E*)-2-(2-fluorobenzylidene)-4,4-dimethylpentanoate (3da): Colourless liquid. ¹H NMR (500 MHz, CDCl₃) δ 7.63 (s, 1H), 7.29 (t, J = 7.2 Hz, 2H), 7.12 (t, J = 7.5 Hz, 1H), 7.06 (t, J = 9.3 Hz, 1H), 3.80 (s, 3H), 2.54 (s, 2H), 0.72 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 169.5, 160.9,

158.9, 134.9, 133.2, 130.1(d, J_{CF} = 2.5 Hz), 129.7(d, J_{CF} = 7.6 Hz), 123.9(d, J_{CF} = 3.8 Hz), 115.7(d, J_{CF} = 21.4 Hz), 52.0, 38.8, 33.1, 29.4. ¹⁹F NMR (471 MHz, CDCl₃) δ -112.8. HRMS (ESI) [M+H⁺] Calcd For C₁₅H₂₀FO₂: 251.1442, Found: 251.1447.

methyl (*E*)-2-(2-chlorobenzylidene)-4,4-dimethylpentanoate (3ea): Colourless liquid. ¹H NMR (500 MHz, CDCl₃) δ 7.67 (s, 1H), 7.41-7.37 (m, 1H), 7.29-7.27 (m, 1H), 7.25-7.22 (m, 2H), 3.81 (s, 3H), 2.52 (s, 2H), 0.71 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 169.5, 137.4, 135.3, 134.0,

133.8, 130.0, 129.5, 129.0, 126.5, 52.0, 38.4, 33.1, 29.3. HRMS (ESI) [M+H⁺] Calcd For C₁₅H₂₀ClO₂: 267.1146, Found: 267.1149.

methyl (*E*)-2-(2-bromobenzylidene)-4,4-dimethylpentanoate (3fa): Colourless liquid. ¹H NMR (500 MHz, CDCl₃) δ 7.61 (s, 1H), 7.58 (d, *J* = 7.9 Hz, 1H), 7.32-7.26 (m, 2H), 7.15 (t, *J* = 8.5 Hz, 1H), 3.81 (s, 3H), 2.51 (s, 2H), 0.71 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 169.5, 139.3, 137.1,

133.6, 132.7, 130.2, 129.2, 127.1, 124.0, 52.1, 38.3, 33.1, 29.4. HRMS (ESI) [M+H⁺] Calcd For $C_{15}H_{20}BrO_2$: 311.0641, Found: 311.0647.

methyl(*E*)-2-(2-iodobenzylidene)-4,4-dimethylpentanoate(3ga):Colourless liquid. ¹H NMR (500 MHz, CDCl₃) δ 7.86 (d, J = 7.9 Hz, 1H),7.51 (s, 1H), 7.33 (t, J = 7.5 Hz, 1H), 7.24 (d, J = 6.8 Hz, 1H), 6.97 (t, J = 7.6Hz, 1H), 3.82 (s, 3H), 2.50 (s, 2H), 0.71 (s, 9H). ¹³C NMR (126 MHz, CDCl₃)

δ 169.6, 143.1, 140.6, 139.2, 133.2, 129.7, 129.2, 128.0, 99.9, 52.2, 38.4, 33.4, 29.6. HRMS (ESI) $[M+H^+] Calcd For C_{15}H_{20}IO_2: 359.0502, Found: 359.0506.$

methyl (*E*)-2-(4-bromobenzylidene)-4,4-dimethylpentanoate (3ha): White solid, Mp: 70-72 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.58 (s, 1H), 7.49 (d, *J* = 8.4 Hz, 2H), 7.22 (d, *J* = 8.3 Hz, 2H), 3.80 (s, 3H), 2.61 (s, 2H), 0.74 (s, 9H). ¹³C NMR (151 MHz, CDCl₃) δ 170.0, 138.5, 135.5,

133.4, 131.6, 130.6, 121.9, 52.1, 38.3, 33.5, 29.6. HRMS (ESI) $[M+H^+]$ Calcd For $C_{15}H_{20}BrO_2$: 311.0641, Found: 311.0644.

methyl (E)-4,4-dimethyl-2-(4-(trifluoromethyl)benzylidene)pentanoate (3ia): White solid, Mp: 50-52 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.65 (s, 1H), 7.62 (d, J = 8.2 Hz, 2H), 7.43 (d, J = 8.1 Hz, 2H), 3.81 (s, 3H), 2.60 (s, 2H), 0.73 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 169.9, 140.5 (d, $J_{CF} = 1.3$ Hz), 138.2, 134.8, 129.3, 125.5(q, $J_{CF} = 3.8$ Hz), 52.2, 38.6, 33.6, 29.7. ¹⁹F NMR (471 MHz, CDCl₃) δ -62.6. HRMS (ESI) [M+H⁺] Calcd For C₁₆H₂₀F₃O₂: 301.1410, Found: 301.1413.

ethyl (*E*)-2-benzylidene-4,4-dimethylpentanoate(3ja): Colourless
liquid. ¹H NMR (500 MHz, CDCl₃) δ 7.68 (s, 1H), 7.35 (d, *J* = 4.4 Hz,
4H), 7.30-7.27 (m, 1H), 4.27 (s, 2H), 2.66 (s, 2H), 1.36 (s, 3H), 0.76 (s,
9H). ¹³C NMR (126 MHz, CDCl₃) δ 169.8, 139.6, 136.7, 133.0, 128.9,

128.3, 127.7, 60.8, 38.2, 33.4, 29.6, 14.3. HRMS (ESI) $[M+H^+]$ Calcd For $C_{16}H_{23}O_2$: 247.1693, Found: 247.1697.

butyl (*E*)-2-benzylidene-4,4-dimethylpentanoate(3ka): Colourless liquid. ¹H NMR (500 MHz, CDCl₃) δ 7.67 (s, 1H), 7.35 (d, *J* = 4.5 Hz, 4H), 7.29-7.27 (m, 1H), 4.20 (t, *J* = 6.7 Hz, 2H), 2.66 (s, 2H), 1.73-1.68 (m, 2H), 1.48-1.43 (m, 2H), 0.98 (d, *J* = 7.4 Hz, 3H), 0.76 (s, 9H). ¹³C

NMR (126 MHz, CDCl₃) δ 170.0, 139.6, 136.9, 133.1, 129.1, 128.4, 127.8, 64.8, 38.3, 33.5, 30.9, 29.7, 19.4, 13.9. HRMS (ESI) [M+H⁺] Calcd For C₁₈H₂₇O₂: 275.2006, Found: 275.2009.

isobutyl(E)-2-benzylidene-4,4-dimethylpentanoate(3la):Colourless liquid. ¹H NMR (500 MHz, CDCl₃) δ 7.68 (s, 1H), 7.38-7.34(m, 4H), 7.28 (d, J = 4.7 Hz, 1H), 3.99 (s, 2H), 2.67 (s, 2H), 2.04 (dt, J = 13.4, 6.7 Hz, 1H), 1.02 (s, 6H), 0.76 (s, 9H). ¹³C NMR (126 MHz, CDCl₃)

δ 170.0, 139.6, 136.9, 133.2, 129.1, 128.5, 127.8, 71.2, 38.3, 33.5, 29.7, 28.0, 19.4. HRMS (ESI) [M+H⁺] Calcd For C₁₈H₂₇O₂: 275.2006, Found: 275.2011.

tert-butyl (*E*)-2-benzylidene-4,4-dimethylpentanoate (3ma): Colourless liquid. ¹H NMR (500 MHz, CDCl₃) δ 7.60 (s, 1H), 7.34 (d, *J* = 4.4 Hz, 4H), 7.28-7.26 (m, 1H), 2.61 (s, 2H), 1.54 (s, 9H), 0.76 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 169.1, 138.8, 137.1, 134.5, 129.0, 128.4, 127.6, 80.6, 38.2, 33.5, 29.8, 28.2. HRMS (ESI) [M+H⁺] Calcd For C₁₈H₂₇O₂: 275.2006, Found: 275.2009.

methyl (E)-2-benzylidenebutnoate (3ab): Colourless liquid. ¹H NMR
(500 MHz, CDCl₃) δ 7.65 (s, 1H), 7.41-7.36 (m, 4H), 7.33 (d, J = 8.7 Hz, 1H), 3.82 (s, 3H), 2.55 (q, J = 7.4 Hz, 2H), 1.18 (t, J = 7.4 Hz, 3H). ¹³C
NMR (126 MHz, CDCl₃) δ 169.0, 138.7, 136.0, 134.9, 129.3, 128.6, 128.5,

52.0, 21.0, 14.0. HRMS (ESI) [M+H⁺] Calcd For C₁₂H₁₅O₂: 191.1067, Found: 191.1071.

methyl (*E*)-2-benzylidenepentanoate (3ac): Colourless liquid. ¹H NMR
(500 MHz, CDCl₃) δ 7.67 (s, 1H), 7.36 (td, *J* = 14.0, 7.0 Hz, 5H), 3.82 (s, 3H), 2.54-2.47 (m, 2H), 1.61-1.54 (m, 2H), 0.96 (t, *J* = 7.4 Hz, 3H). ¹³C
NMR (126 MHz, CDCl₃) δ 169.1, 139.0, 136.0, 133.7, 129.3, 128.6, 128.4,

52.0, 29.7, 22.7, 14.3. HRMS (ESI) [M+H⁺] Calcd For C₁₃H₁₇O₂: 205.1223, Found: 205.1227.

methyl (*E***)-2-benzylidenehexanoate (3ad):** Colourless liquid. ¹H NMR (600 MHz, CDCl₃) δ 7.65 (s, 1H), 7.41-7.34 (m, 4H), 7.32 (s, 1H), 3.81 (s, 3H), 2.54-2.49 (m, 2H), 1.53 (s, 2H), 1.38 (d, *J* = 7.5 Hz, 2H), 0.92 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 169.1, 138.9, 135.9, 133.7,

129.3, 128.6, 128.4, 52.1, 31.6, 27.4, 23.0, 14.0. HRMS (ESI) [M+H⁺] Calcd For C₁₄H₁₉O₂: 219.1380, Found: 219.1385.

methyl (E)-2-benzylideneheptanoate (3ae): Colourless liquid. ¹H NMR
(600 MHz, CDCl₃) δ 7.65 (s, 1H), 7.41-7.35 (m, 4H), 7.32 (t, J = 7.1 Hz, 1H), 3.81 (s, 3H), 2.53-2.48 (m, 2H), 1.54 (s, 2H), 1.33 (d, J = 3.6 Hz, 4H), 0.89 (t, J = 7.0 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 169.1, 138.8, 135.8,

133.7, 129.2, 128.5, 128.3, 52.0, 31.9, 29.0, 27.5, 22.4, 14.1. HRMS (ESI) [M+H⁺] Calcd For C₁₅H₂₁O₂: 233.1536, Found: 233.1539.

methyl (E)-2-(cyclopropylmethyl)-3-phenylacrylate (3af): Colourless
liquid. ¹H NMR (500 MHz, CDCl₃) δ 7.68 (s, 1H), 7.39 (d, J = 6.9 Hz, 5H),
3.83 (s, 3H), 2.51 (d, J = 6.5 Hz, 2H), 0.95 – 0.87 (m, 1H), 0.45 – 0.40 (m,
2H), 0.15 (q, J = 4.9 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 169.2, 139.0,

135.8, 133.0, 129.2, 128.4, 128.3, 51.9, 31.1, 10.5, 4.5. HRMS (ESI) [M+H⁺] Calcd For C₁₄H₁₇O₂: 217.1223, Found: 217.1227.

methyl (E)-2-(cyclobutylmethyl)-3-phenylacrylate (3ag)⁴: Colourless
liquid. ¹H NMR (500 MHz, CDCl₃) δ 7.65 (s, 1H), 7.38 (d, J = 8.5 Hz, 4H),
7.32 (d, J = 6.7 Hz, 1H), 3.81 (s, 3H), 2.68 (d, J = 7.2 Hz, 2H), 2.53-2.48 (m,
1H), 1.98 (d, J = 8.1 Hz, 2H), 1.74 (dt, J = 18.9, 8.9 Hz, 2H), 1.64 (q, J = 8.6

Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 169.3, 139.2, 136.1, 132.6, 129.3, 128.5, 128.3, 52.0, 36.1, 33.6, 28.5, 18.5. HRMS (ESI) [M+H⁺] Calcd For C₁₅H₁₉O₂: 231.1380, Found: 231.1385.

methyl (*E*)-2-(cyclopentylmethyl)-3-phenylacrylate (3ah)⁴: Colourless
liquid. ¹H NMR (500 MHz, CDCl₃) δ 7.65 (s, 1H), 7.38 (d, *J* = 4.4 Hz,
4H), 7.33-7.29 (m, 1H), 3.82 (s, 3H), 2.62 (d, *J* = 7.3 Hz, 2H), 2.03 (s, 1H),
1.68 (s, 2H), 1.54 (s, 2H), 1.47 (s, 2H), 1.11 (s, 2H). ¹³C NMR (126 MHz,

CDCl₃) δ 169.3, 138.9, 136.1, 133.6, 129.2, 128.4, 128.1, 51.9, 40.1, 32.4, 24.7.

methyl (E)-2-(cyclohexylmethyl)-3-phenylacrylate (3ai)⁴: Colourless liquid. ¹H NMR (500 MHz, CDCl₃) δ 7.68 (s, 1H), 7.37 (d, J = 5.8 Hz, 4H), 7.31 (s, 1H), 3.81 (s, 3H), 2.49 (d, J = 7.1 Hz, 2H), 1.65 (t, J = 11.3 Hz, 6H), 1.20-1.11 (m, 3H), 0.88 (t, J = 11.7 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃)

 $\delta \ 169.4, \ 139.4, \ 136.1, \ 132.8, \ 129.3, \ 128.4, \ 128.1, \ 51.9, \ 37.8, \ 34.4, \ 33.2, \ 26.4, \ 26.3.$

methyl (*E*)-2-((1-methylcyclopropyl)methyl)-3-phenylacrylate (3aj): Colourless liquid. ¹H NMR (500 MHz, CDCl₃) δ 7.69 (s, 1H), 7.41 (dd, *J* = 16.9, 7.4 Hz, 4H), 7.32 (t, *J* = 7.2 Hz, 1H), 3.81 (s, 3H), 2.73 (s, 2H), 1.01 (s, 3H), 0.33 (s, 2H), 0.20 (s, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 169.7, 140.3, 136.0, 131.7, 129.6, 128.5, 128.4, 52.0, 33.9, 24.4, 15.2, 12.0. HRMS (ESI) [M+H⁺] Calcd For C₁₅H₁₉O₂: 231.1380, Found: 231.1384.

methyl (*E*)-2-((1-methylcyclohexyl)methyl)-3-phenylacrylate (3ak): White solid, Mp: 48-50 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.66 (s, 1H), 7.34 (d, *J* = 6.4 Hz, 4H), 7.28 (d, *J* = 3.6 Hz, 1H), 3.80 (s, 3H), 2.66 (s, 2H), 1.32-1.25 (m, 5H), 1.12 (dd, *J* = 8.1, 4.7 Hz, 5H), 0.70 (s, 3H). ¹³C NMR

(126 MHz, CDCl₃) δ 170.5, 139.8, 136.8, 132.5, 128.9, 128.3, 127.7, 51.9, 37.8, 35.9, 26.2, 24.0, 21.9. HRMS (ESI) [M+H⁺] Calcd For C₁₈H₂₅O₂: 273.1849, Found: 273.18456.

methyl (*E*)-3-phenyl-2-((tetrahydro-2H-pyran-4-yl)methyl)acrylate (3al): Colourless liquid. ¹H NMR (500 MHz, CDCl₃) δ 7.74 (s, 1H), 7.34 (dt, *J* = 17.2, 8.2 Hz, 5H), 3.87 (d, *J* = 14.6 Hz, 2H), 3.81 (s, 3H), 3.29 (t, *J* = 11.1 Hz, 2H), 2.55 (d, *J* = 7.2 Hz, 2H), 1.76 (s, 1H), 1.53 (d, *J* = 13.0 Hz,

2H), 1.27-1.19 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 169.1, 140.4, 135.9, 131.6, 129.2, 128.6, 128.4, 68.0, 52.1, 35.0, 33.9, 33.0. HRMS (ESI) [M+H⁺] Calcd For C₁₆H₂₁O₃: 261.1485, Found: 261.1489.

methyl (E)-2-benzylidene-4-phenylbutanoate (3am)⁵: Colourless liquid. ¹H NMR (500 MHz, CDCl₃) δ 7.74 (s, 1H), 7.37 (d, J = 7.5 Hz, 2H), 7.30 (dd, J = 16.4, 7.8 Hz, 5H), 7.21 (d, J = 7.5 Hz, 3H), 3.85 (s, 3H), 2.86 (s, 4H). ¹³C NMR (126 MHz, CDCl₃) δ 168.7, 141.5, 139.8, 135.6,

132.6, 129.0, 128.5, 128.4, 128.4, 126.0, 52.0, 35.3, 29.6.

methyl (*E*)-2-(((3r,5r,7r)-adamantan-1-yl)methyl)-3-phenylacrylate (3an): Colourless liquid. ¹H NMR (600 MHz, CDCl₃) δ 7.69 (s, 1H), 7.36 (d, *J* = 4.4 Hz, 4H), 7.30-7.27 (m, 1H), 3.80 (s, 3H), 2.52 (s, 2H), 1.83 (s, 3H), 1.60-1.50 (m, 6H), 1.32 (s, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 170.4,

140.1, 136.6, 131.3, 129.0, 128.4, 127.8, 52.0, 42.3, 39.4, 36.8, 35. 5, 28.7. HRMS (ESI) [M+H⁺] Calcd For C₂₁H₂₇O₂: 311.2006, Found: 311.2011.

methyl(E)-2-(((1S,4aS,10aS)-7-isopropyl-1,4a-dimethyl-1,2,3,4,4a,9,10,10a-octahydrophenanthren-1-yl)methyl)-3-phenylacrylate (3ao): Colourless liquid. ¹H NMR (600 MHz, CDCl₃) δ 7.55 (s, 1H), 7.25 (s, 3H), 7.19 (s, 1H), 7.14 (s, 1H), 7.03 (d, J = 8.1 Hz,1H), 6.87 (s, 1H), 6.78 (s, 1H), 3.70 (s, 3H), 2.92 (s, 1H), 2.74 (s, 2H),2.61 (s, 1H), 2.51 (s, 1H), 2.08 (s, 1H), 1.71 (s, 1H), 1.50 (d, J = 47.9

Hz, 2H), 1.22 (d, J = 15.9 Hz, 2H), 1.13 (d, J = 6.9 Hz, 6H), 1.04 (s, 3H), 0.90 (s, 2H), 0.78 (s, 1H), 0.67 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 170.7, 147.7, 145.5, 140.2, 136.7, 134.9, 132.4, 129.0, 128.5, 127.9, 126.8, 124.0, 123.8, 52.1, 49.0, 39.6, 38.4, 38.3, 37.8, 37.6, 33.5, 30.1, 25.5, 24.1, 19.3, 19.3, 18.7. HRMS (ESI) [M+H⁺] Calcd For C₃₀H₃₉O₂: 431.2954, Found: 431.2957.

methyl (6R)-2-((*E*)-benzylidene)-6-((5S,8R,9S,10S,13R,17S)-10,13-dimethyl-3,7,12trioxohexadecahydro-1H-cyclopenta[a]phenanthren-17-yl)heptanoate (3ap):White solid, Mp: 164-166°C.¹H NMR (600 MHz, CDCl₃) δ 7.65 (s, 1H), 7.40 (t, *J* = 7.4 Hz, 2H), 7.37-7.31 (m, 3H), 3.82 (s, 3H), 2.95-2.85 (m,

3H), 2.48 (d, J = 39.2 Hz, 2H), 2.28 (d, J = 49.7 Hz, 6H), 2.15 (s, 2H), 2.01 (d, J = 35.8 Hz, 4H), 1.85 (s, 1H), 1.62 (s, 2H), 1.48 (s, 2H), 1.40 (s, 3H), 1.27 (s, 4H), 1.05 (s, 3H), 0.84 (d, J = 6.5 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 212.2, 209.3, 209.0, 169.0, 138.8, 135.8, 133.6, 129.2, 128.5, 128.4, 56.9, 52.0, 51.8, 49.0, 46.9, 45.8, 45.6, 45.0, 42.8, 38.7, 36.5, 36.0, 35.7, 35.4, 35.3, 27.8, 26.2, 25.2, 21.9, 18.9, 11.9. HRMS (ESI) [M+H⁺] Calcd For C₃₄H₄₅O₅: 533.3262, Found: 533.3267.

methyl (*E*)-2-(((6aS,6bR,8aR,10S,12aS,12bS,14bR)-10hydroxy-2,2,6a,9,9,12a,12b-heptamethyl-1,3,4,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14boctadecahydropicen-4a(2*H*)-yl)methyl)-3phenylacrylate(3aq): Colourless liquid. ¹H NMR (600 MHz, CDCl₃) ¹H NMR (600 MHz, CDCl₃) δ 7.63 (s, 1H), 7.35 (t, *J*

= 7.6 Hz, 2H), 7.28 (m, 3H), 4.58 (s, 1H), 3.79 (s, 3H), 3.21 (dd, J = 11.3, 4.3 Hz, 1H), 2.66 (d, J = 13.5

Hz, 1H), 2.55 (d, J = 13.5 Hz, 1H), 1.75-1.70 (m, 3H), 1.64-1.53 (s, 8H), 1.47-1.41 (m, 3H), 1.28-1.26 (m, 3H), 1.07 (s, 3H), 0.99 (s, 3H), 0.94 (s, 3H), 0.92 (s, 3H), 0.88-0.84 (m, 7H), 0.79 (s, 3H), 0.78 (s, 3H), 0.71 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 170.7, 144.0, 139.5, 136.8, 133.6, 128.8, 128.4, 127.5, 122.5, 79.0, 55.1, 52.0, 47.5, 47.0, 45.8, 41.3, 39.8, 38.8, 38.5, 38.0, 36.9, 34.4, 34.2, 33.1, 32.5, 30.9, 30.7, 28.1, 27.2, 26.5, 26.2, 25.3, 23.6, 23.3, 18.4, 16.9, 15.6, 15.5. HRMS (ESI) [M+H⁺] Calcd For C₄₀H₅₉O₃: 587.4459, Found: 587.4454.

Reference:

1. W.-X. Wang, Q.-Z. Zhang, T.-Q. Zhang, Z.-S. Li, W. Zhang, W. Yu, Adv. Synth. Catal. 2015, 357, 221.

2. Z. He, B. Wibbeling, A. Studer, Adv. Synth. Catal. 2013, 355, 3639.

3. G. Pratsch, G. L. Lackner, L. E. Overman, J. Org. Chem. 2015, 80, 6025.

4. H. Ye, H. Zhao, S. Ren, H. Ye, D. Cheng, X. Li, X. Xu, Tetrahedron Lett. 2019, 60, 1302.

4. Evidence for a radical pathway

Catalytic reaction interfered with a radical quencher:

An 25 mL oven-dried Schlenk tube was equipped with a stirring bar, Baylis-Hillman acetate **1a** (0.2 mmol), *N*-(acyloxy)phthalimides **2a** (0.3 mmol, 1.5 equiv.), Rose bengal (0.01 mmol, 5 mol%) and 1,1-diphenylethylene (0.6 mmol, 3.0 equiv.). The mixture was degassed by using standard Schlenk techniques with an oil pump. Then DIPEA (0.4 mmol, 2.0 equiv.) and DCE/H₂O (v:v = 5:1, 2 mL) were injected into the reaction tube. The solution was placed in a distance of 3 cm from 15 W blue LED. After being stirred at room temperature for 12 h under air, the solution was used directly for HRMS analysis.

Qualitative Compound Report

5. ¹H and ¹³C NMR spectra of trisubstituted alkyl acrylates (3aa-3ma, 3ab-3aq) ¹H NMR of 3aa in CDCl₃


```
<sup>13</sup>C NMR of 3da in CDCl<sub>3</sub>
```


¹⁹FNMR of **3da** in CDCl₃

¹H NMR of **3ea** in CDCl₃

¹³C NMR of **3ea** in CDCl₃

¹H NMR of **3fa** in CDCl₃

¹³C NMR of **3fa** in CDCl₃

¹H NMR of **3ga** in CDCl₃

¹³C NMR of **3ga** in CDCl₃


```
<sup>1</sup>H NMR of 3ha in CDCl<sub>3</sub>
```


¹³C NMR of **3ha** in CDCl₃

¹³C NMR of **3ia** in CDCl₃

¹H NMR of **3ja** in CDCl₃

¹H NMR of **3ka** in CDCl₃

¹³C NMR of **3ka** in CDCl₃


```
<sup>13</sup>C NMR of 3la in CDCl<sub>3</sub>
```


¹H NMR of **3ma** in CDCl₃

¹H NMR of **3ac** in CDCl₃


```
<sup>13</sup>C NMR of 3ae in CDCl<sub>3</sub>
```


¹H NMR of **3al** in CDCl₃


```
<sup>13</sup>C NMR of 3al in CDCl<sub>3</sub>
```



```
<sup>13</sup>C NMR of 3am in CDCl<sub>3</sub>
```



```
<sup>13</sup>C NMR of 3ao in CDCl<sub>3</sub>
```



```
<sup>13</sup>C NMR of 3ap in CDCl<sub>3</sub>
```


