## Supporting Information

High-capacity 1,2:3,4-dibenzophenazine anode integrated into carbon felt for aqueous organic flow battery in alkaline media

## Determination of charge transfer rate constant for DBPZ

Fig. S1a shows CVs of DBPZ electrode in 1 M KOH solution at different scan rates. The peak currents are linearly increased with the increase of the square root of the scan rates when the scan rate is higher than $0.2 \mathrm{~V} \mathrm{~s}^{-1}($ Fig. S1b), revealing the characteristic of diffusion-controlled process at high scan rates. The chronoamperometry curves (Fig. S2a) were recorded and fitted to determine the diffusion coefficients using the following semi-infinite linear diffusion Cottrell equation [S1]:

$$
\begin{equation*}
j=n F C_{s}\left(\frac{D}{\pi t}\right)^{1 / 2} \tag{S1}
\end{equation*}
$$

where $D$ is the diffusion coefficient, $j$ is the current density, $t$ is time, $n$ is the number of transferred electrons, $F$ is the Faraday constant and $C_{\mathrm{s}}$ is the concentration of redox species within the electrode layer. The concentration $\left(C_{\mathrm{s}}\right)$ of redox species is calculated by the equation [S2] as follow:

$$
\begin{equation*}
C_{s}=\frac{m}{M_{w} A \delta} \tag{S2}
\end{equation*}
$$

where $m$ is the mass of DHPZ $(5.58 \mu \mathrm{~g}), M_{\mathrm{w}}$ is the molecular weight of DHPZ (280.3 $\left.\mathrm{g} \mathrm{mol}{ }^{-1}\right), A$ is the geometric area of electrode $\left(0.0707 \mathrm{~cm}^{2}\right)$ and $\delta$ is the average thickness of DBPZ electrode layer that was obtained using a Dektak step profiler
( $3.20 \mu \mathrm{~m}$, Table S1). Therefore, the $\mathrm{C}_{\mathrm{s}}$ value was calculated to be about $0.88 \mathrm{~mol} \mathrm{~L}^{-1}$.
According to the linear dependence of $j$ versus $t^{-1 / 2}$ for the Cottrell plots (Fig. S2b-S2c), the D values of the oxidation and reduction progress are calculated to be $1.29 \times 10^{-11}$ and $1.21 \times 10^{-11} \mathrm{~cm}^{2} \mathrm{~s}^{-1}$, respectively. Therefore, an average $D$ value is found to be $1.25 \times 10^{-11} \mathrm{~cm}^{2} \mathrm{~s}^{-1}$. The charge transfer rate constant $\left(k^{0}\right)$ can be determined using Nicholson's method [S3]. Firstly, the kinetic parameter $\Psi$ was obtained from the potential gap between the oxidation and reduction peak ( $\Delta E_{\mathrm{p}}$ ) using the following equation:

$$
\begin{equation*}
\Psi=\left(-0.6288+0.0021 \Delta E_{p}\right) /\left(-0.017 \Delta E_{p}+1\right) \tag{S3}
\end{equation*}
$$

Then, $k^{0}$ was calculated according to the linear relationship between $\Psi$ and $v^{-1 / 2}$ shown in the equation (S4).

$$
\begin{equation*}
\Psi=k^{0}\left(\frac{\pi D n F}{R T}\right)^{-1 / 2} v^{-1 / 2} \tag{S4}
\end{equation*}
$$

Therefore, the $k^{0}$ was calculated to be $3.7 \times 10^{-3} \mathrm{~cm} \mathrm{~s}^{-1}$, from the slope of the $\Psi \sim v^{-1 / 2}$ dependence (Fig. S3).



Fig. S1. (a) CVs of DBPZ electrode in 1 M KOH solution at different scan rates (the scan rates ( $v$ ) from 0.005 to $4 \mathrm{~V} \mathrm{~s}^{-1}$ ). (b) Plots of peak current density ( $j_{\mathrm{p}}$ ) versus square root of scan rate $\left(v^{1 / 2}\right)$.

Table S1. Thickness data of the DBPZ electrode layer obtained from Bruker Dektak step profiler.

| No. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | Average value |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Thickness $(\mu \mathrm{m})$ | 3.23 | 3.21 | 3.17 | 3.22 | 3.13 | 3.20 | 3.24 | 3.20 |



Fig. S2. (a)The chronoamperometry curve of DBPZ electrode in 1 M KOH solution.
(b) Cottrell plot for the oxidation reaction. (c) Cottrell plot for the reduction reaction.

The results of the linear regression are also shown.


Fig. S3. (a) Plot of $\Psi$ versus $v^{-1 / 2}$ for DBPZ (The linear relationship was shown with scan rates of $2.4 \sim 4.0 \mathrm{~V} \mathrm{~s}^{-1}$ ).


Fig. S4. (a) CVs of DBPZ electrode in KOH solutions of various concentrations at $100 \mathrm{mV} \mathrm{s}^{-1}$. (b) The corresponding Pourbaix diagram.


Fig. S5. ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of BHPC. $\delta 7.68(\mathrm{~m}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J$ $=7.95 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=1.84 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{dd}, J=8.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{t}, J$ $=7.53 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.97 \mathrm{ppm}(\mathrm{s}, 1 \mathrm{H})$.


Fig. S6. (a) CVs of BHPC ( 1 mM ) in 1 M KOH solution on a glassy carbon electrode at different scanrates. The inset of (a) is the plot of the current density versus square root of the scan rates ( $\mathrm{v}^{1 / 2}$ ) for BHPC. (b) CVs of BHPC ( 1 mM ) in 1 M KOH solution at $100 \mathrm{mV} \mathrm{s}^{-1}$ during the $2^{\text {nd }}, 10^{\text {th }}, 25^{\text {th }}, 50^{\text {th }}, 75^{\text {th }}$ and $100^{\text {th }}$ cycles.


Fig. S7. (a) RDE voltammetry curves of BHPC ( 1 mM ) in 1 M KOH solution on a glassy carbon electrode at 6 rotation rates ranging from 300 to 1500 rpm . (b)

Koutecký-Levich plots derived from RDE data at five different BHPC reduction overpotentials. The inset of (b) is the fitted curve of Butler-Volmer equation for BHPC using the kinetic current density ( $i_{\mathrm{k}}$ ) obtained from the zero-intercept of Koutecký-Levich plots.


Fig. $\mathbf{S 8} \mathrm{CV}$ curves in 1 M KOH solution with or without 1 mM BHPC at a scan rate of $50 \mathrm{mV} \mathrm{s}^{-1}$. The working electrode was glassy carbon (GC) coated with porous MgO or $\mathrm{MgO} / \mathrm{DPHZ} \mathrm{\& KB}$ layer. The counter and reference electrodes for CV measurements were Pt foil and MMO, respectively. The inset shows the double-layer working electrode structure and the associated redox-targeting reactions. The porous MgO was obtained according to the preparation method reported previously by P. Zhu et al. [S4].


Fig. S9. (a) Galvanostatic charge-discharge profiles of the $\mathrm{BHPC} / / \mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ ARFB at different current densities. (b) Cycling capacity retention and efficiency data at 30 $\mathrm{mA} \mathrm{cm}^{-2}$ for the $\mathrm{BHPC} / / \mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ ARFB. $5 \mathrm{~mL} 0.05 \mathrm{M} \mathrm{BHPC}+1 \mathrm{M} \mathrm{KOH}$ was used as the anolyte while $10 \mathrm{~mL} 0.1 \mathrm{M}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]+1 \mathrm{M} \mathrm{KOH}$ was used as the catholyte.


Fig. S10. ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectra of DBPZ employed in the DBPZ/BHPC//K4[Fe( CN$\left.)_{6}\right]$ AOFB before and after 200 charge-discharge cycles at 20 $\mathrm{mA} \mathrm{cm}{ }^{-2}$.


Fig. S11. CVs (a) and UV-vis spectra (b) of BHPC used in the DBPZ/BHPC//K4[Fe(CN)6] AOFB before and after 200 charge-discharge cycles at 20 $\mathrm{mA} \mathrm{cm}{ }^{-2}$.

Table S2. The comparison of the cycling performance between this work and other reported alkaline AOFBs with organic anolyte materials. CRPC, Capacity retention per cycle. 2,6-DHAQ, 2,6-dihydroxyanthraquinone. 1,8-DHAQ, 1,8dihydroxyanthraquinone. 2,5-DHBQ, 2,5-dihydroxy-1,4-benzoquinone. 2,6-DBEAQ, 4,4'-((9,10-anthraquinone-2,6-diyl)dioxy) dibutyrate. 2,3-HCNQ, 2-hydroxy-3-carboxy-1,4-naphthoquinone. AMA, alizarin-3-methyliminodiacetic acid. NQ-SO, a mixture of NQ-S and lawsone. DMBQ, 2,5-dihydroxy-3,6-dimethyl-1,4benzoquinone. DCDHAQ, 1,8-dihydroxy-2,7-dicarboxymethyl-9,10-anthraquinone. 1,3,5,7-THAQ, 1,3,5,7-tetrahydroxyanthraquinone. AQDP, 9,10-anthraquinone-2,6dipropionic acid. ACA, alloxazine 7/8-carboxylic acid. FMN, flavin mononucleotide. DHPS, 7,8-dihydroxyphenazine-2-sulfonic acid. BHPC, benzo[a]hydroxyphenazine-7/8-carboxylic acid. 1,8-PFP, 3,3'-(phenazine-1,8-diyl)dipropionic acid. AADA, 4-amino-1,1'-azobenzene-3,4'-disulfonic acid. DBPZ, 1,2:3,4-dibenzophenazine.

| alkaline AOFB | CRPC | Reference |
| :---: | :---: | :---: |
| 2,6-DHAQ/K4Fe(CN) ${ }_{6}$ | 99.9\% ( 100 cycles at $100 \mathrm{~mA} \mathrm{~cm}{ }^{-2}$ ) | [S5] |
| 1,8-DHAQ/K4Fe(CN) ${ }_{6}$ | 99.88\% ( 100 cycles at $80 \mathrm{~mA} \mathrm{~cm}^{-2}$ ) | [S6] |
| 2,5-DHBQ//K4[Fe(CN) 6 ] | $99.76 \%$ ( 150 cycles at $100 \mathrm{~mA} \mathrm{~cm}^{-2}$ ) | [S7] |
| 2,6-DBEAQ//K4[ $\left.\mathrm{Fe}(\mathrm{CN})_{6}\right]$ | 99.999\% ( 250 cycles at $100 \mathrm{~mA} \mathrm{~cm}^{-2}$ ) | [S8] |
| 2,3-HCNQ//K4[Fe(CN)6] | 99.95\% ( 100 cycles at $100 \mathrm{~mA} \mathrm{~cm}^{-2}$ ) | [S9] |
| AMA//K4[ $\left.\mathrm{Fe}(\mathrm{CN})_{6}\right]$ | 99.96\% ( 350 cycles at $100 \mathrm{~mA} \mathrm{~cm}^{-2}$ ) | [S10] |
| NQ-SO//K4[ $\left.\mathrm{Fe}(\mathrm{CN})_{6}\right]$ | 99.977\% ( 200 cycles at $100 \mathrm{~mA} \mathrm{~cm}^{-2}$ ) | [S11] |
| Bislawsone//K4[ $\left.\mathrm{Fe}(\mathrm{CN})_{6}\right]$ | 99.962\% (at 100-300 mAcm ${ }^{-2}$ ) | [S12] |
| DMBQ $/ / \mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ | 99.88\% ( 200 cycles at $60 \mathrm{~mA} \mathrm{~cm}^{-2}$ ) | [S13] |
| DCDHAQ $/ / \mathrm{K} 4\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ | $\sim 99.998 \%$ ( 1360 cycles at $50 \mathrm{~mA} \mathrm{~cm}^{-2}$ ) | [S14] |
| 1,3,5,7-THAQ $/ / \mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ | 99.996\% (1100 cycles at $100 \mathrm{~mA} \mathrm{~cm}^{-2}$ ) | [S15] |
| AQDP//K4[Fe(CN) 6 ] | 99.9997\% ( 350 cycles at $30 \mathrm{~mA} \mathrm{~cm}^{-2}$ ) | [S16] |
| $\mathrm{ACA} / \mathrm{K}_{4} \mathrm{Fe}(\mathrm{CN})_{6}$ | 99.95\% ( 50 cycles at $100 \mathrm{~mA} \mathrm{~cm}^{-2}$ ) | [S17] |
| FMN//K4[Fe(CN) ${ }_{6}$ ] | 99.99\% ( 100 cycles at $50 \mathrm{~mA} \mathrm{~cm}^{-2}$ ) | [S18] |
| DHPS//K4[Fe(CN) ${ }^{\text {] }}$ ] | 99.992\% ( 1500 cycles at $50 \mathrm{~mA} \mathrm{~cm}^{-2}$ ) | [S19] |
| BHPC//K4[ $\left.\mathrm{Fe}(\mathrm{CN})_{6}\right]$ | 99.9985\% ( 1305 cycles at $100 \mathrm{~mA} \mathrm{~cm}^{-2}$ ) | [S20] |
| 1,8-PFP//K4[ $\left.\mathrm{Fe}(\mathrm{CN})_{6}\right]$ | $\sim 100 \%$ ( 660 cycles at $20 \mathrm{~mA} \mathrm{~cm}^{-2}$ ) | [S21] |
| AADA//K4[Fe(CN) 6 ] | 99.95\% ( 500 cycles at $40 \mathrm{~mA} \mathrm{~cm}^{-2}$ ) | [S22] |
| DBPZ-anode-boosted $\mathrm{BHPC} / / \mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ | 99.974\% ( 200 cycles at $20 \mathrm{~mA} \mathrm{~cm}^{-2}$ ) | This work |

## References

[S1] K. Sato, R. Ichinoi, R. Mizukami, T. Serikawa, Y. Sasaki, J. Lutkenhaus, H.
Nishide and K. Oyaizu, J. Am. Chem. Soc. 2018, 140, 1049.
[S2] Y, Zhang, J. Cao, Z. Chen, J. Xu, C. Yu, J. Mater. Chem. A, 2020, 8, 6874.
[S3] J. Luo, A. Sam, B. Hu, C. DeBruler, X. Wei, W. Wang and T. L. Liu, Nano

Energy 2017, 42, 215.
[S4] P. Zhu, P. Tian, T. Gao, H. Pang, J. Ye and G. Ning, Chem. Phys. Lett., 2020, 740: 137080.
[S5] K. Lin, Q. Chen, M. R. Gerhardt, L. Tong, S. B. Kim, L. Eisenach, A. W. Valle, D. Hardee, R. G. Gordon, M. J.Aziz, M. P. Marshak, Science 2015, 349, 1529-1532.
[S6] J. Cao, M. Tao, H. Chen, J. Xu, Z. Chen, J. Power Sources 2018, 386, 40-46.
[S7] Z. J. Yang, L. C. Tong, D. P. Tabor, E. S. Beh, M. A. Goulet, D. De Porcellinis, A. Aspuru-Guzik, R. G. Gordon, M. J. Aziz, Adv. Energy Mater. 2018, 8, 1702056.
[S8] D. G. Kwabi, K. Lin, Y. Ji, E. F. Kerr, M.-A. Goulet, D. De Porcellinis, D. P. Tabor, D. A. Pollack, A. Aspuru-Guzik, R. G. Gordon, M. J. Aziz, Joule 2018, 2, 1907.
[S9] C. Wang, Z. Yang, Y. Wang, P. Zhao, W. Yan, G. Zhu, L. Ma, B. Yu, L. Wang, G. Li, J. Liu, Z. Jin, ACS Energy Lett. 2018, 3, 2404-2409.
[S10] Y. Liu, S. Lu, S. Chen, H. Wang, J. Zhang, Y. Xiang, ACS Appl. Energy Mater. 2019, 2, 2469-2474.
[S11] W. Lee, G. Park, Y. Kwon, Chem. Eng. J. 2019, 386, 123985.
[S12] L. Tong, M.-A. Goulet, D. P. Tabor, E. F. Kerr, D. De Porcellinis, E. M. Fell, A. Aspuru-Guzik, R. G. Gordon, M. J. Aziz, ACS Energy Lett. 2019, 4, 1880-1887.
[S13] P. Sun, Y. Liu, Y. Li, M. A. Shehzad, Y. Liu, P. Zuo, Q. Chen, Z. Yang, T. Xu, Ind. Eng. Chem. Res. 2019, 58, 3994-3999.
[S14] M. Wu, M. Bahari, E. M. Fell, R. G. Gordon, M. J. Aziz, J. Mater. Chem. A, 2021, 9, 26709-26716.
[S15] C. Wang, Z. Yang, B. Yu, H. Wang, K. Zhang, G. Li, Z. Tie, Z. Jin, J. Power Sources 2022, 524, 231001.
[S16] Y. Jing, E. M. Fell, M. Wu, S. Jin, Y. Ji, D. A. Pollack, Z. Tang, D. Ding, M. Bahari, M.-A. Goulet, T. Tsukamoto, R. G. Gordon, M. J. Aziz, ACS Energy Lett. 2022, 7, 226-235.
[S17] K. X. Lin, R. Gomez-Bombarelli, E. S. Beh, L. C. Tong, Q. Chen, A. Valle, A. Aspuru-Guzik, M. J. Aziz, R. G. Gordon, Nat. Energy 2016, 1, 16102-16110.
[S18] A. Orita, M. Verde, M. Sakai, Y. S. Meng, Nat. Commun. 2016, 7, 13230.
[S19] A. Hollas, X. Wei, V. Murugesan, Z. Nie, B. Li, D. Reed, J. Liu, V. Sprenkle, W. Wang, Nat. Energy 2018, 3, 508-514
[S20] C. Wang, X. Li, B. Yu, Y. Wang, H. Wang, H. Lin, J. Ma, G. Li, Z. Jin, ACS Energy Lett. 2020, 2, 411-417.
[S21] J. Xu, S. Pang, X. Wang, P. Wang, Y. Ji, Joule 2021, 5, 2437-2449.
[S22] X. Zu, L. Zhang, Y. Qian, C. Zhang, G. Yu, Angew. Chem. Int. Ed. 2020, 59, 22163-22170.

