Supporting Information

Bromine Radical-Enhanced HAT Activity Leading to Stoichiometric Couplings of Methylarenes with Acid Chlorides

Qiao-Lin Wang^a, Huawen Huang^{*a}, Guojiang Mao^b, and Guo-Jun Deng^{*a}

^{*a*} Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China.

E-mail: hwhuang@xtu.edu.cn; gjdeng@xtu.edu.cn.

^b School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China.

List of Contents

1.	General information	S2
2.	Experimental section	S 3
	2.1 Typical experimental procedure for the acylation	S 3
	2.2 Optimization of reaction conditions	S 3
	2.3 Scale-up experiment	S4
3.	Mechanistic studies	S6
	3.1 Radical trapping experiments	S6
	3.2 Benzyl radical trapping experiments	S7
	3.3 Kinetic isotope effect	S8
	3.4 Light on/off experiment	S8
	3.5 Stern–Volmer quenching	S8
4.	Analytical data	S12
5.	Reference	S26
6.	Copies of NMR spectra	S27

1. General information

All reactions were carried out with magnetic stirring and in dried glassware. Standard syringe techniques were applied for transfer of dry solvents. All reagents and solvents were commercially available and used without any further purification unless specified. The reactions via general procedure was carried out under an atmosphere of argon unless otherwise noted. Column chromatography was performed using silica gel (200-300 mesh) or thin layer chromatography was performed using silica gel (GF254). ¹H NMR and ¹³C NMR spectra were recorded on Bruker-AV (400 and 100 MHz, respectively) instrument using CDCl₃ as solvent. Mass spectra were measured on Agilent 5975 GC-MS instrument (EI). High-resolution mass spectra (ESI) were obtained with the Thermo Scientific LTQ Orbitrap XL mass spectrometer. The structures of known compounds were further corroborated by comparing their ¹H NMR, ¹³C NMR data and HRMS data with those in literature. Melting points were measured with a YUHUA X-5 melting point instrument and were uncorrected.

2. Experiment section

2.1 Typical experimental procedure for the acylation

To a Schlenk tube was added **1** (0.2 mmol), **2** (0.4 mmol, 2.0 eqiuv), **PC1** (0.004 mmol, 2 mol%), NiBr₂ (0.01 mmol, 5 mol%), **L1** (0.01 mmol, 5 mol%), K₂HPO₄ (0.4 mmol, 2.0 equiv), acetone (3 mL). Then the mixture was stirred at room temperature in argon atmosphere (1 atm) under 35 W blue LED light for 12 h until complete consumption of starting material as monitored by TLC and GC-MS analysis. After the reaction was finished, the reaction mixture was washed with brine. The aqueous phase was re-extracted with EtOAc (3×10 mL). The combined organic extracts were dried over Na₂SO₄ and concentrated in vacuum. The residue was purified by silica gel flash column chromatography (hexane/ethyl acetate = 100 : 1 to 20 : 1) to afford the desired products **3**, **5** and **7**.

2.2 Optimization of reaction conditions

Table S1.

	Ĉ		"Ni" solve	PC , ligand, base ent, blue light Ar, 12 h			
Entry	[PC]	[Ni]	Ligand	Base	Additive	Solvent	Yield (%) ^b
1	PC1	NiBra	Liguna	KaHPO		acetone	83
2	_	NiBr ₂	L1	K ₂ HPO ₄	_	acetone	0
- 3 ^c	PC1	NiBr ₂	 L1	K ₂ HPO ₄	_	acetone	0
4	PC1	_	L1	K ₂ HPO ₄	_	acetone	42
5	PC1	NiBr ₂	_	K ₂ HPO ₄	_	acetone	43
6	PC2	NiBr ₂	L1	K ₂ HPO ₄	_	acetone	0
7	PC3	NiBr ₂	L1	K_2HPO_4	_	acetone	0
8	PC4	NiBr ₂	L1	K_2HPO_4	_	acetone	0
9	PC5	NiBr ₂	L1	K_2HPO_4	_	acetone	0
10	PC6	NiBr ₂	L1	K_2HPO_4	_	acetone	43
11	PC1	NiCl ₂	L1	K ₂ HPO ₄	_	acetone	49
12	PC1	Ni(PPh ₃) ₃ Cl ₂	L1	K_2HPO_4	_	acetone	35
13	PC1	Ni(acac) ₂	L1	K ₂ HPO ₄	_	acetone	42
14	PC1	NiI ₂	L1	K_2HPO_4	_	acetone	28
15	PC1	Ni(OTf) ₂	L1	K_2HPO_4	_	acetone	37
16	PC1	Ni(OAc) ₂	L1	K_2HPO_4	_	acetone	40
17	PC1	NiF ₂	L1	K_2HPO_4	_	acetone	31
18	PC1	Ni(COD) ₂	L1	K_2HPO_4	_	acetone	38

19	PC1	NiBr ₂	L2	K_2HPO_4	_	acetone	61
20	PC1	NiBr ₂	L3	K_2HPO_4	_	acetone	55
21	PC1	NiBr ₂	L4	K_2HPO_4	_	acetone	79
22	PC1	NiBr ₂	L1	'BuONa	_	acetone	trace
23	PC1	NiBr ₂	L1	Cs ₂ CO ₃	_	acetone	trace
24	PC1	NiBr ₂	L1	pyridine	_	acetone	51
25	PC1	NiBr ₂	L1	$\mathrm{KH}_{2}\mathrm{PO}_{4}$	_	acetone	62
26	PC1	NiBr ₂	L1	K_2HPO_4	_	CH ₃ CN	66
27	PC1	NiBr ₂	L1	K_2HPO_4	_	THF	trace
28	PC1	NiBr ₂	L1	K_2HPO_4	_	DMF	0
29	PC1	NiBr ₂	L1	K_2HPO_4	_	DMSO	0
30	PC1	NiBr ₂	L1	K_2HPO_4	_	DCE	50
31	PC1	NiBr ₂	L1	K_2HPO_4	NH ₄ Br	acetone	74
32	PC1	NiCl ₂	L1	K_2HPO_4	NH ₄ Br	acetone	84
33	PC1	Ni(COD) ₂	L1	K_2HPO_4	NH ₄ Br	acetone	59
34	PC1	NiCl ₂	L1	K_2HPO_4	LiBr	acetone	65
35	PC1	NiCl ₂	L1	K_2HPO_4	TBAB	acetone	58
36	PC1	NiCl ₂	L1	K_2HPO_4	NaBr	acetone	75
37	PC1	NiCl ₂	L1	K_2HPO_4	LiCl	acetone	55
38	PC1	NiCl ₂	L1	K_2HPO_4	$\rm NH_4 I$	acetone	0

^{*a*} Reaction conditions: **1a** (0.2 mmol), **2a** (0.4 mmol, 2.0 eqiuv), photocatalyst (0.004 mmol, 2 mol%), "Ni" catalysts (0.01 mmol, 5 mol%), ligand (0.01 mmol, 5 mol%), base (0.4 mmol, 2.0 equiv), additive (0.1 mmol, 50 mol%), solvent (3 mL). Then the mixture was stirred at room temperature in Ar atmosphere (1 atm) under 35 W blue LED light for 12 h at room temperature. ^{*b*} Isolated yields. ^{*c*} Without additional light.

2.3 Scale-up experiment

A 50 mL Schlenk tube was added **1a** (2.0 mmol), **2a** (4 mmol, 2.0 eqiuv), **PC1** (0.04 mmol, 2 mol%), NiBr₂ (0.1 mmol, 5 mol%), **L1** (0.1 mmol, 5 mol%), K₂HPO₄ (4 mmol, 2.0 equiv), acetone (20 mL). Then the mixture was stirred at room temperature in argon atmosphere (1 atm) under 35 W blue LED light for 30 h. After the reaction was finished, the reaction mixture was washed with brine. The aqueous phase was re-extracted with EtOAc (3×10 mL). The combined organic extracts were dried over Na₂SO₄ and concentrated in vacuum. The residue was purified by silica gel flash column chromatography (hexane/ethyl acetate = 10 : 1) to afford the desired products **3aa** in 69% yield.

3. Mechanistic studies

3.1 Radical trapping experiments

Three reactions of radical trapping experiments were performed. A solution of TEMPO (3.0 equiv, 0.6 mmol), BHT (3 equiv, 0.6 mmol) or 1,1-diphenylethene (3 equiv, 0.6 mmol), **1a** (0.2 mmol), **2a** (0.4 mmol, 2.0 equiv), **PC1** (0.004 mmol, 2 mol%), NiBr₂ (0.01 mmol, 5 mol%), **L1** (0.01 mmol, 5 mol%), K_2 HPO₄ (0.4 mmol, 2.0 equiv), acetone (3 mL). Then the mixture was stirred at room temperature in argon atmosphere (1 atm) under 35 W blue LED light for 12 h. The benzylation were completely quenched and no benzylation products were detected.

3.2 Benzyl radical trapping experiments

To a Schlenk tube was added **1a** (0.2 mmol), **8** (0.2 mmol, 1.0 eqiuv), **PC1** (0.004 mmol, 2 mol%), NiBr₂ (0.01 mmol, 5 mol%), **L1** (0.01 mmol, 5 mol%), K₂HPO₄ (0.4 mmol, 2.0 equiv), acetone (3 mL). Then the mixture was stirred at room temperature in argon atmosphere (1 atm) under 35 W blue LED light for 12 h. Phenyl 4-(4-methoxyphenyl)butanoate (**9**) could be detected by GC-MS.

7

3.3 Kinetic isotope effect

Two parallel reactions of toluene (**2g**) or toluene-d₈ (**2g-ds**) were performed. A solution of toluene (**2g**, 2.0 equiv), or toluene-d₈ (**2g-ds**, 2.0 equiv), **1a** (0.2 mmol), **PC1** (0.004 mmol, 2 mol%), NiBr₂ (0.01 mmol, 5 mol%), **L1** (0.01 mmol, 5 mol%), K₂HPO₄ (0.4 mmol, 2.0 equiv), acetone (3 mL). Then the mixture was stirred at room temperature in Ar atmosphere (1 atm) under 35 W blue LED light for 4 h. The aqueous phase was re-extracted with EtOAc (3×10 mL). The combined organic extracts were dried over Na₂SO₄ and concentrated in vacuum. The solvent was removed on a rotary evaporator under reduced pressure. The residue was measured by GC, and the product **3ag** in 26% yield and **3ag-d**7 in 4% yield by using dodecane as the internal standard.

3.4 Light on/off experiment

3.5 Stern–Volmer quenching¹

Formulation solution: Benzoyl chloride (**1a**, 351.4 mg) was dissolved in acetone in a 25 mL volumetric flask to set the concentration to be 0.1 M. 1-methoxy-4-methylbenzene (**2a**, 315 μ L) was dissolved in acetone in a 25 mL volumetric flask to set the concentration to be 0.5 M. NiBr₂ (13.6 mg) was dissolved in acetone in a 10 mL volumetric flask to set the concentration to be 0.005 M. L1 (6.7 mg) was dissolved in acetone in a 5 mL volumetric flask to set the concentration to be 0.005 M. Photocatalyst Ir[dF(CF₃)ppy]₂(dtbbpy)PF₆ (2.8 mg) was dissolved in acetone (25.0 mL) to set the concentration to be

0.1 mM.

Experimental procedure: The resulting 0.1 M solution (50 μ L) was added to cuvette to obtain different concentrations of catalyst solution. This solution was then diluted to a volume of 2.0 mL by adding further solvent (acetone) to prepare a 2.5 μ M solution. The resulting mixture was sparged with nitrogen for 3 minutes and then irradiated at 425 nm. Fluorescence emission spectra were recorded (3 trials per sample). Into this solution, 20.0 μ L of a benzoyl chloride solution was successively added and uniformly stirred, and the resulting mixture was bubbled with nitrogen for 3 minutes and irradiated at 425 nm. Fluorescence emission spectra and irradiated at 425 nm. Fluorescence emission spectra added and uniformly stirred, and the resulting mixture was bubbled with nitrogen for 3 minutes and irradiated at 425 nm. Fluorescence emission spectra of 0 μ L, 20.0 μ L, 40.0 μ L, 60.0 μ L, 80.0 μ L, 100.0 μ L, fluorescence intensity. Follow this method and make changes to the amount to obtain the Stern–Volmer relationship in turn.

The emission intensity of the $Ir[dF(CF_3)ppy]_2(dtbbpy)PF_6$ catalyst solution slightly affected by the gradual increase of the amount of **1a**.

(b) $Ir[dF(CF_3)ppy]_2(dtbbpy)PF_6$ quenched by **2a** in acetone. Linear quenching is not observed.

The emission intensity of the $Ir[dF(CF_3)ppy]_2(dtbbpy)PF_6$ catalyst solution strongly affected by the

gradual increase of the amount of NiBr2.

(d) Ir[dF(CF₃)ppy]₂(dtbbpy)PF₆ quenched by NiBr₂•dtbbpy in acetone.

The emission intensity of the $Ir[dF(CF_3)ppy]_2(dtbbpy)PF_6$ catalyst solution strongly affected by the gradual increase of the amount of **NiBr₂•dtbbpy**.

(e) Ir[dF(CF₃)ppy]₂(dtbbpy)PF₆ quenched by NiBr₂•dtbbpy+1a+2a in acetone.

(f) $Ir[dF(CF_3)ppy]_2(dtbbpy)PF_6$ quenched by NH_4Br in acetone

The emission intensity of the $Ir[dF(CF_3)ppy]_2(dtbbpy)PF_6$ catalyst solution strongly affected by the gradual increase of the amount of NH₄Br.

4. Analytical data

2-(4-Methoxyphenyl)-1-phenylethan-1-one (3aa)

Yield: 37.5 mg, 83%; colorless oil; ¹H NMR (400 MHz, CDCl₃) δ: 8.01 (d, *J* = 7.5 Hz, 2H), 7.55 (t, *J* = 7.4 Hz, 1H), 7.45 (t, *J* = 7.6 Hz, 2H), 7.18 (d, *J* = 8.5 Hz, 2H), 6.87 (d, *J* = 8.6 Hz, 2H), 4.23 (s, 2H), 3.78 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ: 197.9, 158.5, 136.5, 133.1, 130.4, 128.6, 128.6, 126.4, 114.1, 55.2, 44.6.

These spectroscopic data correspond to reported data.^[2]

2-(4-Methoxyphenyl)-1-(p-tolyl)ethan-1-one (3ba)

Yield: 40.3 mg, 84%; colorless oil; ¹H NMR (400 MHz, CDCl₃) δ: 7.91 (d, *J* = 8.0 Hz, 2H), 7.24 (d, *J* = 8.1 Hz, 2H), 7.18 (d, *J* = 8.6 Hz, 2H), 6.86 (d, *J* = 8.6 Hz, 2H), 4.19 (s, 2H), 3.77 (s, 3H), 2.39 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ: 197.6, 158.4, 143.9, 134.0, 130.4, 129.3, 128.7, 126.7, 114.0, 55.2, 44.5, 21.6.

These spectroscopic data correspond to reported data.^[3]

1,2-Bis(4-methoxyphenyl)ethan-1-one (3ca)

Yield: 45.1 mg, 88%; colorless oil; ¹H NMR (400 MHz, CDCl₃) δ: 7.99 (d, *J* = 8.9 Hz, 2H), 7.18 (d, *J* = 8.6 Hz, 2H), 6.92 (d, *J* = 8.9 Hz, 2H), 6.86 (d, *J* = 8.6 Hz, 2H), 4.17 (s, 2H), 3.85 (s, 3H), 3.78 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ: 196.5, 163.4, 158.4, 130.9, 130.3, 129.5, 126.9, 114.0, 113.7, 55.4, 55.2, 44.3.

These spectroscopic data correspond to reported data.^[3]

1-(4-(tert-Butyl)phenyl)-2-(4-methoxyphenyl)ethan-1-one (3da)

Yield: 49.1 mg, 87%; colorless oil; ¹H NMR (400 MHz, CDCl₃) δ: 7.96 (d, *J* = 8.2 Hz, 2H), 7.47 (d, *J* = 8.1 Hz, 2H), 7.19 (d, *J* = 8.2 Hz, 2H), 6.87 (d, *J* = 8.2 Hz, 2H), 4.21 (s, 2H), 3.79 (s, 3H), 1.33 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ: 197.5, 158.4, 156.8, 134.0, 130.4, 128.6, 126.7, 125.5, 114.1, 55.2, 44.5, 35.1, 31.0.

These spectroscopic data correspond to reported data.^[4]

1-([1,1'-Biphenyl]-4-yl)-2-(4-methoxyphenyl)ethan-1-one (3ea)

Yield: 48.9 mg, 81%; colorless oil; ¹H NMR (400 MHz, CDCl₃) δ : 8.08 (d, *J* = 7.9 Hz, 2H), 7.67 (d, *J* = 7.8 Hz, 2H), 7.62 (d, *J* = 7.1 Hz, 2H), 7.47 (t, *J* = 7.2 Hz, 2H), 7.43 – 7.36 (m, 1H), 7.21 (d, *J* = 7.8 Hz, 2H), 6.88 (d, *J* = 7.6 Hz, 2H), 4.26 (s, 2H), 3.79 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 197.5, 158.5, 145.7, 139.8, 135.2, 130.4, 129.2, 128.9, 128.2, 127.2, 127.2, 126.5, 114.1, 55.2, 44.7. HRMS (ESI) m/z calcd for C₂₁H₁₈O₂Na (M+Na)⁺ 325.1199, found 325.1208.

1-(4-Fluorophenyl)-2-(4-methoxyphenyl)ethan-1-one (3fa)

Yield: 37.6 mg, 77%; colorless oil; ¹H NMR (400 MHz, CDCl₃) δ : 8.08 – 7.99 (m, 2H), 7.17 (d, J = 8.6 Hz, 2H), 7.12 (t, J = 8.6 Hz, 2H), 6.87 (d, J = 8.6 Hz, 2H), 4.20 (s, 2H), 3.78 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 196.3, 165.7 (d, J = 253.3 Hz), 158.5, 132.9 (d, J = 3.0 Hz), 131.2 (d, J = 9.2 Hz), 130.4, 126.2, 115.7 (d, J = 21.7 Hz), 114.2, 55.2, 44.6.

These spectroscopic data correspond to reported data.^[5]

1-(4-Chlorophenyl)-2-(4-methoxyphenyl)ethan-1-one (3ga)

Yield: 37.4 mg, 72%; colorless oil; ¹H NMR (400 MHz, CDCl₃) δ: 7.94 (d, *J* = 8.6 Hz, 2H), 7.42 (d, *J* = 8.6 Hz, 2H), 7.16 (d, *J* = 8.6 Hz, 2H), 6.87 (d, *J* = 8.6 Hz, 2H), 4.19 (s, 2H), 3.78 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ: 196.7, 158.6, 139.5, 134.8, 130.4, 130.0, 128.9, 126.0, 114.2, 55.2, 44.6.

These spectroscopic data correspond to reported data.^[6]

1-(4-Bromophenyl)-2-(4-methoxyphenyl)ethan-1-one

Yield: 40.1 mg, 66%; colorless oil; ¹H NMR (400 MHz, CDCl₃) δ : 7.94 (d, *J* = 8.6 Hz, 1H), 7.86 (d, *J* = 8.6 Hz, 1H), 7.59 (d, *J* = 8.6 Hz, 1H), 7.42 (d, *J* = 8.6 Hz, 1H), 7.16 (d, *J* = 7.8 Hz, 2H), 6.87 (d, *J* = 8.6 Hz, 2H), 4.19 (s, 2H), 3.79 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 196.7, 158.6, 139.5, 134.8, 130.4, 130.0, 128.9, 126.0, 114.2, 55.2, 44.6.

These spectroscopic data correspond to reported data.^[5]

2-(4-Methoxyphenyl)-1-(4-(trifluoromethyl)phenyl)ethan-1-one (3ia)

Yield: 30.0 mg, 51%; colorless oil; ¹H NMR (400 MHz, CDCl₃) δ : 8.10 (d, *J* = 7.5 Hz, 2H), 7.72 (d, *J* = 7.6 Hz, 2H), 7.17 (d, *J* = 7.2 Hz, 2H), 6.88 (d, *J* = 6.7 Hz, 2H), 4.25 (s, 2H), 3.79 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 196.9, 158.7, 139.15, 134.3 (q, *J* = 32.5 Hz), 130.4, 128.9, 125.6 (d, *J* = 11.2 Hz), 125.6 (d, *J* = 3.6 Hz), 123.5 (d, *J* = 270.9 Hz), 114.24, 55.19, 44.92.

These spectroscopic data correspond to reported data.^[5]

2-(4-Methoxyphenyl)-1-(m-tolyl)ethan-1-one (3ja)

Yield: 35.5 mg, 74%; colorless oil; ¹H NMR (400 MHz, CDCl₃) δ: 7.80 (d, *J* = 8.4 Hz, 2H), 7.37-7.31 (m, 2H), 7.18 (d, *J* = 8.1 Hz, 2H), 6.86 (d, *J* = 8.1 Hz, 2H), 4.21 (s, 2H), 3.78 (s, 3H), 2.40 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ: 198.1, 158.4, 138.4, 136.6, 133.8, 130.6, 129.0, 128.4, 126.5, 125.8, 114.1, 55.2, 44.6, 21.4.

These spectroscopic data correspond to reported data.^[3]

1-(3-Methoxyphenyl)-2-(4-methoxyphenyl)ethan-1-one (3ka)

Yield: 39.4 mg, 77%; colorless oil; ¹H NMR (400 MHz, CDCl₃) δ : 7.60 (d, *J* = 7.7 Hz, 1H), 7.52 (s, 1H), 7.36 (t, *J* = 7.9 Hz, 1H), 7.18 (d, *J* = 8.5 Hz, 2H), 7.10 (d, *J* = 7.5 Hz, 1H), 6.86 (d, *J* = 8.6 Hz, 2H), 4.21 (s, 2H), 3.83 (s, 3H), 3.78 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 197.7, 159.8, 158.5, 137.9, 130.4, 129.5, 126.4, 121.2, 119.5, 114.1, 112.8, 55.4, 55.2, 44.7. HRMS (ESI) m/z calcd for C₁₆H₁₆O₃Na (M+Na)⁺ 279.0992, found 279.0999.

2-(4-Methoxyphenyl)-1-(o-tolyl)ethan-1-one (3la)

Yield: 32.2 mg, 67%; colorless oil; ¹H NMR (400 MHz, CDCl₃) δ: 7.71 (d, *J* = 7.6 Hz, 1H), 7.36 (t, *J* = 7.4 Hz, 1H), 7.24 (q, *J* = 7.7, 7.3 Hz, 2H), 7.14 (d, *J* = 8.5 Hz, 2H), 6.86 (d, *J* = 8.6 Hz, 2H), 4.15 (s, 2H), 3.78 (s, 3H), 2.43 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ: 201.8, 158.5, 138.4, 137.6, 131.9, 131.2, 130.5, 128.5, 126.4, 125.6, 114.0, 55.2, 47.5, 21.2.

These spectroscopic data correspond to reported data.^[7]

1-(3,5-Dimethylphenyl)-2-(4-methoxyphenyl)ethan-1-one (3ma)

Yield: 36.1 mg, 71%; colorless oil; ¹H NMR (400 MHz, CDCl₃) δ: 7.61 (s, 2H), 7.17 (d, *J* = 8.7 Hz, 3H), 6.86 (d, *J* = 8.6 Hz, 2H), 4.20 (s, 2H), 3.78 (s, 3H), 2.36 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ: 198.3, 158.4, 138.2, 136.7, 134.7, 130.4, 126.6, 126.3, 114.0, 55.2, 44.6, 21.2. HRMS (ESI) m/z calcd for $C_{17}H_{18}O_2Na (M+Na)^+ 277.1199$, found 277.1206.

2-(4-Methoxyphenyl)-1-(naphthalen-2-yl)ethan-1-one (3na)

Yield: 36.4 mg, 66%; colorless oil; ¹H NMR (400 MHz, CDCl₃) δ: 8.55 (s, 1H), 8.06 (dd, *J* = 8.7, 1.8 Hz, 1H), 7.97 (d, *J* = 8.4 Hz, 1H), 7.88 (t, *J* = 8.4 Hz, 2H), 7.62 – 7.53 (m, 2H), 7.24 (d, *J* = 8.6 Hz, 2H), 6.88 (d, *J* = 8.6 Hz, 2H), 4.36 (s, 2H), 3.78 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ: 197.9, 158.5, 135.5, 133.9, 132.5, 130.5, 130.3, 129.6, 128.5, 127.7, 126.8, 126.6, 124.3, 114.1, 55.2, 44.7.

These spectroscopic data correspond to reported data.^[5]

1-Phenyl-2-(*p*-tolyl)ethan-1-one (3ab)

Yield: 32.8 mg, 78%; colorless oil; ¹H NMR (400 MHz, CDCl₃) δ: 8.01 (d, *J* = 7.0 Hz, 2H), 7.59 – 7.51 (m, 1H), 7.45 (t, *J* = 7.6 Hz, 2H), 7.21 – 7.07 (m, 4H), 4.25 (s, 2H), 2.32 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ: 197.8, 136.6, 136.5, 133.1, 131.4, 129.4, 129.3, 128.6, 128.6, 45.1, 21.1.

These spectroscopic data correspond to reported data.^[2]

2-(4-(*tert*-Butyl)phenyl)-1-phenylethan-1-one (3ac)

Yield: 42.4 mg, 84%; colorless oil; ¹H NMR (400 MHz, CDCl₃) δ: 8.03 (d, *J* = 8.2 Hz, 2H), 7.55 (t, *J* = 7.3 Hz, 1H), 7.46 (t, *J* = 7.6 Hz, 2H), 7.35 (d, *J* = 8.3 Hz, 2H), 7.20 (d, *J* = 8.3 Hz, 2H), 4.26 (s, 2H), 1.30 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ: 197.8, 149.6, 136.6, 133.1, 131.3, 129.1, 128.6, 128.6, 125.6, 44.9, 34.4, 31.3.

These spectroscopic data correspond to reported data.^[8]

2-(4-Isopropoxyphenyl)-1-phenylethan-1-one (3ad)

Yield: 44.2 mg, 87%; colorless oil; ¹H NMR (400 MHz, CDCl₃) δ : 8.01 (d, *J* = 7.3 Hz, 2H), 7.55 (t, *J* = 7.3 Hz, 1H), 7.45 (t, *J* = 7.6 Hz, 2H), 7.16 (d, *J* = 8.5 Hz, 2H), 6.84 (d, *J* = 8.6 Hz, 2H), 4.50 (p, *J* = 6.1 Hz, 1H), 4.21 (s, 2H), 1.32 (s, 3H), 1.30 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 198.0, 156.8, 136.5, 133.0, 130.4, 128.6, 128.6, 126.2, 116.0, 69.8, 44.6, 22.0.

These spectroscopic data correspond to reported data.^[5]

2-(4-Fluorophenyl)-1-phenylethan-1-one (3ae)

Yield: 28.7 mg, 67%; colorless oil; ¹H NMR (400 MHz, CDCl₃) δ : ¹H NMR (400 MHz, Chloroform-*d*) δ 8.01 (d, *J* = 8.1 Hz, 2H), 7.58 (t, *J* = 7.4 Hz, 1H), 7.48 (t, *J* = 7.6 Hz, 2H), 7.2 – 7.21 (m, 2H), 7.02 (t, *J* = 8.7 Hz, 2H), 4.27 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ : 197.4, 161.7 (d, *J* = 243.9 Hz), 136.4, 133.3, 131.0 (d, *J* = 8.0 Hz), 130.1 (d, *J* = 3.2 Hz), 128.7, 128.5, 115.5 (d, *J* = 21.2 Hz), 44.5.

These spectroscopic data correspond to reported data.^[8]

2-(4-Chlorophenyl)-1-phenylethan-1-one (3af)

Yield: 29.9 mg, 65%; colorless oil; ¹H NMR (400 MHz, CDCl₃) δ: 8.00 (d, *J* = 8.3 Hz, 2H), 7.58 (t, *J* = 7.4 Hz, 1H), 7.47 (t, *J* = 7.7 Hz, 2H), 7.30 (d, *J* = 8.4 Hz, 2H), 7.19 (d, *J* = 8.3 Hz, 2H), 4.26 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ: 197.1, 136.3, 133.3, 132.9, 132.8, 130.9, 128.8, 128.7, 128.5, 44.7.

These spectroscopic data correspond to reported data.^[2]

1,2-Diphenylethan-1-one (3ag)

Yield: 27.5 mg, 70%; colorless oil; ¹H NMR (400 MHz, CDCl₃) δ : 8.01 (d, *J* = 7.0 Hz, 2H), 7.55 (t, *J* = 7.4 Hz, 1H), 7.45 (t, *J* = 7.6 Hz, 2H), 7.37 – 7.29 (m, 2H), 7.29 – 7.21 (m, 3H), 4.29 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ : 197.6, 136.5, 134.5, 133.1, 129.4, 128.6, 128.6, 128.6, 126.9, 45.5.

These spectroscopic data correspond to reported data.^[2]

1-Phenyl-2-(*m*-tolyl)ethan-1-one (3ah)

Yield: 26.9 mg, 64%; colorless oil; ¹H NMR (400 MHz, CDCl₃) δ: 8.01 (d, *J* = 7.0 Hz, 2H), 7.55 (t, *J* = 7.3 Hz, 1H), 7.45 (t, *J* = 7.6 Hz, 2H), 7.21 (t, *J* = 7.5 Hz, 1H), 7.08 (s, 1H), 7.06 (d, *J* = 9.2 Hz, 2H), 4.24 (s, 2H), 2.32 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ: 197.5, 136.9, 136.8, 133.4, 133.1, 130.3, 130.3, 128.6, 128.3, 127.2, 126.1, 43.5, 19.8.

These spectroscopic data correspond to reported data.^[2]

2-(3-Chlorophenyl)-1-phenylethan-1-one (3ai)

Yield: 25.3 mg, 55%; colorless oil; ¹H NMR (400 MHz, CDCl₃) δ : 8.01 (d, *J* = 7.4 Hz, 2H), 7.58 (t, *J* = 7.3 Hz, 1H), 7.48 (t, *J* = 7.7 Hz, 2H), 7.30 – 7.21 (m, 3H), 7.18 – 7.11 (m, 1H), 4.27 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ : 196.8, 136.3, 136.3, 134.4, 133.4, 129.8, 129.6, 128.7, 128.5, 127.7, 127.1, 44.9. These spectroscopic data correspond to reported data.^[9]

1-Phenyl-2-(o-tolyl)ethan-1-one (3aj)

Yield: 21.9 mg, 52%; colorless oil; ¹H NMR (400 MHz, CDCl₃) δ : 8.03 (d, *J* = 8.1 Hz, 2H), 7.58 (t, *J* = 7.4 Hz, 1H), 7.48 (t, *J* = 7.6 Hz, 2H), 7.23 – 7.09 (m, 4H), 4.31 (s, 2H), 2.26 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 197.5, 136.9, 136.8, 133.4, 133.1, 130.3, 130.3, 128.6, 128.3, 127.2, 126.1, 43.5, 19.8. These spectroscopic data correspond to reported data.^[10]

2-(2-Fluorophenyl)-1-phenylethan-1-one (3ak)

Yield: 19.7 mg, 46%; colorless oil; ¹H NMR (400 MHz, CDCl₃) δ : 8.05 (d, *J* = 7.8 Hz, 2H), 7.59 (t, *J* = 7.4 Hz, 1H), 7.49 (t, *J* = 7.6 Hz, 2H), 7.32 – 7.20 (m, 2H), 7.16 – 7.03 (m, 2H), 4.34 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ : 196.3, 160.9 (d, *J* = 243.9 Hz), 136.4, 133.3, 131.6 (d, *J* = 4.3 Hz), 128.9 (d, *J* = 8.1 Hz), 128.5 (d, *J* = 28.1 Hz), 1241, 124.1, 121.8 (d, *J* = 1.6 Hz), 115.4 (d, *J* = 21.9 Hz), 38.6. These spectroscopic data correspond to reported data.^[8]

2-(3,5-Dimethylphenyl)-1-phenylethan-1-one (3al)

Yield: 34.5 mg, 77%; colorless oil; ¹H NMR (400 MHz, CDCl₃) δ: 8.02 (d, *J* = 7.5 Hz, 2H), 7.55 (t, *J* = 7.4 Hz, 1H), 7.45 (t, *J* = 7.6 Hz, 2H), 6.88 (s, 3H), 4.20 (s, 2H), 2.28 (s, 7H); ¹³C NMR (100 MHz, CDCl₃) δ: 197.9, 138.2, 136.6, 134.3, 133.1, 128.6, 128.6, 128.6, 127.2, 45.4, 21.2.

These spectroscopic data correspond to reported data.^[2]

1-Phenyl-2-(thiophen-2-yl)ethan-1-one (3am)

Yield: 26.3 mg, 65%; colorless oil; ¹H NMR (400 MHz, CDCl₃) δ : 8.02 (d, *J* = 7.0 Hz, 2H), 7.57 (t, *J* = 7.4 Hz, 1H), 7.47 (t, *J* = 7.6 Hz, 2H), 7.22 (dd, *J* = 5.1, 1.3 Hz, 1H), 6.97 (dd, *J* = 5.1, 3.5 Hz, 1H), 6.93 (dt, *J* = 3.6, 1.1 Hz, 1H), 4.48 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ : 195.9, 136.0, 135.4, 133.4, 128.7, 128.5, 126.8, 126.8, 125.1, 39.3.

These spectroscopic data correspond to reported data.^[11]

2-(4-(2-Chloroethoxy)phenyl)-1-phenylethan-1-one(3an)

Yield: 46.0 mg, 84%; colorless oil; ¹H NMR (400 MHz, CDCl₃) δ : 8.00 (d, *J* = 7.4 Hz, 2H), 7.55 (t, *J* = 7.4 Hz, 1H), 7.45 (t, *J* = 7.7 Hz, 2H), 7.18 (d, *J* = 8.5 Hz, 2H), 6.87 (d, *J* = 8.6 Hz, 2H), 4.23 (s, 2H), 4.19 (t, *J* = 5.9 Hz, 2H), 3.79 (t, *J* = 5.9 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ : 197.8, 157.1, 136.5, 133.1, 130.6, 128.6, 128.5, 127.2, 114.9, 68.0, 44.5, 41.9. HRMS (ESI) m/z calcd for C₁₆H₁₅O₂ClNa (M+Na)⁺ 297.0653, found 297.0665.

2-(4-(2-Oxo-2-phenylethyl)phenoxy)ethyl acetate (3ao)

Yield: 44.7 mg, 75%; colorless oil; ¹H NMR (400 MHz, CDCl₃) δ : 8.01 (d, *J* = 6.7 Hz, 2H), 7.64 – 7.51 (m, 1H), 7.48 – 7.44 (m, 2H), 7.19 (d, *J* = 7.4 Hz, 2H), 6.88 (d, *J* = 7.8 Hz, 2H), 4.40 (s, 2H), 4.23 (s, 2H), 4.15 (s, 2H), 2.09 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 197.8, 171.0, 157.4, 136.5, 133.1, 130.5, 128.6, 128.5, 127.0, 114.8, 65.9, 62.81, 44.6, 20.9. HRMS (ESI) m/z calcd for C₁₈H₁₈O₄Na (M+Na)⁺ 321.1097, found 321.1114.

2-(4-(2-Oxo-2-phenylethyl)phenoxy)ethyl benzoate (3ap)

Yield: 53.3 mg, 74%; colorless oil; ¹H NMR (400 MHz, CDCl₃) δ : 8.05 (d, *J* = 7.0 Hz, 2H), 8.01 (d, *J* = 6.9 Hz, 2H), 7.58 – 7.54 (m, 2H), 7.48 – 7.41 (m, 4H), 7.19 (d, *J* = 7.5 Hz, 2H), 6.91 (d, *J* = 7.5 Hz, 2H), 4.65 (s, 2H), 4.28 (s, 2H), 4.23 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ :197.8, 166.5, 157.5, 136.5, 133.1, 133.1, 130.5, 129.8, 129.7, 128.6, 128.5, 128.3, 127.0, 114.9, 66.0, 63.3, 44.6. HRMS (ESI) m/z calcd for C₂₃H₂₀O₄Na (M+Na)⁺ 383.1254, found 383.1272.

2-(2,6-Di-tert-butyl-4-hydroxyphenyl)-1-phenylethan-1-one (3ar)

Yield: 33.1 mg, 51%; colorless oil; ¹H NMR (400 MHz, CDCl₃) δ : 8.04 (d, *J* = 7.4 Hz, 2H), 7.56 (t, *J* = 7.3 Hz, 1H), 7.46 (t, *J* = 7.6 Hz, 2H), 7.05 (s, 2H), 5.13 (s, 1H), 4.20 (s, 2H), 1.42 (s, 18H); ¹³C NMR

(100 MHz, CDCl₃) δ : 198.3, 152.7, 136.9, 135.9, 133.0, 128.6, 128.5, 126.2, 124.9, 45.2, 34.3, 30.2. HRMS (ESI) m/z calcd for C₂₂H₂₈O₂Na (M+Na)⁺ 347.1982, found 347.1991.

1-Cyclohexyl-2-(4-methoxyphenyl)ethan-1-one (5aa)

Yield: 30.2 mg, 65%; colorless oil; ¹H NMR (400 MHz, CDCl₃) δ : ¹H NMR (400 MHz, Chloroform-*d*) δ 7.10 (d, *J* = 8.6 Hz, 2H), 6.86 (d, *J* = 8.6 Hz, 2H), 3.79 (s, 3H), 3.66 (s, 2H), 2.45 (tt, *J* = 11.6, 3.4 Hz, 1H), 1.87 - 1.70 (m, 4H), 1.69 - 1.64 (m, 1H), 1.41 - 1.17 (m, 5H); ¹³C NMR (100 MHz, CDCl₃) δ : 211.7, 158.4, 130.4, 126.4, 114.0, 55.2, 49.9, 47.0, 28.5, 25.8, 25.6. HRMS (ESI) m/z calcd for C₁₅H₂₀O₂Na (M+Na)⁺ 255.1356, found 255.1451.

1-Cyclopropyl-2-(4-methoxyphenyl)ethan-1-one (5ba)

Yield: 25.1 mg, 66%; colorless oil; ¹H NMR (400 MHz, CDCl₃) δ : 7.14 (d, *J* = 8.6 Hz, 2H), 6.87 (d, *J* = 8.6 Hz, 2H), 3.79 (s, 3H), 3.76 (s, 2H), 1.96 (tt, *J* = 7.8, 4.5 Hz, 1H), 1.07 – 0.98 (m, 2H), 0.86 – 0.86 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ : 208.8, 158.5, 130.5, 126.4, 114.0, 55.2, 49.8, 19.9, 11.3. HRMS (ESI) m/z calcd for C₁₂H₁₄O₂Na (M+Na)⁺ 213.0886, found 213.0894.

4-Cyclopentyl-1-(4-methoxyphenyl)butan-2-one (5ca)

Yield: 22.6 mg, 46%; colorless oil; ¹H NMR (400 MHz, CDCl₃) δ : 7.12 (d, *J* = 8.6 Hz, 2H), 6.86 (d, *J* = 8.6 Hz, 2H), 3.80 (s, 3H), 3.62 (s, 2H), 2.44 (t, *J* = 7.2 Hz, 2H), 1.75 – 1.64 (m, 3H), 1.58 – 1.52 (m, 4H), 1.50 – 1.45 (m, 2H), 1.09 – 0.96 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ : 209.2, 158.5, 130.4, 126.4, 114.1, 55.2, 49.2, 41.1, 39.6, 32.4, 29.9, 25.1. HRMS (ESI) m/z calcd for C₁₆H₂₂O₂Na (M+Na)⁺ 269.1512, found 269.1523.

1-(4-Methoxyphenyl)-4-phenylbutan-2-one (5da)

Yield: 40.2 mg, 79%; colorless oil; ¹H NMR (400 MHz, CDCl₃) δ : 7.25 (t, *J* = 7.1 Hz, 2H), 7.17 (t, *J* = 7.3 Hz, 1H), 7.12 (d, *J* = 6.7 Hz, 2H), 7.06 (d, *J* = 8.6 Hz, 2H), 6.84 (d, *J* = 8.6 Hz, 2H), 3.77 (s, 3H), 3.58 (s, 2H), 2.85 (t, *J* = 7.1 Hz, 2H), 2.79 – 2.70 (t, *J* = 7.1 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ : 207.8, 158.5, 140.9, 130.3, 128.4, 128.2, 126.0, 126.0, 114.1, 55.2, 49.4, 43.2, 29.7. HRMS (ESI) m/z calcd for C₁₇H₁₈O₂Na (M+Na)⁺ 277.1199, found 277.1209.

1-(4-Methoxyphenyl)hexan-2-one (5ea)

Yield: 21.0 mg, 51%; colorless oil; ¹H NMR (400 MHz, CDCl₃) δ : 7.11 (d, *J* = 8.6 Hz, 2H), 6.86 (d, *J* = 8.6 Hz, 2H), 3.79 (s, 3H), 3.61 (s, 2H), 2.43 (t, *J* = 7.4 Hz, 2H), 1.52 (p, *J* = 7.5 Hz, 2H), 1.25 (p, *J* = 7.4 Hz, 2H), 0.86 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 209.1, 158.5, 130.3, 126.4, 114.1, 55.2, 49.2, 41.5, 25.8, 22.2, 13.8. HRMS (ESI) m/z calcd for C₁₃H₁₈O₂Na (M+Na)⁺ 229.1199, found 229.1208.

1-(4-Methoxyphenyl)heptan-2-one (5fa)

Yield: 23.3 mg, 53%; colorless oil; ¹H NMR (400 MHz, CDCl₃) δ : 7.11 (d, *J* = 8.5 Hz, 2H), 6.86 (d, *J* = 8.6 Hz, 2H), 3.79 (s, 3H), 3.61 (s, 2H), 2.42 (t, *J* = 7.4 Hz, 2H), 1.54 (p, *J* = 7.5 Hz, 2H), 1.30 – 1.19 (m, 4H), 0.86 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 209.1, 158.5, 130.3, 126.4, 114.1, 55.2, 49.2, 41.8, 31.3, 23.4, 22.4, 13.9. HRMS (ESI) m/z calcd for C₁₄H₂₀O₂Na (M+Na)⁺ 243.1356, found 243.1363.

2-(4-(2-Oxo-2-phenylethyl)phenoxy)ethyl 2-(2-fluoro-[1,1'-biphenyl]-4-yl)propanoate (7aa) Yield: 58.8 mg, 61%; colorless oil; ¹H NMR (400 MHz, CDCl₃) δ : 7.99 (d, J = 7.3 Hz, 2H), 7.55 (d, J =

7.6 Hz, 1H), 7.51 (d, J = 8.2 Hz, 2H), 7.44 (q, J = 7.7 Hz, 4H), 7.35 (d, J = 7.3 Hz, 2H), 7.20 – 7.09 (m, 4H), 6.83 (d, J = 8.6 Hz, 2H), 4.48 – 4.38 (m, 2H), 4.20 (s, 2H), 4.12 (t, J = 4.7 Hz, 2H), 3.79 (q, J = 7.1 Hz, 1H), 1.53 (d, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 197.8, 173.9, 159.6 (d, J = 246.8 Hz), 157.4, 141.5 (d, J = 7.7 Hz), 136.5, 135.4, 133.1, 130.7 (d, J = 3.9 Hz), 130.5, 128.9 (d, J = 2.9 Hz),

128.6, 128.5, 128.4, 127.8 (d, J = 13.5 Hz), 127.6, 127.0, 123.5 (d, J = 3.4 Hz), 115.2 (d, J = 23.5 Hz), 114.8, 65.8, 63.3, 44.8, 44.5, 18.3. HRMS (ESI) m/z calcd for C₃₁H₂₇O₄FNa (M+Na)⁺ 505.1786, found 505.1799.

2-(4-(2-Oxo-2-phenylethyl)phenoxy)ethyl 2-(3-benzoylphenyl)propanoate (7ab)

Yield: 54.1 mg, 55%; colorless oil; ¹H NMR (400 MHz, CDCl₃) δ : 8.00 (d, *J* = 7.0 Hz, 2H), 7.77 (t, *J* = 7.8 Hz, 3H), 7.65 (d, *J* = 7.7 Hz, 1H), 7.60 – 7.53 (m, 3H), 7.48 – 7.43 (m, 4H), 7.39 (t, *J* = 7.7 Hz, 1H), 7.15 (d, *J* = 8.5 Hz, 2H), 6.80 (d, *J* = 8.6 Hz, 2H), 4.49 – 4.35 (m, 2H), 4.21 (s, 2H), 4.10 (d, *J* = 4.8 Hz, 2H), 3.83 (q, *J* = 7.2 Hz, 1H), 1.53 (d, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 197.8, 196.4, 174.0, 157.3, 140.5, 137.8, 137.4, 136.4, 133.1, 132.5, 131.5, 130.5, 130.0, 129.2, 129.0, 128.6, 128.5, 128.5, 128.2, 127.0, 114.8, 65.7, 63.2, 45.2, 44.5, 18.4. HRMS (ESI) m/z calcd for C₃₂H₂₈O₅Na (M+Na)⁺ 515.1829, found 515.1836.

2-(4-(2-Oxo-2-phenylethyl)phenoxy)ethyl 2-(4-((2-oxocyclopentyl)methyl)phenyl)propanoate (7ac) Yield: 60.0 mg, 62%; colorless oil; ¹H NMR (400 MHz, CDCl₃) δ : 8.01 (d, *J* = 7.0 Hz, 2H), 7.56 (t, *J* = 7.3 Hz, 1H), 7.46 (t, *J* = 7.7 Hz, 2H), 7.21 (d, *J* = 8.1 Hz, 2H), 7.17 (d, *J* = 8.6 Hz, 2H), 7.09 (d, *J* = 8.1 Hz, 2H), 6.83 (d, *J* = 8.6 Hz, 2H), 4.46 – 4.41 (m, 1H), 4.39 – 4.33 (m, 1H), 4.23 (s, 2H), 4.10 (t, *J* = 4.8 Hz, 2H), 3.73 (q, *J* = 7.1 Hz, 1H), 3.11 (dd, *J* = 13.9, 4.0 Hz, 1H), 2.47 (dd, *J* = 13.9, 9.7 Hz, 1H), 2.39 – 2.26 (m, 2H), 2.16 – 2.00 (m, 2H), 1.98 – 1.91 (m, 1H), 1.78 – 1.64 (m, 2H), 1.58 – 1.50 (m, 1H), 1.48 (d, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 220.2, 197.8, 174.5, 157.4, 138.8, 138.1, 136.5, 133.1, 130.5, 129.0, 128.6, 128.5, 127.5, 127.0, 114.8, 65.8, 63.0, 50.9, 44.9, 44.5, 38.1, 35.1, 29.2, 20.5, 18.5. HRMS (ESI) m/z calcd for C₃₁H₃₂O₅Na (M+Na)⁺ 507.2142, found 507.2149.

2-(4-(2-Oxo-2-phenylethyl)phenoxy)ethyl 2-(11-oxo-6,11-dihydrodibenzo[b,e]oxepin-8-yl)acetate (7ad)

Yield: 67.8 mg, 67%; colorless oil; ¹H NMR (400 MHz, CDCl₃) δ : 8.11 (d, *J* = 2.4 Hz, 1H), 8.06 – 7.95 (m, 2H), 7.92 – 7.84 (m, 1H), 7.59 – 7.52 (m, 2H), 7.51 – 7.39 (m, 4H), 7.36 (d, *J* = 7.4 Hz, 1H), 7.17 (d, *J* = 8.5 Hz, 2H), 7.01 (d, *J* = 8.4 Hz, 1H), 6.86 (d, *J* = 8.6 Hz, 2H), 5.17 (s, 2H), 4.45 (t, *J* = 4.7 Hz, 2H), 4.22 (s, 2H), 4.15 (t, *J* = 4.7 Hz, 2H), 3.68 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ : 197.8, 190.8, 171.4, 160.5, 157.4, 140.4, 136.5, 136.3, 135.5, 133.1, 132.7, 132.5, 130.5, 129.5, 129.2, 128.6, 128.6, 127.8, 127.5, 127.0, 125.1, 121.1, 114.8, 73.6, 65.8, 63.3, 44.6, 40.0. HRMS (ESI) m/z calcd for C₃₂H₂₆O₆Na (M+Na)⁺ 529.1622, found 529.1629.

2-(4-(2-Oxo-2-phenylethyl)phenoxy)ethyl (S)-2-(6-methoxynaphthalen-2-yl)propanoate (7ae)

Yield: 67.4 mg, 72%; colorless oil; ¹H NMR (400 MHz, CDCl₃) δ : 8.01 (d, *J* = 7.2 Hz, 2H), 7.69 – 7.63 (m, 3H), 7.56 (t, *J* = 7.4 Hz, 1H), 7.46 (t, *J* = 7.6 Hz, 2H), 7.39 (d, *J* = 8.6 Hz, 1H), 7.16 – 7.07 (m, 4H), 6.78 (d, *J* = 8.5 Hz, 2H), 4.44 (dt, *J* = 12.1, 4.8 Hz, 1H), 4.36 (dt, *J* = 12.1, 4.6 Hz, 1H), 4.21 (s, 2H), 4.09 (t, *J* = 4.8 Hz, 2H), 3.90 (s, 3H), 3.90 – 3.85 (m, 1H), 1.57 (d, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 197.8, 174.6, 157.6, 157.4, 136.5, 135.4, 133.7, 133.1, 130.5, 129.3, 128.9, 128.6, 128.5, 127.1, 127.0, 126.2, 125.9, 118.9, 114.9, 105.5, 65.9, 63.1, 55.3, 45.3, 44.6, 18.5. HRMS (ESI) m/z calcd for C₃₀H₂₈O₅Na (M+Na)⁺ 491.1829, found 491.1836.

2-(4-(2-Oxo-2-phenylethyl)phenoxy)ethyl 2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3yl)acetate (7af)

Yield: 39.3 mg, 33%; colorless oil; ¹H NMR (400 MHz, CDCl₃) δ : 7.94 (d, *J* = 6.9 Hz, 2H), 7.65 (d, *J* = 8.5 Hz, 2H), 7.54 (t, *J* = 7.4 Hz, 1H), 7.41 (dt, *J* = 7.6, 3.4 Hz, 4H), 7.04 (dd, *J* = 5.6, 2.9 Hz, 3H), 6.70 (d, *J* = 8.5 Hz, 2H), 6.61 (dd, *J* = 9.1, 2.5 Hz, 1H), 6.40 (d, *J* = 9.0 Hz, 1H), 4.83 (s, 2H), 4.43 – 4.34 (m, 2H), 4.09 – 4.02 (m, 2H), 3.78 (s, 3H), 3.74 (s, 2H), 2.27 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 195.4, 170.4, 168.7, 156.2, 155.9, 139.1, 136.4, 133.4, 133.3, 133.3, 131.3, 130.9, 130.4, 130.3, 129.9, 129.1, 128.6, 128.2, 115.0, 114.5, 114.4, 112.3, 101.3, 65.8, 63.5, 55.6, 36.5, 30.3, 20.5. HRMS (ESI) m/z calcd for C₃₅H₃₀O₆NClNa (M+Na)⁺ 618.1654, found 618.1662.

5. Reference

- [1] E. D. Nacsa, D. W. C. MacMillan, J. Am. Chem. Soc. 2018, 140, 3322.
- [2] P. E. Krach, A. Dewanji, T. Yuana, M. Rueping, Chem. Commun. 2020, 56, 6082.
- [3] X. Chen, Z. Chen, C. M. So, J. Org. Chem. 2019, 84, 6337.
- [4] A. D. Benischke, M. Leroux, I. Knoll, P. Knochel, Org. Lett. 2016, 18, 3626.
- [5] L.-Z. Yuan, D. Renko, I.Khelifi, O. Provot, J.-D. Brion, A. Hamze, M. Alami, Org. Lett. 2016, 18, 3238.
- [6] H. Shi, C. Du, X. Zhang, F. Xie, X. Wang, S. Cui, X. Peng, M. Cheng, B. Lin, Y. Liu J. Org. Chem. 2018, 83, 1312.
- [7] C. Xu, H.-M. Li, Z.-Q. Wang, W.-J. Fu, Y.-Q. Zhang, B.-M. Ji, Australian J. Org. Chem. 2012, 65, 366.
- [8] K. Huang, G. Li, W.-P. Huang, D.-G. Yu, Z.-J. Shi, Chem. Commun. 2011, 47, 7224.
- [9] S. Xie, Z.-J. He, L.-H. Zhang, B.-L. Huang, X.-W. Chen, Z.-S. Zhan, F.-M. Zhang, *Chem. Commun.* 2021, 57, 2069.
- [10] N. Marion, E. C. Ecarnot, O. Navarro, D. Amoroso, A. Bell, S. P. Nolan, J. Org. Chem. 2006, 71, 3816.
- [11] H. Mo, D. Chen, L. Xu, D. Chen, F. Pan, J. Yang, Synthesis, 2015, 47, 209.

6. Spectra

2-(4-Methoxyphenyl)-1-(*p*-tolyl)ethan-1-one (3ba)

1,2-Bis(4-methoxyphenyl)ethan-1-one (3ca)

29

1-(4-(tert-Butyl)phenyl)-2-(4-methoxyphenyl)ethan-1-one (3da)

1-([1,1'-Biphenyl]-4-yl)-2-(4-methoxyphenyl)ethan-1-one (3ea)

1-(4-Fluorophenyl)-2-(4-methoxyphenyl)ethan-1-one (3fa)

1-(4-Chlorophenyl)-2-(4-methoxyphenyl)ethan-1-one (3ga)

1-(4-Bromophenyl)-2-(4-methoxyphenyl)ethan-1-on e(3ha)

2-(4-Methoxyphenyl)-1-(4-(trifluoromethyl)phenyl)ethan-1-one (3ia)

2-(4-Methoxyphenyl)-1-(*m*-tolyl)ethan-1-one (3ja)

1-(3-Methoxyphenyl)-2-(4-methoxyphenyl)ethan-1-one (3ka)

2-(4-Methoxyphenyl)-1-(o-tolyl)ethan-1-one (3la)

1-(3,5-Dimethylphenyl)-2-(4-methoxyphenyl)ethan-1-one (3ma)

2-(4-Methoxyphenyl)-1-(naphthalen-2-yl)ethan-1-one (3na)

1-Phenyl-2-(p-tolyl)ethan-1-one (3ab)

2-(4-(*tert*-Butyl)phenyl)-1-phenylethan-1-one (3ac)

2-(4-Isopropoxyphenyl)-1-phenylethan-1-one (3ad)

2-(4-Fluorophenyl)-1-phenylethan-1-one (3ae)

2-(4-Chlorophenyl)-1-phenylethan-1-one (3af)

1,2-Diphenylethan-1-one (3ag)

46

1-Phenyl-2-(*m*-tolyl)ethan-1-one (3ah)

2-(3-Chlorophenyl)-1-phenylethan-1-one (3ai)

48

1-Phenyl-2-(o-tolyl)ethan-1-one (3aj)

2-(2-Fluorophenyl)-1-phenylethan-1-one (3ak)

2-(3,5-Dimethylphenyl)-1-phenylethan-1-one (3al)

1-Phenyl-2-(thiophen-2-yl)ethan-1-one (3am)

2-(4-(2-Chloroethoxy)phenyl)-1-phenylethan-1-one(3an)

2-(4-(2-Oxo-2-phenylethyl)phenoxy)ethyl acetate (3ao)

2-(4-(2-Oxo-2-phenylethyl)phenoxy)ethyl benzoate (3ap)

2-(2,6-Di-*tert*-butyl-4-hydroxyphenyl)-1-phenylethan-1-one (3ar)

1-Cyclohexyl-2-(4-methoxyphenyl)ethan-1-one (5aa)

1-Cyclopropyl-2-(4-methoxyphenyl)ethan-1-one (5ba)

4-Cyclopentyl-1-(4-methoxyphenyl)butan-2-one (5ca)

1-(4-Methoxyphenyl)-4-phenylbutan-2-one (5da)

1-(4-Methoxyphenyl)hexan-2-one (5ea)

1-(4-Methoxyphenyl)heptan-2-one (5fa)

2-(4-(2-Oxo-2-phenylethyl)phenoxy)ethyl 2-(4-((2-oxocyclopentyl)methyl)phenyl)propanoate

2-(4-(2-Oxo-2-phenylethyl)phenoxy)ethyl 2-(11-oxo-6,11-dihydrodibenzo[b,e]oxepin-8-yl)acetate

2-(4-(2-Oxo-2-phenylethyl)phenoxy)ethyl 2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-