Supporting Information

Enhanced photocatalytic ammonia synthesis over a Bi/carbon cloth float: triphase reaction system assisted N₂ supply and photothermal co-activation

Yaru Li, a Jianxin Liu, *a Zijun Sun, a Rui Li, b Lijun Guo, a Xiaochao Zhang, a Yawen Wang, a

Yunfang Wang, a Zhuobin Yu c and Caimei Fan*a

^aCollege of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, PR China
^bCollege of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
^cInstrumental Analysis Center, Taiyuan University of Technology, Taiyuan 030024, PR China
*Correspondence to: liujx0519@163.com; fancm@163.com

Fig. S1 The schematic diagrams of the photocatalytic NRR experiment performed in the triphase and diphase systems. The circulating cooling water is used when the controlled temperature condition is explored.

Fig. S2 (a) UV-Vis absorption spectra of indophenol assays with NH₄⁺ ions after incubated for 2 h at room temperature and (b) Calibration curve used for calculation of NH₄Cl concentrations in deionized water.

Fig. S3 The HRTEM images of (a) the solid sphere in *s*-Bi and (b) the hollow sphere in typical *h*-Bi2 samples.

Fig. S4 High-resolution XPS spectra for Bi 4f of s-Bi and typical h-Bi2.

Fig. S5 (a) The N₂ adsorption-desorption isotherms and pore size distribution (inset) of all Bi samples, and (b) The HRTEM images of the hollow structure in *h*-Bi.

Fig. S6 The N₂-TPD spectra of *s*-Bi and typical *h*-Bi2.

Fig. S7 The DRS spectra of all Bi samples and commercial P25 samples.

Fig. S8 (a) Photocurrent and (b) EIS spectra of all Bi samples coated on ITO substrate.

Fig. S9 (a) The photograph, (b) Water droplet, and (c) (d) SEM images of the hydrophilic carbon cloth (CC₁, 2 cm \times 2 cm).

Fig. S10 SEM and related EDX mapping images of sectional view for Bi/hydrophilic carbon cloth (Bi/CC₁) float.

Fig. S11 The ammonia yields of *s*-Bi and typical *h*-Bi2 mixed with C powders in diphase system.

Fig. S12 SEM images and inset of the photograph of water droplet of the hydrophobic carbon cloth (CC_b).

Fig. S13 SEM and related EDX mapping images of Bi/hydrophobic carbon cloth (Bi/CC_b) float.

Fig. S14 Schematic H_2O reactant supply diagrams of (a) Bi/CC_1 and (b) Bi/CC_b float triphase systems, respectively. CC_b and CC_1 represent hydrophobic and hydrophilic carbon cloth, respectively.

Fig. S15 Photocatalytic N₂ reduction to ammonia yield of Bi/CC₁ and Bi/CC_b. CC_b and CC₁ represent hydrophobic and hydrophilic carbon cloth, respectively.

Fig. S16 The photocatalytic N₂ reduction to ammonia yield of Bi/CC float (a) with different Bi photocatalyst loadings and (b) deionized water volume.

Fig. S17 (a) The photograph, (b) SEM, and (c) Water droplet images of the Nylon66 membrane (2 cm \times 2 cm).

Fig. S18 (a) The photographs of the front and back (inset) views, (b) SEM images of the Bi/Nylon66 float (2 cm \times 2 cm).

Fig. S19 The photocurrent spectrum of Bi under different photo intensity: 180, 250, 330, 420, and 540 mW cm⁻², respectively.

Fig. S20 The infrared imaging photographs of the powders diphase system with different photo intensity: 180, 250, 300, 330, 420, and 540 mW cm⁻², respectively.

Fig. S21 The infrared imaging photographs and corresponding surface temperatures of the Bi/CC float triphase system under different photo intensity: 180, 250, 300, 330, 420, and 540 mW cm⁻², respectively.

Fig. 22 The in-situ FTIR spectra recorded from CC sample in the (a) dark and (b) light conditions during the photocatalytic N_2 reduction to ammonia progress.

Fig. S23 The cycle tests of Bi/CC float triphase system for photocatalytic $N_{\rm 2}$

reduction to ammonia.

Fig. S24 (a) XRD spectra and correspondent SEM images of Bi/CC (b) before and (c) after five cycles PNRR reactions.

Catalysts	Reaction systems	Light source: 300 W Xe lamp				
		Wavelength (λ)	Photo intensity (mW cm ⁻²)	Hole scavenger	NH3 yield (mmol L ⁻¹ h ⁻¹ g ⁻¹)	References
s-Bi	· Liquid-Solid	320-780 nm	330	1	0.65	- This work
<i>h</i> -Bi					0.70	
s-Bi/CC	Gas-Solid-Liquid				0.91	
h-Bi/CC					1.66	
			540		2.85	
		Real sunlight			1.22	
BiOBr	Liquid-Solid	Full spectrum	-	/	0.06	- S1
OVs-BiOBr	Liquid-Solid				0.55	
MOF-76(Ce)	Liquid-Solid	Full spectrum	-	/	0.34	S2
In ₂ O ₃ /In ₂ S ₃	Liquid-Solid	Full spectrum	200	/	0.40	S3
AgBr/Ag/Bi ₄ O ₅ Br ₂	Liquid-Solid	Full spectrum	-	ethanol	0.18	S4
SiW ₉ Co ₃	Liquid-Solid	Simulated	400	/	0.35	S5
/PDA/OVs-Bi2WO6		sunlight				
OVs-TiO ₂	Liquid-Solid	>420 nm	-	methanol	0.46	S 6
$V_{O}\text{-}S\text{-}rich \ TiO_{2\text{-}x}S_{y}$	Liquid-Solid	Full spectrum	-	/	1.90	S7
SVs-Bi ₂ S ₃	Liquid-Solid	200-1100 nm	200	/	0.51	S8
PCON	Liquid-Solid	>420 nm	-	/	0.49	S9

Table S1 The reported results for PNRR using water and nitrogen as feedstocks at ambient conditions.

References

- (S1) X. Xue, R. Chen, H. Chen, Y. Hu, Q. Ding, Z. Liu, L. Ma, G. Zhu, W. Zhang,
- Q.Yu, J. Liu, J. Ma and Z. Jin, Nano Lett., 2018, 18, 7372-7377.
- (S2) C. Zhang, Y. Xu, C. Lv, X. Zhou, Y. Wang, W. Xing, Q. Meng, Y. Kong and G.Chen, ACS Appl. Mater. Interfaces, 2019, 11, 29917-29923.

(S3) H. Xu, Y. Wang, X. Dong, N. Zheng, H. Ma and X. Zhang, *Appl. Catal. B-Environ.*, 2019, **257**, 117932.

- (S4) Y. Chen, C. Zhao, S. Ma, P. Xing, X. Hu, Y. Wu and Y. He, *Inorg. Chem. Front.*, 2019, **6**, 3083.
- (S5) T. Wang, J. Liu, P. Wu, C. Feng, D. Wang, H. Hu and G. Xue, *J. Mater. Chem. A*, 2020, **8**, 16590.

(S6) Q. Liu, H. Wang, R. Tang, Q. Cheng and Y. Yuan, *ACS Appl. Nano Mater.*, 2021, 4, 8674-8679.

(S7) X. Xue, H. Chen, Y. Xiong, R. Chen, M. Jiang, G. Fu, Z. Xi, X. Zhang, J. Ma, W. Fang and Z. Jin, *ACS Appl. Mater. Interfaces*, 2021, **13**, 4975-4983.

(S8) M. Lan, Y. Wang, X. Dong, F. Yang, N. Zheng, Y. Wang, H. Ma and X. Zhang, *Appl. Surf. Sci.*, 2022, **591**, 153205.

(S9) S. Yang, X. Deng, P. Chen, T. Zhao, F. Liu, C. Deng and S. Yin, *Appl. Catal. B-Environ.*, 2022, 121370.