## Supplementary Information

Highly Selective, Energy-Free, and Environmentally Friendly One-Pot Production of Linear α-Olefin from Biomass-Derived Organic Acid in a Dual-Bed Catalyst System

Marcel Jonathan Hidajat<sup>a,b,1</sup>, Oseok Kwon<sup>c,1</sup>, Hoyoung Park<sup>c</sup>, Jeehoon Han<sup>c,d\*</sup>, Gwang-Nam Yun<sup>a\*</sup>, Dong Won Hwang<sup>a,b\*</sup>

<sup>a</sup>Green Carbon Research Center, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeongro, Yuseoung, Daejeon, 34114, Republic of Korea

<sup>b</sup>Department of Advanced Materials and Chemical Engineering, University of Science and Technology (UST), 141 Gwahangno, Yuseong, Daejeon, 34114, Republic of Korea

reemology (051), 111 Gwanangno, 1 ascong, Daejeon, 5111, Republic of Rolea

<sup>c</sup>School of Semiconductor and Chemical Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea.

<sup>d</sup>Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea

\* Corresponding author.

E-mail address: dwhwang@krict.re.kr (Dong Won Hwang), gnyun@krict.re.kr (Gwang-Nam Yun), jhhan@postech.ac.kr (Jeehoon Han)

<sup>1</sup> Co-first authors.



Fig. S1. PXRD patterns of Ru/SiO<sub>2</sub>, RuSn/SiO<sub>2</sub>, RuSn/Al<sub>2</sub>O<sub>3</sub> and Al<sub>2</sub>O<sub>3</sub> catalysts.



Fig. S2. Structural images of  $RuSn/SiO_2$  catalyst.



Fig. S3. (a)  $NH_3$  and (b)  $CO_2$  desorption profile of  $Al_2O_3$  sample with respect to temperature.



Fig. S4. Octanoic acid conversion and product selectivity over (a)  $Ru/SiO_2$  and (b)  $RuSn/SiO_2$  catalysts as a function of temperature. The reaction was conducted at 20 atm of pressure,  $H_2$ /feed molar ratio of 70.8, and WHSV of 4 h<sup>-1</sup>.



Fig. S5. Long term activity test of dual bed catalysts containing RuSn/SiO<sub>2</sub> and  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> for the HDO of octanoic acid. The reaction was performed at 20 atm, 350 °C, WHSV of 1.5 h<sup>-1</sup>, H<sub>2</sub>/feed molar ratio of 70.8, 1 gr RuSn/SiO<sub>2</sub>, and 0.5 gr  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> loading.



Fig. S6. Hydrogenation of octanoic acid over  $RuSn/SiO_2$  at different temperatures. Reaction conditions:  $H_2/feed = 70.8$ , WHSV = 1 h<sup>-1</sup>, and pressure = 20 atm.



Fig. S7. Correlation between LAO purity and oligomer yield as obtained from Huber et al.<sup>1</sup>



Fig. S8. Energy flow diagram of the integrated catalytic conversion process for (a) case 1, (b) case 3, and (c) case 4 using 100 units of bio-based octanoic acid and hydrogen energy contents.



Fig. S9. Composite curves for Case 2 obtained using Aspen Energy Analyzer. The total minimum hot and cold utility requirements were 6.4 and 4.3 MW respectively.



Fig. S10. The designed heat exchanger network for the integrated process (Case 2), obtained using ASPEN Energy Analyzer (minimum temperature difference ( $\Delta T_{min}$ ) is 10K; the estimated total minimum area requirement ( $A_{min}$ ) is 20,020 m<sup>2</sup>

## **Alpha Olefin Productivity Calculation**

The productivity of  $\alpha$ -olefin (1-octene) was calculated using following equation:

Productivity of 
$$\alpha$$
 - olefin  $\left[\frac{mmol_{\alpha - olefin}}{g_{cat} \cdot h}\right] = \frac{n_{a - olefin}}{m_{cat}}$ 

where  $n_{\alpha$ -olefin is the amount of  $\alpha$ -olefin formed in mmol/h and  $m_{cat}$  is the mass of catalyst in g. The comparison of productivity between our result and the result from other literatures is shown in Table S1.

Table S1. Activity comparison of dehydration catalysts in the literatures.

| Catalyst                                                                | Feed                       | T/°C | P/atm | WHSV <sup>a</sup> /h <sup>-</sup> 1 | Alcohol<br>Conversion/% | α-Olefin<br>Selectivity/% | Productivity/mmol <sub>α-</sub><br><sub>olefin</sub> .g <sub>cat</sub> <sup>-1</sup> .h <sup>-1</sup> |   |
|-------------------------------------------------------------------------|----------------------------|------|-------|-------------------------------------|-------------------------|---------------------------|-------------------------------------------------------------------------------------------------------|---|
| γ-Al <sub>2</sub> O <sub>3</sub>                                        | Octanoic<br>acid           | 350  | 30    | 3.3                                 | 89.6                    | 62.6                      | 10.08                                                                                                 | 1 |
| 15% Cs/SiO <sub>2</sub>                                                 | 1-<br>octanol              | 350  | 4.1   | 0.5                                 | 11                      | 46                        | 0.192                                                                                                 |   |
| 15%<br>Cs/SiO <sub>2</sub> <sup>b</sup>                                 | 1-<br>octanol <sup>c</sup> | 350  | 4.1   | 0.01                                | 32                      | 100                       | 0.022                                                                                                 |   |
| Nano-<br>Al <sub>2</sub> O <sub>3</sub> +ThO <sub>2</sub>               | 1-<br>octanol              | 300  | 0     | N.A <sup>d</sup>                    | 99.8                    | 90                        | 3.83                                                                                                  | - |
| Nano-<br>Al <sub>2</sub> O <sub>3</sub> +Nb <sub>2</sub> O <sub>5</sub> | Stearic<br>alcohol         | 300  | 0     | N.A <sup>d</sup>                    | 100                     | 80                        | 4.39                                                                                                  | 4 |

<sup>a</sup>based on octanol conversion.

<sup>b</sup>after 30h of reaction.

<sup>c</sup>mixed feed of alcohols (1-octanol, 1-decanol, and 1-dodecanol).

<sup>d</sup>batch reaction. Reaction time = 6 h.

| Stream            | 1     | 2     | 3     | 4     | 5     | 6     | 7    | 8     | 9     | 10    | 11    | 12    | 13    | $H_2$ | OA    | PURGE |
|-------------------|-------|-------|-------|-------|-------|-------|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Temperature [°C]  | 26.2  | 35.5  | 275.0 | 350.0 | 35.0  | 35.0  | 98.7 | 129.5 | 121.9 | 221.0 | 35.0  | 35.0  | 34.1  | 25.0  | 25.0  | 35.0  |
| Pressure [atm]    | 20.3  | 20.3  | 20.3  | 20.3  | 20.3  | 20.3  | 1.0  | 1.0   | 1.0   | 1.0   | 20.3  | 20.3  | 20.3  | 20.3  | 1.0   | 20.3  |
| Mass flow [t/d]   | 282.5 | 579.6 | 579.6 | 579.6 | 579.6 | 288.3 | 78.2 | 210.1 | 150.9 | 59.3  | 291.3 | 270.9 | 297.1 | 26.2  | 282.5 | 282.5 |
| Octanoic acid     | 282.5 | 282.5 | 282.5 | 11.6  | 11.6  | 11.6  | -    | 11.6  | -     | 11.6  | -     | -     | -     | -     | 282.5 | 282.5 |
| $H_2$             | -     | 279.6 | 279.6 | 272.5 | 272.5 | -     | -    | -     | -     | -     | 272.5 | 253.4 | 279.6 | 26.2  |       | -     |
| Heptane           | -     | 0.7   | 0.7   | 1.2   | 1.2   | 0.4   | 0.4  | -     | -     | -     | 0.8   | 0.7   | 0.7   | -     | -     | -     |
| <i>i</i> -Heptene | -     | -     | -     | -     | -     | -     | -    | -     | -     | -     | -     | -     | -     | -     | -     | -     |
| Octane            | -     | 0.5   | 0.5   | 1.3   | 1.3   | 0.7   | 0.7  | -     | -     | -     | 0.5   | 0.5   | 0.5   | -     | -     | -     |
| Octanal           | -     | 1.1   | 1.1   | 14.9  | 14.9  | 13.7  | 13.7 | -     | -     | -     | 1.2   | 1.1   | 1.1   | -     | -     | -     |
| Octanol           | -     | -     | -     | 20.9  | 20.9  | 20.9  | 4.3  | 16.6  | -     | 16.6  | -     | -     | -     | -     | -     | -     |
| Octyl octanoate   | -     | -     | -     | 14.9  | 14.9  | 14.9  | -    | 14.9  | -     | 14.9  | -     | -     | -     | -     | -     | -     |
| 1-Octene          | -     | 4.9   | 4.9   | 136.9 | 136.9 | 131.7 | 0.3  | 131.4 | 131.3 | 0.1   | 5.3   | 4.9   | 4.9   | -     | -     | -     |
| Trans-3-octene    | -     | 0.0   | -     | 0.7   | 0.7   | 0.7   | -    | 0.7   | 0.7   | -     | -     | -     | -     | -     | -     | -     |
| Trans-2-octene    | -     | 0.4   | 0.4   | 10.8  | 10.8  | 10.4  | -    | 10.4  | 10.4  | -     | 0.4   | 0.4   | 0.4   | -     | -     | -     |
| <i>i</i> -Octene  | -     | 0.3   | 0.3   | 8.8   | 8.8   | 8.4   | -    | 8.4   | 8.4   | -     | 0.3   | 0.3   | 0.3   | -     | -     | -     |
| DOE               | -     | -     | -     | 16.0  | 16.0  | 16.0  | -    | 16.0  | -     | 16.0  | -     | -     | -     | -     | -     | -     |
| $H_2O$            | -     | 4.6   | 4.6   | 63.8  | 63.8  | 58.8  | 58.8 | 0.1   | 0.1   | -     | 5.0   | 4.6   | 4.6   | -     | -     | -     |
| CO <sub>2</sub>   | -     | 2.1   | 2.1   | 2.3   | 2.3   | -     | -    | -     | -     | -     | 2.3   | 2.1   | 2.1   | -     | -     | -     |
| O <sub>2</sub>    | -     | 2.8   | 2.8   | 3.1   | 3.1   | -     | -    | -     | -     | -     | 3.1   | 2.8   | 2.8   | -     | -     | -     |

Table S2. Detailed stream data of the integrated LAOs production process using bio-based octanoic acid (For Case 1)

| Stream           | 1     | 2     | 3     | 4     | 5     | 6     | 7    | 8     | 9     | 10    | 11    | 12    | 13    | $H_2$ | OA    | PURGE |
|------------------|-------|-------|-------|-------|-------|-------|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Temperature [°C] | 26.2  | 35.6  | 275.0 | 375.0 | 35.0  | 35.0  | 99.0 | 125.5 | 122.0 | 221.9 | 35.0  | 35.0  | 34.1  | 25.0  | 26.2  | 35.0  |
| Pressure [atm]   | 20.3  | 20.3  | 20.3  | 20.3  | 20.3  | 20.3  | 1.0  | 1.0   | 1.0   | 1.0   | 20.3  | 20.3  | 20.3  | 20.3  | 20.3  | 20.3  |
| Mass flow [t/d]  | 282.5 | 582.0 | 582.0 | 582.0 | 582.0 | 288.2 | 78.8 | 209.4 | 180.8 | 28.6  | 293.7 | 273.2 | 299.5 | 26.3  | 282.5 | 282.5 |
| Octanoic acid    | 282.5 | 282.5 | 282.5 | 13.3  | 13.3  | 13.3  | -    | 13.3  | -     | 13.3  | -     | -     | -     | -     | 282.5 | 282.5 |
| $H_2$            | -     | 279.6 | 279.6 | 272.4 | 272.4 | -     | -    | -     | -     | -     | 272.4 | 253.3 | 279.6 | 26.3  |       | -     |
| Heptane          | -     | 0.6   | 0.6   | 1.0   | 1.0   | 0.3   | 0.3  | -     | -     | -     | 0.7   | 0.6   | 0.6   | -     | -     | -     |
| i-Heptene        | -     | -     | -     | -     | -     | -     | -    | -     | -     | -     | -     | -     | -     | -     | -     | -     |
| Octane           | -     | 0.7   | 0.7   | 1.8   | 1.8   | 1.1   | 1.1  | -     | -     | -     | 0.7   | 0.7   | 0.7   | -     | -     | -     |
| Octanal          | -     | 1.1   | 1.1   | 14.8  | 14.8  | 13.6  | 13.6 | -     | -     | -     | 1.2   | 1.1   | 1.1   | -     | -     | -     |
| Octanol          | -     | 0.0   | 0.0   | 7.2   | 7.2   | 7.2   | 0.9  | 6.3   | -     | 6.3   | -     | -     | -     | -     | -     | -     |
| Octyl octanoate  | -     | 0.0   | 0.0   | 5.2   | 5.2   | 5.2   | -    | 5.2   | -     | 5.2   | -     | -     | -     | -     | -     | -     |
| 1-Octene         | -     | 5.8   | 5.8   | 158.3 | 158.3 | 152.1 | 0.3  | 151.8 | 151.6 | 0.2   | 6.3   | 5.8   | 5.8   | -     | -     | -     |
| Trans-3-octene   | -     | 0.1   | 0.1   | 1.7   | 1.7   | 1.7   | -    | 1.7   | 1.7   | -     | 0.1   | 0.1   | 0.1   | -     | -     | -     |
| Trans-2-octene   | -     | 0.5   | 0.5   | 15.6  | 15.6  | 15.1  | -    | 15.1  | 15.0  | 0.0   | 0.6   | 0.5   | 0.5   | -     | -     | -     |
| i-Octene         | -     | 0.4   | 0.4   | 13.0  | 13.0  | 12.5  | -    | 12.5  | 12.5  | 0.0   | 0.5   | 0.4   | 0.4   | -     | -     | -     |
| DOE              | -     | -     | -     | 3.5   | 3.5   | 3.5   | -    | 3.5   | 0.0   | 3.5   | -     | -     | -     | -     | -     | -     |
| $H_2O$           | -     | 4.4   | 4.4   | 67.3  | 67.3  | 62.5  | 62.4 | 0.1   | 0.1   | -     | 4.8   | 4.4   | 4.4   | -     | -     | -     |
| CO <sub>2</sub>  | -     | 1.9   | 1.9   | 2.1   | 2.1   | -     | -    | -     | -     | -     | 2.0   | 1.9   | 1.9   | -     | -     | -     |
| $O_2$            | -     | 4.2   | 4.2   | 4.6   | 4.6   | -     | -    | -     | -     | -     | 4.6   | 4.2   | 4.2   | -     | -     | -     |

Table S3. Detailed stream data of the integrated LAOs production process using bio-based octanoic acid (For Case 2)

| Stream            | 1     | 2     | 3     | 4     | 5     | 6     | 7    | 8     | 9     | 10    | 11    | 12    | 13    | $H_2$ | OA    | PURGE |
|-------------------|-------|-------|-------|-------|-------|-------|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Temperature [°C]  | 26.2  | 35.5  | 275.0 | 350.0 | 35.0  | 35.0  | 98.8 | 128.8 | 121.9 | 221.5 | 35.0  | 35.0  | 34.1  | 25.0  | 25.0  | 35.0  |
| Pressure [atm]    | 20.3  | 20.3  | 20.3  | 20.3  | 20.3  | 20.3  | 1.0  | 1.0   | 1.0   | 1.0   | 20.3  | 20.3  | 20.3  | 20.3  | 1.0   | 20.3  |
| Mass flow [t/d]   | 282.5 | 580.4 | 580.4 | 580.4 | 580.4 | 288.2 | 77.4 | 210.8 | 156.8 | 54.1  | 292.2 | 271.7 | 297.9 | 26.2  | 282.5 | 20.5  |
| Octanoic acid     | 282.5 | 282.5 | 282.5 | 12.8  | 12.8  | 12.8  | -    | 12.8  | -     | 12.8  | -     | -     | -     | -     | 282.5 | -     |
| $H_2$             | -     | 279.6 | 279.6 | 272.5 | 272.5 | 0.0   | -    | -     | -     | -     | 272.5 | 253.4 | 279.6 | 26.2  | -     | 19.1  |
| Heptane           | -     | 0.8   | 0.8   | 1.3   | 1.3   | 0.4   | 0.4  | -     | -     | -     | 0.9   | 0.8   | 0.8   | -     | -     | 0.1   |
| <i>i</i> -Heptene | -     | 0.3   | 0.3   | 0.4   | 0.4   | 0.1   | 0.1  | -     | -     | -     | 0.3   | 0.3   | 0.3   | -     | -     | -     |
| Octane            | -     | 0.4   | 0.4   | 1.0   | 1.0   | 0.6   | 0.6  | -     | -     | -     | 0.4   | 0.4   | 0.4   | -     | -     | -     |
| Octanal           | -     | 1.1   | 1.1   | 14.4  | 14.4  | 13.2  | 13.2 | -     | -     | -     | 1.1   | 1.1   | 1.1   | -     | -     | 0.1   |
| Octanol           | -     | -     | -     | 17.9  | 17.9  | 17.9  | 3.4  | 14.5  | -     | 14.5  | -     | -     | -     | -     | -     | -     |
| Octyl octanoate   | -     | -     | -     | 13.3  | 13.3  | 13.3  | -    | 13.3  | -     | 13.3  | -     | -     | -     | -     | -     | -     |
| 1-Octene          | -     | 5.2   | 5.2   | 142.1 | 142.1 | 136.5 | 0.3  | 136.3 | 136.1 | 0.1   | 5.5   | 5.2   | 5.2   | -     | -     | 0.4   |
| Trans-3-octene    | -     | -     | -     | 0.6   | 0.6   | 0.6   | -    | 0.6   | 0.6   | -     | -     | -     | -     | -     | -     | -     |
| Trans-2-octene    | -     | 0.4   | 0.4   | 11.4  | 11.4  | 11.0  | -    | 11.0  | 11.0  | -     | 0.4   | 0.4   | 0.4   | -     | -     | -     |
| <i>i</i> -Octene  | -     | 0.3   | 0.3   | 9.4   | 9.4   | 9.1   | -    | 9.1   | 9.0   | -     | 0.3   | 0.3   | 0.3   | -     | -     | -     |
| DOE               | -     | -     | -     | 13.3  | 13.3  | 13.3  | -    | 13.3  | -     | 13.3  | -     | -     | -     | -     | -     | -     |
| $H_2O$            | -     | 4.6   | 4.6   | 64.3  | 64.3  | 59.4  | 59.4 | 0.1   | 0.1   | -     | 4.9   | 4.6   | 4.6   | -     | -     | 0.3   |
| $CO_2$            | -     | 3.1   | 3.1   | 3.4   | 3.4   | -     | -    | -     | -     | -     | 3.3   | 3.1   | 3.1   | -     | -     | 0.2   |
| O <sub>2</sub>    | -     | 2.2   | 2.2   | 2.4   | 2.4   | -     | -    | -     | -     | -     | 2.4   | 2.2   | 2.2   | -     | -     | 0.2   |

Table S4. Detailed stream data of the integrated LAOs production process using bio-based octanoic acid (For Case 3)

| Stream            | 1     | 2     | 3     | 4     | 5     | 6     | 7    | 8     | 9     | 10    | 11    | 12    | 13    | $H_2$ | OA    | PURGE |
|-------------------|-------|-------|-------|-------|-------|-------|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Temperature [°C]  | 26.2  | 35.6  | 275.0 | 375.0 | 35.0  | 35.0  | 98.9 | 125.6 | 122.3 | 225.8 | 35.0  | 35.0  | 34.1  | 25.0  | 25.0  | 35.0  |
| Pressure [atm]    | 20.3  | 20.3  | 20.3  | 20.3  | 20.3  | 20.3  | 1.0  | 1.0   | 1.0   | 1.0   | 20.3  | 20.3  | 20.3  | 20.3  | 1.0   | 20.3  |
| Mass flow [t/d]   | 282.5 | 587.2 | 587.2 | 587.2 | 587.2 | 287.8 | 79.9 | 207.9 | 179.5 | 28.4  | 299.4 | 278.5 | 304.7 | 26.2  | 282.5 | 21.0  |
| Octanoic acid     | 282.5 | 282.5 | 282.5 | 12.2  | 12.2  | 12.2  | -    | 12.2  | -     | 12.2  | -     | -     | -     | -     | 282.5 | 0.0   |
| $H_2$             | -     | 279.6 | 279.6 | 272.4 | 272.4 | -     | -    | -     | -     | -     | 272.4 | 253.4 | 279.6 | 26.2  | -     | 19.1  |
| Heptane           | -     | 0.7   | 0.7   | 1.1   | 1.1   | 0.4   | 0.4  | -     | -     | -     | 0.7   | 0.7   | 0.7   | -     | -     | 0.1   |
| <i>i</i> -Heptene | -     | 0.4   | 0.4   | 0.5   | 0.5   | 0.1   | 0.1  | -     | -     | -     | 0.4   | 0.4   | 0.4   | -     | -     | 0.0   |
| Octane            | -     | 1.2   | 1.2   | 3.3   | 3.3   | 2.0   | 2.0  | -     | -     | -     | 1.3   | 1.2   | 1.2   | -     | -     | 0.1   |
| Octanal           | -     | 1.2   | 1.2   | 15.5  | 15.5  | 14.2  | 14.2 | -     | -     | 0.0   | 1.3   | 1.2   | 1.2   | -     | -     | 0.1   |
| Octanol           | -     | -     | -     | 5.6   | 5.6   | 5.5   | 0.7  | 4.8   | -     | 4.8   | -     | -     | -     | -     | -     | -     |
| Octyl octanoate   | -     | -     | -     | 8.3   | 8.3   | 8.3   | -    | 8.3   | -     | 8.3   | -     | -     | -     | -     | -     | -     |
| 1-Octene          | -     | 5.2   | 5.2   | 142.4 | 142.4 | 136.8 | 0.3  | 136.5 | 136.4 | 0.1   | 5.6   | 5.2   | 5.2   | -     | -     | 0.4   |
| Trans-3-octene    | -     | 0.2   | 0.2   | 4.4   | 4.4   | 4.3   | -    | 4.2   | 4.2   | -     | 0.2   | 0.2   | 0.2   | -     | -     | 0.0   |
| Trans-2-octene    | -     | 0.8   | 0.8   | 22.1  | 22.1  | 21.3  | -    | 21.3  | 21.2  | 0.1   | 0.8   | 0.8   | 0.8   | -     | -     | 0.1   |
| <i>i</i> -Octene  | -     | 0.6   | 0.6   | 18.4  | 18.4  | 17.7  | -    | 17.7  | 17.6  | 0.1   | 0.7   | 0.6   | 0.6   | -     | -     | 0.0   |
| DOE               | -     | -     | -     | 2.8   | 2.8   | 2.8   | -    | 2.8   | -     | 2.8   | -     | -     | -     | -     | -     | -     |
| $H_2O$            | -     | 4.4   | 4.4   | 67.0  | 67.0  | 62.2  | 62.1 | 0.1   | 0.1   | 0.0   | 4.8   | 4.4   | 4.4   | -     | -     | 0.3   |
| CO <sub>2</sub>   | -     | 2.9   | 2.9   | 3.2   | 3.2   | -     | -    | -     | -     | -     | 3.1   | 2.9   | 2.9   | -     | -     | 0.2   |
| O <sub>2</sub>    | -     | 7.5   | 7.5   | 8.1   | 8.1   | -     | -    | -     | -     | -     | 8.1   | 7.5   | 7.5   | -     | -     | 0.6   |

Table S5. Detailed stream data of the integrated LAOs production process using bio-based octanoic acid (For Case 4)

| Case   | Befo       | ore        | Afte       | Energy efficiency |      |  |
|--------|------------|------------|------------|-------------------|------|--|
|        | Heating/MW | Cooling/MW | Heating/MW | Cooling/MW        | (/0) |  |
| Case 1 | 31.3       | 28.9       | 7.2        | 4.8               | 64.2 |  |
| Case 2 | 33.8       | 31.3       | 7.9        | 5.3               | 72.0 |  |
| Case 3 | 31.4       | 29.0       | 7.3        | 4.9               | 65.8 |  |
| Case 4 | 33.8       | 31.2       | 7.9        | 5.3               | 71.6 |  |

Table S6. Energy analysis

|        |                             | Case   |        |        |        |  |  |  |  |  |
|--------|-----------------------------|--------|--------|--------|--------|--|--|--|--|--|
| Ν      | faterial/utility            | Case 1 | Case 2 | Case 3 | Case 4 |  |  |  |  |  |
| Input  | Octanoic acid ª/kg          | 2.15   | 1.86   | 2.08   | 2.07   |  |  |  |  |  |
|        | $H_2^{b}/kg$                | 0.20   | 0.17   | 0.19   | 0.19   |  |  |  |  |  |
| Output | Electricity/kW <sup>c</sup> | 2.79   | 1.68   | 2.54   | 1.88   |  |  |  |  |  |
|        | 1-Octene/kg                 | 1      | 1      | 1      | 1      |  |  |  |  |  |
|        | [purity/%]                  | [87%]  | [84%]  | [87%]  | [76%]  |  |  |  |  |  |

Table S7. Input and output balance for the LAO production processes.

<sup>a</sup> The environmental impact was calculated based on the experimental data in previous study.<sup>5</sup>

<sup>b</sup> Hydrogen, liquid (RoW) | hydrogen cracking, APME | APOS, U
<sup>c</sup> Electricity, high voltage (KR) | heat and power co-generation, natural gas, combined cycle power plant, 400MW electrical | APOS, U

## References

- Z. Xu, D. Zhao, J. P. Chada, D. C. Rosenfeld, J. L. Rogers, I. Hermans and G. W. Huber, *J. Catal.*, 2017, **354**, 213–222.
- D. J. McClelland, B.-X. Wang, W. T. Cordell, Y. R. Cortes-Peña, E. B. Gilcher, L. Zhang, J. S. Guest, B. F. Pfleger, G. W. Huber and J. A. Dumesic, *Green Chem.*, 2021, 23, 4338–4354.
- 3. S. Chen, T. Wu and C. Zhao, *Green Chem.*, 2020, **22**, 7348–7354.
- 4. A. Ali and C. Zhao, *Catal. Sci. Technol.*, 2020, **10**, 3701–3708.
- Y. Chen, M. Reinhardt, N. Neris, L. Kerns, T. J. Mansell and L. R. Jarboe, *Appl. Environ. Microbiol.*, 2018, 84, 1285–1218.