Supplementary Information for

Anodic generation of hydrogen peroxide in continuous flow

Dhananjai Pangotra^{a,b}, Lénárd-István Csepei^a, Arne Roth^a, Volker Sieber^{a,b}, Luciana Vieira^{*,a}

^a Fraunhofer Institute of Interfacial Engineering and Biotechnology IGB, Bio-, Electro-, and Chemocatalysis BioCat, Straubing Branch, Schulgasse 11a, 94315, Straubing, Germany

^b Chair of Chemistry for Biogenic Resources, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Schulgasse 16, 94315, Straubing, Germany

List of figures

Figure S2 Comparison of electrolyte conditions using BDD as anode. Anodic H_2O_2 (a) concentration (b) FE, and (c) production rate for H_2O_2 production against applied current density during 10 minutes in 25 mL 2 mol L⁻¹ KHCO₃ (pH 9) at room temperature and in ice bath using 5 cm² BDD as an anode in a two compartment H-cell.

Figure S5 Anodic H₂O₂ production in a circular flow reactor. Anodic H₂O₂ (a) production rate, (b) cell potential, and (c) specific energy consumption to produce 1 kg of H₂O₂ at different current densities using a circular flow system. 10

List of tables

Table S1 Anodic H ₂ O ₂ production in a circular flow reactor. Faradaic efficiency and corresponding
specific energy consumption to produce 1 kg of H_2O_2 over time at different current densities using a
circular flow system
Table S2 A comparison of the reported work on water oxidation to H ₂ O ₂ with our present study

List of schemes

Figure S1 SEM images of used BDD electrode. SEM images of used BDD in this study at different magnification.

The molar fractions for each species were calculated using **Eqs. S2** and **S3**. The experiments were done in highly concentrated electrolytes, which differ from the ideal behavior of diluted electrolytes. As a result, the ion activities ($a_{HCO_3^-}$ and $a_{CO_3^{2-}}$) were calculated as shown in **Eqs. S4** and **S5** using the activity coefficient (f_{\pm}) shown in **Eq. S6**, where z_i is the charge of the ion, A is the Debye-Hückel parameter (0.51 kg^½ mol^{-½}, for water at 25 °C), and B is a temperature-dependent parameter. In response to pH changes and carbonate equilibrium, we calculated the activity of HCO₃⁻ ($a(HCO_3^-)$) and CO₃²⁻ ($a(CO_3^{2-})$) ions during electrolysis for each concentration (c) of KHCO₃.

$$K_{a,i} = 10^{-pK_{a,i}} \tag{S1}$$

$$\alpha_{HCO_{3}^{*}} = \frac{K_{a,1}.[H^{+}]}{[H^{+}]^{2} + K_{a,1}.[H^{+}] + K_{a,1}.K_{a,2}}$$
(S2)

$$\alpha_{CO_3^{2-}} = \frac{K_{a,1} \cdot K_{a,2}}{[H^+]^2 + K_{a,1} \cdot [H^+] + K_{a,1} * K_{a,2}}$$
(S3)

$$a_{HCO_3^-} = \alpha_{HCO_3^-} c_{KHCO_3} f_{\pm}$$
(S4)

$$a_{CO_3^{2-}} = \alpha_{CO_3^{2-}} c_{KHCO_3} f_{\pm}$$
(S5)

$$\log f_{\pm} = -\frac{A.z_i^2 \cdot \sqrt{j}}{1 + B.a_{i} \cdot \sqrt{j}}$$
(S6)

Figure S2 Comparison of electrolyte conditions using BDD as anode. Anodic H_2O_2 (a) concentration (b) FE, and (c) production rate for H_2O_2 production against applied current density during 10 minutes in 25 mL 2 mol L⁻¹ KHCO₃ (pH 9) at room temperature and in ice bath using 5 cm² BDD as an anode in a two compartment H-cell.

Figure S3 Comparison of electrolyte conditions using BDD as anode. Anodic H_2O_2 (a) production rate and (b) partial current density for H_2O_2 production against applied current density during 10 minutes in (\blacksquare) 2 mol L⁻¹ KHCO₃ at pH 8.4, and (\blacktriangle) 2 mol L⁻¹ K₂CO₃ at pH 12.6 on 5 cm² BDD as an anode.

Scheme S1 Scheme for anodic H₂O₂ production in carbonate electrolyte. Carbonate (CO₃²⁻) can be anodically oxidized to peroxodicarbonate (C₂O₆²⁻) species. C₂O₆²⁻ undergoes hydrolysis to form bicarbonate (HCO₃⁻) and hydrogen peroxide (H₂O₂). In alkaline electrolytes, HCO₃⁻ ions are deprotonated to CO₃²⁻, which closes the cycle with a higher concentration of H₂O₂.¹

Figure S4 Experimental setup for circular flow. (1) Cathodic compartment, **(2)** anodic compartment, **(3)** flow pump, **(4)** catholyte tank, and **(5)** anolyte tank. The anolyte collected in **(5)** is recirculated to the anodic half-cell and the product is collected in the same reservoir.

Figure S5 Anodic H₂O₂ production in a circular flow reactor. Anodic H₂O₂ (a) production rate, (b) cell potential, and (c) specific energy consumption to produce 1 kg of H₂O₂ at different current densities using a circular flow system.

Table S1 Anodic H₂O₂ production in a circular flow reactor. Faradaic efficiency and corresponding specific energy consumption to produce 1 kg of H₂O₂ over time at different current densities using a circular flow system.

Time	Far	adaic efficie	ncy	Specific energy consumption					
Time		(%)		(kWh⁻¹ kg⁻¹)					
(min)	100	200	300	100	200	300			
	тА ст ⁻²	<i>m</i> A cm⁻²	<i>m</i> A cm⁻²	mA cm ⁻²	mA cm⁻²	mA cm ⁻²			
15	39.09	44.86	40.41	0.58	0.62	0.79			
30	34.55	38.42	25.08	0.67	0.72	1.27			
45	31.72	29.91	17.13	0.73	0.92	1.86			
60	30.13	26.09	13.37	0.78	1.05	2.37			
90	22.07	18.31	9.14	1.06	1.50	3.47			
120	18.70	15.41	6.67	1.25	1.80	4.75			
150	14.08	11.48	5.40	1.67	2.42	5.90			

Figure S6 Comparison of the sampling time during electrolysis in H-Cell. (a) Anodic H_2O_2 concentration, (b) FE, (c) production rate, and (d) partial current density at different applied current densities for 5 or 10 minutes. The electrolyte was 2 mol L⁻¹ K₂CO₃ at pH 12.6 and the anode a 5 cm² BDD.

Figure S7 H_2O_2 generation with multiple electrolyte flow cycles. Change in (a) conductivity of the electrolyte, (b) cell potential, and (c) energy consumption against time at a current density of 100 and 300 mA cm⁻² in 2 mol L⁻¹ K_2CO_3 with 90 mmol L⁻¹ Na_2SiO_3 stabilizer using 10 cm² BDD as an anode. The total volume of the electrolyte used for each cycle was 200 mL. Experiments were performed in a single flow system. The volume accumulated in each cycle was reused in the following one.

Figure S8 Effect of Na₂SiO₃ stabilizer on H₂O₂ generation in circular flow. Anodic H₂O₂ (a) concentration and (b) FE at current density of 200 mA cm⁻² with (\blacksquare) and without (•) 90 mmol L⁻¹ Na₂SiO₃ at a controlled pH of 12.6. Each cell compartment contained a reservoir with 200 mL of 2 mol L⁻¹ K₂CO₃ electrolyte circulating at 100 mL min⁻¹ flow rate.

Figure S9 Experimental setup of single-pass flow. (1) Cathodic compartment, **(2)** anodic compartment, **(3)** flow pump, **(4)** catholyte tank, **(5)** fresh anolyte tank before cell, and **(6)** collected anolyte containing H₂O₂ after flow cell.

Figure S10 Anodic H_2O_2 production in a single pass mode flow reactor. (a) Volume of electrolyte passed over time using a flow rate of 10 mL min⁻¹. (b) H_2O_2 concentration, (c) FE, and (d) current density towards H_2O_2 during 20 min of electrolysis. Change in (e) pH and (f) conductivity of the electrolyte at different current density in 2 mol L⁻¹ K₂CO₃ + 90 mmol L⁻¹ Na₂SiO₃. Initial and final pH and conductivity corresponds to 0 and 20 minutes.

Figure S11 Anodic H₂O₂ production in a single pass mode flow reactor. Cell potential at different current densities using 10 mL min⁻¹ flow rate without recirculation in 2 mol L⁻¹ K₂CO₃ + 90 mmol L⁻¹ Na₂SiO₃.

Electrode	Cell type	Electro- lyte	Conditions*				[H ₂ O ₂] _{max}	Production rate	Peak FE	Ref.		
			рН	j/P	t	EA	VA	S	mmol L ⁻¹	µmol min ⁻¹ cm ⁻²	%	
PTFE/CFP	- H-Cell	1 M Na2CO3	12	100	420	0.36	25	~30	3	23.4	66	<u>2</u>
BDD/Nb			11.9	39.8	10	1.13	8.5	-	-	3.93	31.7	<u>3</u>
BDD/Ti			8	120	5	7.4	25	-	~ 16	~ 8	28	<u>4</u>
BDD/Ti		2 M KHCO3	8	295	5	7.4	25	-	29	19.7	~ 22	<u>4</u>
CaSnO₃@CF- 2			~8.3	2.9 V	10	1.3	-	-	-	39.8	90	<u>5</u>
CaSnO₃/FTO	Undivided		8.3	3.2 V	10	-	30	-	-	~ 4.6	76	<u>6</u>
CaSnO₃/FTO			8.3	2.2 V	720	-	30	-	~ 0.9	-	-	<u>6</u>
BiVO4/FTO		1 M NaHCO₃	8.3	3.1 V	-	1	20	-	-	5.7	70	<u>7</u>
BDD/Nb	H-Cell	2 M Hybrid	10	300	5	~7	25	-	104.6	76.4	82	<u>8</u>
BDD/Nb		5 M K ₂ CO ₃	>13	100	5	~6	25	-	39	15.6	91.5	<u>9</u>
CFP	Flow-Cell	II 2 M K₂CO₃)₃ 12.6	100	150	10	200	90	33	4.5	14.3	1
BDD/Ta				300	40	10	200	90	76	73	78	This work
				300	80	10	200	90	110	46	50	
				700	20	10	200	90	80	79	35	

Table S2 A comparison of the reported work on water oxidation to H_2O_2 with our present study.

**j*: Current density (mA cm⁻²), P: Potential applied (V vs. RHE), t: Time (minutes), EA: Electrode geometric area (cm²), VA: Volume of anolyte (mL), S: Stabilizer concentration (mmol L⁻¹ Na₂SiO₃)

Figure S12 Anodic H₂O₂ generation at different electrolyte flow rates. Specific electricity cost based on energy consumption to produce 1 kg of H₂O₂ at different flow rates. Experiment conditions: Flow cell with 200 mL anolyte at a constant current density (*j*) of 300 mA cm⁻².

References

- 1. D. Pangotra, L.-I. Csepei, A. Roth, C. Ponce de León, V. Sieber and L. Vieira, *Appl. Catal. B Environ.*, 2022, **303**, 120848.
- 2. C. Xia, S. Back, S. Ringe, K. Jiang, F. Chen, X. Sun, S. Siahrostami, K. Chan and H. Wang, *Nat. Catal.*, 2020, **3**, 125-134.
- 3. K. Wenderich, B. A. M. Nieuweweme, G. Mul and B. T. Mei, *ACS Sustain. Chem. Eng.*, 2021, **9**, 7803-7812.
- 4. S. Mavrikis, M. Göltz, S. Rosiwal, L. Wang and C. Ponce de León, *ACS Appl. Energy Mater.*, 2020, **3**, 3169-3173.
- 5. C. Zhang, R. Lu, C. Liu, L. Yuan, J. Wang, Y. Zhao and C. Yu, *Adv. Funct. Mater.*, 2021, **31**, 2100099.
- S. Y. Park, H. Abroshan, X. Shi, H. S. Jung, S. Siahrostami and X. Zheng, ACS Energy Lett., 2019, 4, 352-357.
- 7. X. Shi, S. Siahrostami, G. L. Li, Y. Zhang, P. Chakthranont, F. Studt, T. F. Jaramillo, X. Zheng and J. K. Norskov, *Nat. Commun.*, 2017, **8**, 701.
- 8. S. Mavrikis, M. Göltz, S. C. Perry, F. Bogdan, P. K. Leung, S. Rosiwal, L. Wang and C. Ponce de León, *ACS Energy Lett.*, 2021, 2369-2377.
- 9. S. Mavrikis, M. Göltz, S. Rosiwal, L. Wang and C. Ponce de León, *ChemSusChem*, 2022, **15**, e202102137.