Supporting information

An Air Chargeable Hydrogen Battery by Reversible Electrochemical Trapping of the Protons

Neethu Christudas Dargily[†], Ravikumar Thimmappa[†], Mruthunjayachari Chattanahalli

Devendrachari, and Musthafa Ottakam Thotiyl*

Department of Chemistry and Centre for Energy Science, Indian Institute of Science Education

and Research (IISER)-Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India.

Corresponding Author: Musthafa Ottakam Thotiyl

E-mail: musthafa@iiserpune.ac.in

Table of Contents

esults and disc	ussion/ supplementary figures, tables, calculations	3-8
Figure S1	(a) Single electrode potentials of BQ and QH ₂ electrodes with respect to H_2/H^+ and O_2/H_2O half-cell reactions. Schematic representation of reactions occuring at the (b) H_2 -BQ battery and (c) QH ₂ -O ₂ battery.	3
Figure S2	(a) Cyclic voltammogram of benzoquinone (BQ) in 0.5 M H ₂ SO ₄ on a glassy carbon electrode at different scan rates. (b) pH vs. potential (Pourbiax diagram) of 5 mM benzoquinone at different pH.	3
Figure S3	(a) RDE of QH_2 oxidation. (b) Kouteckey-Levich plots for QH_2 oxidation. (c) Number of electrons (n) involved during QH_2 oxidation. (d) Overpotential vs. log i _k for QH_2 oxidation.	4
Table S1	Electrochemical parameters extracted from RRDE and Kouteckey-Levich plots	4
Figure S4	In-situ UV-Vis spectroelectrochemistry data for the redox reaction of benzoquinone. (a) Chronoamperometry. (b) the potential dependent spectra acquired during the oxidation scan and (c) during the reduction scan.	5
Figure S5	Figure S5: UV-Vis spectra (a) H_2 -BQ battery cathode and (b) QH_2 - O_2 battery anode during different discharge cycles.	6
Table S1	Battery discharge capacity	7
Table S2	Calculation of cumulative capacity	7
Calculation S1		8
Calculation S2		8

Results and discussion:

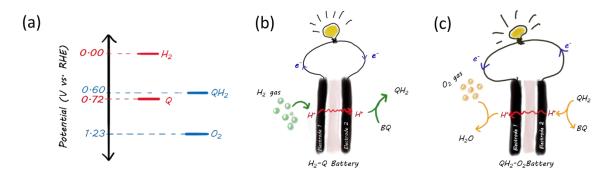


Figure S1: (a) Single electrode potentials of BQ and QH_2 electrodes with respect to H_2/H^+ and O_2/H_2O half-cell reactions. Schematic representation of reactions occuring at the (b) H_2 -BQ battery and (c) QH_2 - O_2 battery.

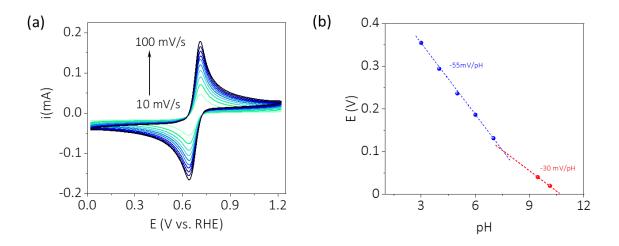


Figure S2: (a) Cyclic voltammogram of benzoquinone (BQ) in 0.5 M H_2SO_4 on a glassy carbon electrode at different scan rates. (b) pH vs. potential (Pourbiax diagram) of 5 mM benzoquinone at different pH.

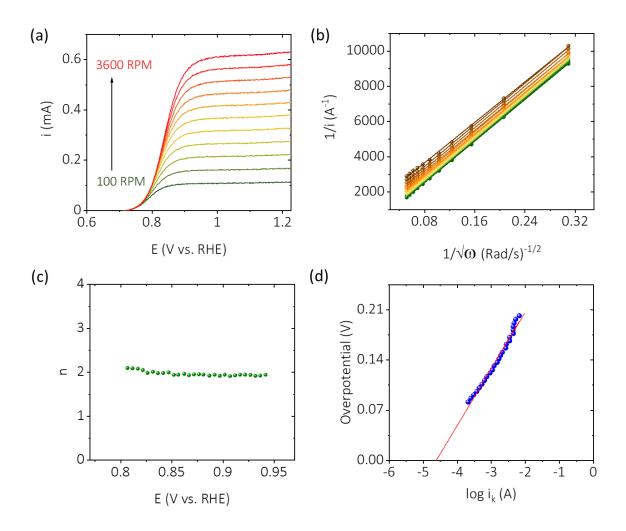


Figure S3: (a) RDE of QH_2 oxidation. (b) Kouteckey-Levich plots for QH_2 oxidation. (c) Number of electrons (n) involved during QH_2 oxidation. (d) Overpotential vs. log i_k for QH_2 oxidation.

Table S1: Electrochemical parameters extracted from RRDE and Kouteckey-Levich plot.

Species	No: of electrons	β	Rate constant
			(cm/s)
Benzoquinone/Hydroquinone	2.03	0.42	1.3 *10 ⁻⁴

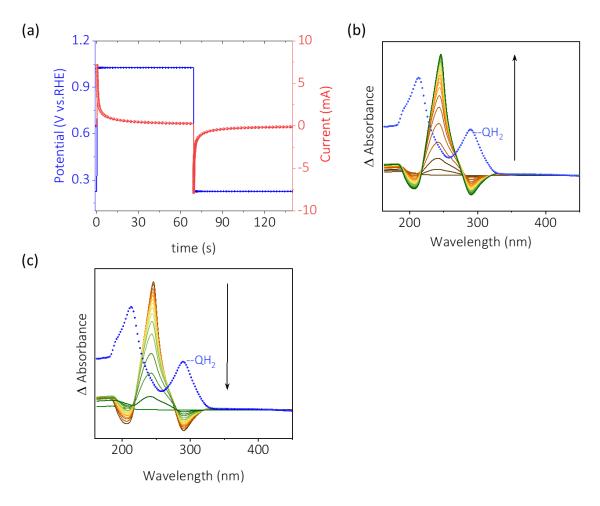


Figure S4: In-situ UV-Vis spectroelectrochemistry data for the redox reaction of benzoquinone. (a) Chronoamperometry, (b) the potential dependent spectra acquired during the oxidation scan and (c) during the reduction scan.

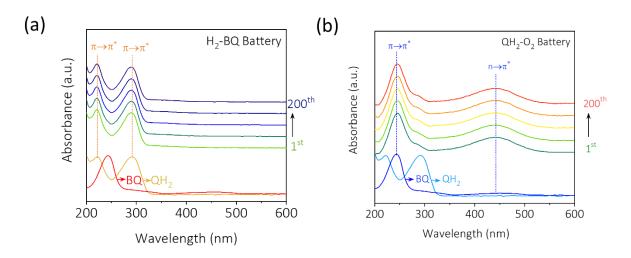


Figure S5: UV-Vis spectra (a) H_2 -Q battery cathode and (b) QH_2 - O_2 battery anode during different discharge cycles.

Table S2: Battery discharge capacity

	Discharge cap	Discharge capacity in mAh/g		
	H ₂ -BQ Battery	QH ₂ –O ₂ Battery		
1 st cycle	364.69	364.54		
10 th cycle	364.14	362.97		
50 th cycle	355.13	353.70		
100 th cycle	343.24	342.00		
200 th cycle	330.44	329.41		

Table S3: Calculation of cumulative capacity

	Cumulative discharge capacity (mAh/g)		
	H ₂ -BQ Battery	QH ₂ -O ₂ Battery	
$1^{st} - 10^{th}$ cycle	3644.15	3637.55	
11 th – 50 th cycle	14385.44	14333.40	
51 th -100 th cycle	17459.17	17392.55	
101 th – 200 th cycle	33684.15	33570.00	
Total	69172.91	68933.50	

Calculation S1:

Amount(g) of BQ used in 100 ml of 0.1 M solution : $\frac{108.1*0.1*100}{1000} = 1.081 g$ No: of moles of BQ : $\frac{1.081}{108.1} = 0.01 moles$ Electric charge : 0.01* 2 = 0.02 F Amount of hydrogen required : 0.01 moles Amount of oxygen required : 0.005 moles

Calculation S2:

First discharge capacity of H₂-BQ battery: 364.69 mAh/g

Cumulative capacity of H₂-BQ battery after 200 cycles: 69172.91 mAh/g

Cumulative capacity of QH₂-O₂ battery after 200 cycles: 68933.5 mAh/g

Cumulative capacity of the battery in total: 138106.41 mAh/g

Amount (g) of BQ required to achieve a capacity of 69172.91 mAh (Table S3) in primary battery configuration: 69172.91 / 364.69 = 189.67 g

Similarly, amount (g) of QH_2 required to achieve a capacity of 68933.5 mAh (Table S3) in primary battery configuration: 68933.50 / 364.54 = 189.09 g

Therefore, cumulative capacity during discharge and air charge processes = 378.76 g