Supporting Information

Designable synthesis of reactive deep eutectic solvents (RDESs) in

regulating Ni-based materials for efficient oxygen evolution reaction

Yahui Wei,^a‡ Jingyun Jiang,^a‡ Jialong Dong,^a Yifan Xu,^a Jianwei Fu, *^a and Qun Xu*^{ab}

 ^aCollege of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China.
^bHenan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, P. R. China.
E-mail: jwfu@zzu.edu.cn; qunxu@zzu.edu.cn ‡The authors contributed equally to this work.

Tables of contents

1. Supplementary Figures and Tables

Figure S1 Structure of the selected eight amine acids.

Figure S2 Photograph of the synthesized RDESs.

Figure S3 TGA curves of the Thr-NiCl₂·6H₂O at the molar ratio of 1:4 (above) and 1:2 (below).

Figure S4 XRD pattern, of Ni/Ni(OH)₂ nanosheets (a) and Ni nanoparticles (b) grown on the CPs.

Figure S5 XRD patter of the samples derived from serine-NiCl₂·6H₂O system (a) and threonine-

NiCl₂ \cdot 6H₂O (b) at different times.

Figure S6 (a) TEM and (b) HRTEM images of the obtained Ni nanoparticles.

Figure S7 The XPS survey spectrum of the Ni (below) and Ni/Ni(OH)2 (above) samples.

Figure S8 LSV curves for bare carbon papers with 90% iR correction at a sweep rate of 5 mV s⁻¹.

Figure S9. Cyclic voltammograms of (a) Ni/Ni(OH)₂ and (b) Ni nanoparticles at scan rates from 10 to 75 mV s⁻¹.

Figure S10 LSV curves of 2D Ni/Ni(OH)₂ (red) and Ni nanoparticles (blue) after normalized with C_{dl} .

Figure S11 Nyquist plots and the related fitting curves of Ni (red) and Ni/Ni(OH)₂ (blue).

Figure S12 Multi-current step curves of 2D Ni/Ni(OH)₂.

Figure S13 Chronoamperometric curve of Ni nanoparticles at 1.6 V (vs RHE) for 15 h.

Figure S14 TEM(a) and HRTEM(b) images of Ni/Ni(OH)₂ nanosheets after long-term OER test.

Figure S15 XPS spectra of the 2D Ni/Ni(OH)₂ samples initial (above) and along-term OER test (below) : (a) the full spectra, (b) Ni 2p and (c) O 1s.

Table S1 Assignments of the FTIR of Ser-NiCl₂·6H₂O and the related serine.

Table S2 Assignments of the FTIR of Thr-NiCl₂·6H₂O and the related threonine.

Table S3 Assignments of the FTIR of Glu-NiCl₂·6H₂O and the related glutamic acid.

Table S4 Assignments of the FTIR of Gln-NiCl₂·6H₂O and the related glutamine.

Table S5 Assignments of the FTIR of Pro-NiCl₂·6H₂O and the related proline.

Table S6 Assignments of the FTIR of His-NiCl₂·6H₂O and the related histidine.

Table S7 Assignments of the FTIR of Lys-NiCl₂·6H₂O and the related lysine.

Table S8 Assignments of the FTIR of Arg-NiCl₂·6H₂O and the related arginine.

Table S9 The reactive decomposition temperatures ($T_{reactive}$) and onset temperatures (T_{onset}) of the synthesized RDESs.

Table S10 The OER performance of 2D Ni/Ni(OH) $_2$ in similar alkaline media and other

representative reported non-precious metal electrocatalysts.

2. Reference

1. Supplementary Figures and Tables

Figure S1 Structure of the selected eight amine acids.

Figure S2 Photograph of the synthesized RDESs: 1 Ser-NiCl₂· $6H_2O$, 2 Thr-NiCl₂· $6H_2O$, 3 Glu-NiCl₂· $6H_2O$, 4 Gln-NiCl₂· $6H_2O$, 5 Pro-NiCl₂· $6H_2O$, 6 His-NiCl₂· $6H_2O$, 7 Lys-NiCl₂· $6H_2O$, 8 Arg-NiCl₂· $6H_2O$.

Figure S3 TGA curves of the Thr-NiCl₂·6H2O at the molar ratio of 1:4 (above) and 1:2 (below).

Figure S4 XRD pattern of Ni/Ni(OH)₂ nanosheets (a) and Ni nanoparticles (b) grown on the CPs.

Figure S5 XRD pattern of the samples derived from serine-NiCl₂· $6H_2O$ system (a) and threonine-NiCl₂· $6H_2O$ (b) at different times.

Figure S6 (a) TEM and (b) HRTEM images of the obtained Ni nanoparticles.

Figure S7 The XPS survey spectrum of the Ni (below) and Ni/Ni(OH)₂ (above) samples.

Figure S8 LSV curves for bare carbon papers with 90% iR correction at a sweep rate of 5 mV s⁻¹.

Figure S9 Cyclic voltammograms of (a) $Ni/Ni(OH)_2$ and (b) Ni nanoparticles at scan rates from 10 to 75 mV s⁻¹.

Figure S10 LSV curves of 2D Ni/Ni(OH) $_2$ (red) and Ni nanoparticles (blue) after normalized with C_{dl} .

Figure S11 Nyquist plots and the related fitting curves of Ni (red) and Ni/Ni(OH)₂ (blue).

Figure S12 Multi-current step curves of 2D Ni/Ni(OH)₂.

Figure S13 Chronoamperometric curve of Ni nanoparticles at 1.6 V (vs RHE) for 15 h.

Figure S14 TEM(a) and HRTEM(b) images of Ni/Ni(OH)₂ nanosheets after long-term OER test.

Figure S15 XPS spectra of the 2D Ni/Ni(OH)₂ samples initial (above) and a long-term OER test (below) : (a) the full spectra, (b) Ni 2p and (c) O 1s.

Groups	Vibration	Absorption band of	Absorption band of Ser-	
		serine, cm ⁻¹	NiCl ₂ ·6H ₂ O, cm ⁻¹	
NH ₃ ⁺	τ	531		
			500-700 with max at 650	
COO-	δ	613		
C-N	ν	1014	1045	
C00-	ν_{symm}	1411	1434	
000		1.600		
	v_{as}	1600	1628	
$\mathrm{NH_{3}^{+}}$	ν_{symm}	2040	no	
$\mathrm{NH_{3}^{+}}$	ν	2500-3350	2500-3500 with max at	
			3344	
О-Н	ν	3465		

Table S1 Assignments of the FTIR of Ser-NiCl₂·6H₂O and the related serine.¹

Groups	Vibration	Absorption band of Absorption band		
		threonine, cm ⁻¹	Thr-NiCl ₂ ·6H ₂ O, cm ⁻¹	
NH3 ⁺	τ	531		
COO-	γ	563	500-700 with max at 659	
	ω	701		
C-N	ν	1041	1041	
$\mathrm{NH_{3}^{+}}$	γ	1112	1077	
COO-	v_{symm}	1417	1435	
COO-	v_{as}	1628	1628	
$\mathrm{NH_3^+}$	v_{symm}	2050	no	
N-Н. О-Н.С-Н	ν	2100-3400 with max at	2500-3700 with max at	
,,		2975	3344	

Table S2 Assignments of the FTIR of Thr-NiCl₂ \cdot 6H₂O and the related threonine.²

Groups	Vibration	Absorption band of	Absorption band of Glu-
		glutamic acid, cm ⁻¹	NiCl ₂ ·6H ₂ O, cm ⁻¹
C=O	γ	540	500-700 with max at 676
$\mathrm{NH_{3}^{+}}$	ν_{symm}	1505	1505
COO-	v_{symm}	1668	1700
$\mathrm{NH_{3}^{+}}$	v_{symm}	2081	no
N-H. C-H	ν	2800-3300 with max at	2500-3700 with max at
	·	3056	3320

Table S3 Assignments of the FTIR of Glu-NiCl₂·6H₂O and the related glutamic acid^{3, 4}

Groups	Vibration	Absorption band of	Absorption band of Gin-	
		glutamine, cm ⁻¹	NiCl ₂ ·6H ₂ O, cm ⁻¹	
	γ	540		
С=О	δ	622	500-700 with max at 620	
	ω	654		
$\mathrm{NH_{3}^{+}}$	γ	1131	1147	
	δ	1489	1500	
COO-	ν	1635	1654	
$\mathrm{NH_{3}^{+}}$	ν_{symm}	2041	no	
C-H	ν	2932		
CH_2	ν	3173	2500-3700 with max at	
			3340	
$\mathrm{NH_{3}^{+}}$	ν_{as}	3408		
	ν_{symm}	3215		

Table S4 Assignments of the FTIR of Gln-NiCl₂·6H₂O and the related glutamine.⁵

Groups Vibration		Absorption band of	Absorption band of Pro-
		proline, cm ⁻¹	NiCl ₂ ·6H ₂ O, cm ⁻¹
CH ₂	ρ	800,852	500-800 with max at 670
ring	δ	642	
СН	δ	1294	1328
О-Н	δ	1377	1423
N-H	δ	1548	1560
COO-	ν	1630	1630
CH2	ν_{s}	2938,2956	
	ν_{as}	3012,2978	2700-3700 with max at
			3300
N-H	ν	3410	
О-Н	ν	3518	

Table S5 Assignments of the FTIR of Pro-NiCl₂·6H₂O and the related proline.⁶

Groups Vibration		Absorption band of	Absorption band of His-	
		histidine, cm ⁻¹	NiCl ₂ ·6H ₂ O, cm ⁻¹	
C-H of ring	δ	540		
С-Н	δ	624,686	500-800 with max at 630	
N-H	γ	925,964		
N-H	δ	1568	1583	
COO-	ν	1640	1640	
$\mathrm{NH_{3}^{+}}$	ν_{symm}	2019	no	
CH ₂	ν	2615,2992	2700-3700 with max at	
			3300	
C-H of ring	ν	3109		

Table S6 Assignments of the FTIR of His-NiCl₂·6H₂O and the related histidine.⁷

Groups	Vibration	Absorption band of	Absorption band of Lys-	
		lysine, cm ⁻¹	NiCl ₂ ·6H ₂ O, cm ⁻¹	
О-Н	δ	497		
COO-	ν	551	500-800 with max at 657	
	ν	729		
COO-	ν_{symm}	1414	1414	
$\mathrm{NH_{3}^{+}}$	v_{as}	1515	1515	
COO-	v_{symm}	1589	1612	
CH ₂	ν	2937	2700-3700 with max at 3300	
NH ₃ ⁺	ν	3361		

Table S7 Assignments of the FTIR of Lys-NiCl₂·6H₂O and the related lysine.⁸

Groups Vibration		Absorption band of	Absorption band of	
		arginine, cm ⁻¹	Arg-NiCl ₂ ·6H ₂ O, cm ⁻¹	
CNH	ν	794		
О-Н	δ	1334	1353	
$\mathrm{NH_3}^+$	ν_{as}	1550	1573	
COO-	ν_{as}	1620	1666	
$\mathrm{NH_{3}^{+}}$	γ	1680		
CH_2	ν_{symm}	2928	2700-3700 with max at	
			3300	
$\mathrm{NH_{3}^{+}}$	ν	3151		

Table S8 Assignments of the FTIR of Arg-NiCl₂·6H₂O and the related arginine.⁹

RDESs	T _{reactive} (°C)	Tonset (°C)
Thr-NiCl ₂ ·6H ₂ O	227.5	126.5
Ser-NiCl ₂ ·6H ₂ O	224.4	124.7
Gln-NiCl ₂ ·6H ₂ O	216	123.8
Glu-NiCl ₂ ·6H ₂ O	215	122.8
His-NiCl ₂ ·6H ₂ O	293	121.9
Pro-NiCl ₂ ·6H ₂ O	284	125.5
Arg-NiCl ₂ ·6H ₂ O	310	122
Lys-NiCl ₂ ·6H ₂ O	334.8	122

Table S9 The reactive decomposition temperatures ($T_{reactive}$) and onset temperatures (T_{onset}) of the synthesized RDESs.

Electrocatalysts	Current density	Overpotential	Tafel slopes	References
	(mA cm ⁻²)	(mV)	(mV dec ⁻¹)	
2D Ni/Ni(OH) ₂	100	326	51	This work
	1000	395		
Ni	100	358	62	This work
	1000	457		
Ni/Ni(OH) ₂	10	270	70	10
Co ₃ O ₄ -Mo ₂ N NFs	41.9	300	87.8	11
Ni-BDC/Ni(OH) ₂	10	320	41	12
Ni/Ni(OH) ₂	10	310	74.8	13
NiFe-LDH@NiCu	20	300	56.9	14
NrN@Ni	10	313	46	15
<i>d</i> -NiFe-LDH	10	230	77	16
	50	290		10
NM50-Ni ₃ S ₄	10	307	67	17
Ni-N-O	10	300	74	18
Co(s)-Fe(s)	10	355	62	19
Ni(CN) ₂ /NiSe ₂	100	470	68	20
Fe-NiO/NiS ₂	10	270	40	21
NiS _{1.03} -NSC	10	270	68.9	22
NiCo ₂ S ₄	10	337	64	23
2D [Co(NH ₃) ₄ CO ₃]Cl	10	291	64	24
OV-Fe-DES	100	298	49	25
NiFe _{0.05} -N-CP	100	320	76	26

Table S10 The OER performance of 2D Ni/Ni(OH)₂ in similar alkaline media and other representative reported non-precious metal electrocatalysts.

2. Reference

- 1. S. Jarmelo, I. Reva, P. Carey and R. Fausto, Vib. Spectrosc., 2007, 43, 395-404.
- 2. G. R. Kumar, S. G. Raj, R. Mohan and R. Jayavel, J. Cryst. Growth, 2005, 275, e1947-e1951.
- 3. E. Greiner, K. Kumar, M. Sumit, A. Giuffre, W. Zhao, J. Pedersen and N. Sahai, *Geochim. Cosmochim. Acta*, 2014, **133**, 142-155.
- 4. J. Schöll, L. Vicum, M. Müller and M. Mazzotti, Chem. Eng. Technol., 2006, 29, 257-264.
- 5. A. Pawlukojć, K. Hołderna-Natkaniec, G. Bator and I. Natkaniec, Chem. Phys, 2014, 443, 17-25.
- Y. S. Mary, L. Ushakumari, B. Harikumar, H. T. Varghese and C. Y. Panicker, *J. Iran. Chem. Soc.*, 2009, 6, 138-144.
- 7. A. Petrosyan, Vib. Spectrosc., 2007, 43, 284-289.
- 8. M. B. Mary, M. Umadevi and V. Ramakrishnan, Spectrochim. Acta, Part A, 2005, 61, 3124-3130.
- 9. S. Kumar and S. Rai, 2010.
- 10. L. Dai, Z. N. Chen, L. Li, P. Yin, Z. Liu and H. Zhang, Adv. Mater., 2020, 32, 1906915.
- 11. T. Wang, P. Wang, W. Zang, X. Li, D. Chen, Z. Kou, S. Mu and J. Wang, *Adv. Funct. Mater.*, 2022, **32**, 2107382.
- D. Zhu, J. Liu, L. Wang, Y. Du, Y. Zheng, K. Davey and S.-Z. Qiao, *Nanoscale*, 2019, **11**, 3599-3605.
- D. Lim, S. Kim, N. Kim, E. Oh, S. E. Shim and S.-H. Baeck, ACS Sustainable Chem. Eng, 2020, 8, 4431-4439.
- 14. Y. Zhou, Z. Wang, Z. Pan, L. Liu, J. Xi, X. Luo and Y. Shen, Adv. Mater., 2019, 31, 1806769.
- 15. D. Shao, P. Li, D. Wang, C. Zhao and C. Zhao, J. Solid State Electrochem., 2019, 23, 2051-2060.
- 16. Y. j. Wu, J. Yang, T. x. Tu, W. q. Li, P. f. Zhang, Y. Zhou, J. f. Li, J. t. Li and S. G. Sun, *Angew. Chem.*, *Int. Ed.*, 2021, **60**, 26829-26836.
- K. Wan, J. Luo, C. Zhou, T. Zhang, J. Arbiol, X. Lu, B. W. Mao, X. Zhang and J. Fransaer, *Adv. Funct. Mater.*, 2019, **29**, 1900315.
- 18. J. Huang, Y. Sun, X. Du, Y. Zhang, C. Wu, C. Yan, Y. Yan, G. Zou, W. Wu and R. Lu, *Adv. Mater.*, 2018, **30**, 1803367.
- C. Maccato, L. Bigiani, L. Girardi, A. Gasparotto, O. I. Lebedev, E. Modin, D. Barreca and G. A. Rizzi, *Adv. Mater. Interfaces*, 2021, 8, 2100763.
- J. Nai, X. Xu, Q. Xie, G. Lu, Y. Wang, D. Luan, X. Tao and X. W. Lou, *Adv. Mater.*, 2022, 34, 2104405.
- 21. N. Zhang, Y. Hu, L. An, Q. Li, J. Yin, J. Li, R. Yang, M. Lu, S. Zhang, P. Xi and C.-H. Yan, *Angew. Chem., Int. Ed.*, 2022, **134**, 202207217.
- 22. H. Yang, C. Wang, Y. Zhang and Q. Wang, Small, 2018, 14, 1703273.
- 23. J. Jiang, C. Yan, X. Zhao, H. Luo, Z. Xue and T. Mu, Green Chem., 2017, 19, 3023-3031.
- 24. S. Liu, C. Zhang, B. Zhang, Z. Li and J. Hao, ACS Sustainable Chem. Eng, 2019, 7, 8964-8971.
- 25. S. Liu, T. Chen, H. Ying, Z. Li and J. Hao, Adv. Sustainable Syst., 2020, 4, 2000038.
- 26. Y. Xu, Z. Cheng, J. Jiang, J. Du and Q. Xu, Chem. Commun., 2021, 57, 13170-13173.