Supporting Information

for

Photoredox-Catalyzed Intermolecular Dearomative

Trifluoromethycarboxylation of Indoles and Heteroanalogues with CO2

and Fluorinated Radical Precursors

Yaping Yi^a, Zhengning Fan^a, Chanjuan Xi*ab

^aMOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China.

^bState Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China.

Contents

1.	General information and procedure	S2
2.	Mechanistic studies	S6
3.	X-ray crystallographic data	.S13
4.	NMR data of starting materials	.S14
5.	NMR data of products	.S19
6.	NMR spectra of starting materials	.S30
7.	NMR spectra of products	.S58
8.	References	\$132

1. General information and procedure

1.1 General information

All reactions were carried out in dried Schlenk tube. All solvents were dried before use according to the standard methods. Unless otherwise noted, the starting materials were commercially available and used without further purification. Glass 0.25 mm silica gel plates were employed for thin layer chromatography (TLC). Flash chromatography columns were packed with 200-300 mesh silica gel in petroleum ether, ethyl acetate, and alcohol.

¹H NMR, ¹³C NMR, ¹⁹F NMR data were recorded on a 400 MHz spectrometer with tetramethylsilane as an internal standard. All chemical shifts (δ) are reported in ppm and coupling constants (*J*) in Hz. All chemical shifts are reported relative to tetramethylsilane and D-solvent peaks, respectively. Abbreviations used for signal multiplicity. ¹H and ¹⁹F NMR: s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublets, dt = doublet of triplets, td = triplet of doublets, ddd = doublet of doublets, and m = multiplet.

Information about the photoreactor: the photoreactor (Type H106065) used in this research was purchased from GeAo Chem, Wuhan, China. The photoreactor was made up of 8 blue LED bulbs (5 W for each) with a cooler fan to keep room temperature. Spectral distribution: 415 - 430 nm. In the reaction, each Schlenk tube is mainly irradiated by one of the light bulbs. The approximate distance of the tube to the closest light bulb is 2 cm. A magnetic stirrer is placed under the photoreactor to keep the reaction being stirred.

1.2 General procedure for synthesis of starting materials¹

A mixture of indole (5.0 mmol), Boc_2O (1.2 g, 5.5 mmol) and DMAP (61 mg, 0.50 mmol) in THF (20 mL) was stirred at room temperature for 12 h. H₂O was then added, and the product was extracted with ethyl acetate. After washed with sat. aq. NaHCO₃ and brine, the combined organic layer was dried over Na₂SO₄, filtrated and concentrated under reduce pressure. The purification of the crude mixture by silica gel

column chromatography provided Boc-protected indoles 1 (>90% yield).

To a 25 mL Schlenk tube equipped with a magnetic stir bar was added $Ir(ppy)_2(dtbbpy)PF_6$ (1 mg, 0.001 mmol), CF_3SO_2Na (39.0 mg, 0.25 mmol) and K_2CO_3 (41.5 mg, 0.3 mmol), the tube was evacuated and filled CO_2 for three times. Then the anhydrous DMA (1 mL, bubbled with CO_2 for 5 min before use) and **1a** (27.5 mg, 0.1 mmol) were added to the tube under a CO_2 atmosphere. The reaction tube was sealed and stirred at room temperature under blue LEDs (5 W) for 36 h. After completion, the reaction was carefully quenched with 2 N HCl and the mixture was extracted with ethyl acetate (3 x 8 mL). The combined organic layers were dried over anhydrous Na_2SO_4 and concentrated under reduced pressure. After esterification, the yields were determined by crude ¹H NMR using CH_2Br_2 as internal standard.

1.4 General procedure for evaluation of substrate scope

To a 25 mL Schlenk tube equipped with a magnetic stir bar was added $Ir(ppy)_2(dtbbpy)PF_6$ (2 mg, 0.002 mmol), CF_3SO_2Na (78.0 mg, 0.5 mmol) and K_2CO_3 (83.0 mg, 0.6 mmol), the tube was evacuated and filled CO_2 for three times. Then the anhydrous DMA (2 mL, bubbled with CO_2 for 5 min before use) and 1 (0.2 mmol) were added to the tube under a CO_2 atmosphere. The reaction tube was sealed and stirred at room temperature under blue LEDs (5 W) for 36 h. After completion, the reaction was carefully quenched with 2 M HCl and the mixture was extracted with ethyl acetate (3 x 8 mL). The combined organic layers were dried over anhydrous Na₂SO₄ and

concentrated under reduced pressure. After esterification, the reaction mixture was purified by silica gel column chromatography with petroleum ether/ethyl acetate as the eluent to afford the desired product **3**. All of the products were characterized by NMR techniques.

To a 25 mL Schlenk tube equipped with a magnetic stir bar was added $Ir(ppy)_2(dtbbpy)PF_6$ (2 mg, 0.002 mmol), CF_3SO_2Na (78.0 mg, 0.5 mmol) and K_2CO_3 (83.0 mg, 0.6 mmol), the tube was evacuated and filled CO_2 for three times. Then the anhydrous DMA (2 mL, bubbled with CO_2 for 5 min before use) and 4 (0.2 mmol) were added to the tube under a CO_2 atmosphere. The reaction tube was sealed and stirred at room temperature under blue LEDs (5 W) for 36 h. After completion, the reaction was carefully quenched with 2 M HCl and the mixture was extracted with ethyl acetate (3 x 8 mL). The combined organic layers were dried over anhydrous Na_2SO_4 and concentrated under reduced pressure. After esterification, the reaction mixture was purified by silica gel column chromatography with petroleum ether/ethyl acetate as the eluent to afford the desired product **5**. All of the products were characterized by NMR techniques.

To a 25 mL Schlenk tube equipped with a magnetic stir bar was added $Ir(ppy)_2(dtbbpy)PF_6$ (2 mg, 0.002 mmol), CHF_2SO_2Na (110.4 mg, 0.8 mmol) and K_2CO_3 (83.0 mg, 0.6 mmol), the tube was evacuated and filled CO_2 for three times. Then the anhydrous DMA (2 mL, bubbled with CO_2 for 5 min before use) and 1 or 4 (0.2 mmol) were added to the tube under a CO_2 atmosphere. The reaction tube was

sealed and stirred at room temperature under blue LEDs (5 W) for 36 h. After completion, the reaction was carefully quenched with 2 M HCl and the mixture was extracted with ethyl acetate (3 x 8 mL). The combined organic layers were dried over anhydrous Na_2SO_4 and concentrated under reduced pressure. After esterification, the reaction mixture was purified by silica gel column chromatography with petroleum ether/ethyl acetate as the eluent to afford the desired product 7. All of the products were characterized by NMR techniques.

2. Mechanistic studies

2.1 Radical termination with TEMPO

To a 25 mL Schlenk tube equipped with a magnetic stir bar was added $Ir(ppy)_2(dtbbpy)PF_6$ (1 mg, 0.001 mmol), CF_3SO_2Na (39.0 mg, 0.25 mmol) and K_2CO_3 (41.5 mg, 0.3 mmol), the tube was evacuated and filled CO_2 for three times. Then the anhydrous DMA (1 mL, bubbled with CO_2 for 5 min before use), **1a** (27.5 mg, 0.1 mmol) and TEMPO (46.9 mg, 0.3 mmol) were added to the tube under a CO_2 atmosphere. The reaction tube was sealed and stirred at room temperature under blue LEDs (5 W) for 36 h. After completion, the reaction was carefully quenched with 2 N HCl and the mixture was extracted with ethyl acetate (3 x 8 mL). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. After esterification, the yields were determined by crude ¹H NMR using CH₂Br₂ as internal standard. Also, the crude product was tested by ESI.

2.2 Isotope labelling experiments with D₂O

To a 25 mL Schlenk tube equipped with a magnetic stir bar was added $Ir(ppy)_2(dtbbpy)PF_6 (1 mg, 0.001 mmol)$, $CF_3SO_2Na (39.0 mg, 0.25 mmol)$ and $K_2CO_3 (41.5 mg, 0.3 mmol)$, the tube was evacuated and filled N_2 for three times. Then the anhydrous DMA (1 mL, bubbled with CO_2 for 5 min before use), **1a** (27.5 mg, 0.1 mmol) and D_2O were added to the tube under a N_2 atmosphere. The reaction tube was sealed and stirred at room temperature under blue LEDs (5 W) for 36 h. After completion, the reaction was carefully quenched with 2 N HCl and the mixture was extracted with ethyl acetate (3 x 8 mL). The combined organic layers were dried over anhydrous Na_2SO_4 and concentrated under reduced pressure. After purified by silica gel column chromatography with petroleum ether/ethyl acetate as the eluent, the deuterium ratio was determined by ¹H NMR.

1 H NMR (10 equiv. D₂O)

Figure S1

 1 H NMR (20 equiv. D₂O)

Figure S2

2.3 Using aldehyde as electrophile instead of CO₂

To a 25 mL Schlenk tube equipped with a magnetic stir bar was added $Ir(ppy)_2(dtbbpy)PF_6 (1 mg, 0.001 mmol)$, $CF_3SO_2Na (39.0 mg, 0.25 mmol)$ and $K_2CO_3 (41.5 mg, 0.3 mmol)$, the tube was evacuated and filled N₂ for three times. Then the anhydrous DMA (1 mL, bubbled with CO₂ for 5 min before use), **1a** (27.5 mg, 0.1 mmol) and aldehyde (42.4 mg, 0.4mmol) were added to the tube under a N₂ atmosphere. The reaction tube was sealed and stirred at room temperature under blue LEDs (5 W) for 36 h. After completion, the reaction was carefully quenched with 2 N HCl and the mixture was extracted with ethyl acetate (3 x 8 mL). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The reaction mixture was purified by silica gel column chromatography with petroleum ether/ethyl acetate as the eluent to afford the desired product **9a**. Then the product was characterized by NMR techniques.

2.4 Reaction with ¹³CO₂

To a 25 mL Schlenk tube equipped with a magnetic stir bar was added $Ir(ppy)_2(dtbbpy)PF_6$ (1 mg, 0.001 mmol), CF_3SO_2Na (39.0 mg, 0.25 mmol) and K_2CO_3 (41.5 mg, 0.3 mmol), the tube was evacuated and filled CO_2 for three times. Then the anhydrous DMA and **1a** (27.5 mg, 0.1 mmol) were added to the tube under a CO_2 atmosphere. Next, ¹³CO₂ was bubbled to the solvent by a 5 mL injection syringe for 3 times. The reaction tube was sealed and stirred at room temperature under blue LEDs (5 W) for 36 h. After completion, the reaction was carefully quenched with 2 N HCl and the mixture was extracted with ethyl acetate (3 x 8 mL). The combined organic layers were dried over anhydrous Na_2SO_4 and concentrated under reduced pressure. After esterification, the crude mixture was determined by ¹³C NMR.

Figure S3

2.5 Stern-Volmer Fluorescence quenching experiments²

Fluorescence quenching experiments were tested on a LS (PERKINELMER(HK)LTD) Spectrofluorophotometer with a 4 mL quartz cuvette with a cap. $Ir(ppy)_2(dtbbpy)PF_6$ was irradiated at 435 nm and the emission intensity at about 575 nm was observed. In a typical experiment, the emission spectrum of a 2×10^{-5} M solution of $Ir(ppy)_2(dtbbpy)PF_6$ in anhydrous DMA was collected.

 CF_3SO_2Na : A stock solution of CF_3SO_2Na (1×10⁻² M) was prepared. Then, different amounts of this stock solution were added to 3 mL of Ir(ppy)₂(dtbbpy)PF₆ in DMA (2×10⁻⁵ M).

1a: A stock solution of **1a** (0.5 M) was prepared. Then, different amounts of this stock solution were added to 2.5 mL of $Ir(ppy)_2(dtbbpy)PF_6$ in DMA (2×10⁻⁵ M).

- a. Steady-state Stern–Volmer experiment of Ir(ppy)₂(dtbbpy)PF₆ and CF₃SO₂Na.
- b. Steady-state Stern–Volmer experiment of $Ir(ppy)_2(dtbbpy)PF_6$ and **1a**.
- c. Comparison of quenching efficiency of CF_3SO_2Na and 1a.

2.6 Light on-off experiments

To six 25 mL-Schlenk tubes equipped with a magnetic stir bar were added $Ir(ppy)_2(dtbbpy)PF_6 (1 mg, 0.001 mmol)$, $CF_3SO_2Na (39.0 mg, 0.25 mmol)$ and $K_2CO_3 (41.5 mg, 0.3 mmol)$ respectively, the tubes were evacuated and filled CO_2 for three times. Then the anhydrous DMA (1 mL, bubbled with CO_2 for 5 min before use) and **1a** (27.5 mg, 0.1 mmol) were added to the tubes under a CO_2 atmosphere. The reaction tubes were sealed and stirred at room temperature under blue LEDs (5 W). Turn on/off the blue LEDs every 2 hours and quenched one reaction with 2 N HCl at the same time until all the reactions were quenched. Each reaction mixture was extracted with ethyl acetate (3 x 8 mL). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. After esterification, the yields were determined by crude ¹H NMR using CH₂Br₂ as internal standard.

Figure S5. Light On-off Curve

2.7 Characterization with UV-Vis spectroscopy

The UV-Vis spectra of $Ir(ppy)_2(dtbbpy)PF_6$ with/without **1a** in DMA were collected by using the following parameter set: scan rate 600 nm·min⁻¹, band width 2.0 nm, baseline correction.

Figure S6. UV-Vis spectra

3. X-ray crystallographic data

X-ray crystallographic data of 3p (CCDC 2190100)

Table SI Crystal data and structure relinement for 5p			
Identification code	3p		
Empirical formula	$C_{16}H_{17}ClF_3NO_4$		
Formula weight	379.76		
Temperature/K	170.00(11)		
Crystal system	triclinic		
Space group	P-1		
a/Å	9.1441(2)		
b/Å	10.1797(3)		
c/Å	10.2607(3)		
a/°	114.406(3)		
β/°	94.673(2)		
$\gamma/^{\circ}$	99.133(2)		
Volume/Å ³	847.16(4)		
Ζ	2		
$\rho_{calc}g/cm^3$	1.489		
μ/mm^{-1}	2.496		
F(000)	392.0		
Crystal size/mm ³	0.3 imes 0.25 imes 0.17		
Radiation	Cu Ka ($\lambda = 1.54184$)		
2Θ range for data collection/°	9.594 to 154.694		
Index ranges	$-11 \le h \le 11, -9 \le k \le 12, -12 \le l \le 12$		
Reflections collected	9766		
Independent reflections	3386 [$R_{int} = 0.0216$, $R_{sigma} = 0.0207$]		
Data/restraints/parameters	3386/0/231		
Goodness-of-fit on F ²	1.093		
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0334, wR_2 = 0.0921$		
Final R indexes [all data]	$R_1 = 0.0353, wR_2 = 0.0934$		
Largest diff. peak/hole / e Å ⁻³	0.27/-0.33		

Table S1 Cryst J ructure £ 2.

4. NMR data of starting materials

1a (1-(*tert*-butyl) 6-methyl 1*H*-indole-1,6-dicarboxylate). White solid. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.87 (s, 1H), 7.92 (d, *J* = 8.3 Hz, 1H), 7.72 (d, *J* = 3.8 Hz, 1H), 7.56 (d, *J* = 8.3 Hz, 1H), 6.58 (d, *J* = 3.7 Hz, 1H), 3.94 (s, 3H), 1.70 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 167.7, 149.4, 134.6, 134.3, 128.8, 125.9, 123.8, 120.6, 117.1, 107.2, 84.3, 52.1, 28.1. GC-MS: *m*/*z* = 275. m.p. = 79 ± 1°C.

ÇOOMe

1c (1-(*tert*-butyl) 4-methyl 1*H*-indole-1,4-dicarboxylate). Colorless oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.37 (d, J = 8.4 Hz, 1H), 7.91 (d, J = 7.6 Hz, 1H), 7.65 (d, J = 3.8 Hz, 1H), 7.29 (t, J = 7.9 Hz, 1H), 7.23 (d, J = 3.8 Hz, 1H), 3.94 (s, 3H), 1.64 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 166.9, 149.2, 135.7, 130.3, 127.4, 125.2, 123.3, 121.7, 119.5, 107.7, 83.8, 51.6, 27.9. GC-MS: m/z = 275.

1d (1-(*tert*-butyl) 5-methyl 1*H*-indole-1,5-dicarboxylate). White solid. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.25 (s, 1H), 8.17 (d, *J* = 8.9 Hz, 1H), 8.00 (d, *J* = 8.7 Hz, 1H), 7.60 (d, *J* = 3.9 Hz, 1H), 6.59 (d, *J* = 3.8 Hz, 1H), 3.92 (s, 3H), 1.66 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 167.3, 149.2, 137.7, 130.2, 127.0, 125.4, 124.5, 123.1, 114.7, 107.6, 84.1, 51.8, 28.0. GC-MS: *m*/*z* = 275. m.p. = 50 ± 1°C.

1e (*tert*-butyl 5-cyano-1*H*-indole-1-carboxylate). White solid. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.25 (d, J = 8.7 Hz, 1H), 7.89 (d, J = 1.6 Hz, 1H), 7.70 (d, J = 3.7 Hz, 1H), 7.55 (dd, J = 8.7, 1.7 Hz, 1H), 6.62 (d, J = 3.7 Hz, 1H), 1.69 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 149.1, 137.1, 130.6, 128.2, 127.4, 125.9, 119.9, 116.1, 107.0, 106.1, 85.0, 28.2. GC-MS: m/z = 242. m.p. = 75 ± 1.5°C.

1f (*tert*-butyl 6-cyano-1*H*-indole-1-carboxylate). White solid. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.49 (s, 1H), 7.76 (d, J = 3.7 Hz, 1H), 7.62 (d, J = 8.1 Hz, 1H), 7.46 (dd, J = 8.4, 1.6 Hz, 1H), 6.63 (d, J = 3.7 Hz, 1H), 1.69 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 149.0, 134.3, 133.9, 129.3, 125.8, 121.8, 120.1, 119.8, 107.3, 107.1, 85.1, 28.2. GC-MS: m/z = 242. m.p. = $78 \pm 1^{\circ}$ C.

1g (*tert*-butyl 7-cyano-1*H*-indole-1-carboxylate). White solid. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.78 (d, J = 7.8 Hz, 1H), 7.67 (d, J = 7.6 Hz, 1H), 7.63 (d, J = 3.8 Hz, 1H), 7.27 (t, J = 7.7 Hz, 1H), 6.62 (d, J = 3.9 Hz, 1H), 1.70 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 148.6, 132.8, 132.5, 131.7, 128.4, 126.1, 122.7, 118.1, 107.2, 99.7, 85.6, 28.0. GC-MS: m/z = 242. m.p. = $82 \pm 1^{\circ}$ C.

1h (*tert*-butyl 5-(trifluoromethyl)-1*H*-indole-1-carboxylate). White solid. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.24 (d, J = 8.8 Hz, 1H), 7.82 (s, 1H), 7.67 (d, J = 4.0 Hz, 1H), 7.54 (dd, J = 8.8, 1.9 Hz, 1H), 6.61 (d, J = 3.7 Hz, 1H), 1.68 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 149.5, 136.9, 130.3, 127.7, 125.1 (q, J = 32.1 Hz), 125.0 (q, J = 271.7 Hz), 121.1 (q, J = 3.9 Hz), 118.5 (q, J = 4.2 Hz) 115.6, 107.4, 84.6, 28.2. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -60.88. GC-MS: m/z = 285. m.p. = $64 \pm 1.5^{\circ}$ C.

1i (*tert*-butyl 6-(trifluoromethyl)-1*H*-indole-1-carboxylate). White solid. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.49 (s, 1H), 7.70 (d, *J* = 3.8 Hz, 1H), 7.60 (d, *J* = 8.2 Hz, 1H), 7.45 (dd, *J* = 8.3, 1.6 Hz, 1H), 6.58 (d, *J* = 3.7 Hz, 1H), 1.68 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 149.4, 134.5, 133.1, 128.4, 126.3 (q, *J* = 31.9 Hz), 125.1 (q, *J* = 271.8 Hz), 121.3, 119.5 (q, *J* = 3.5 Hz), 112.9 (q, *J* = 4.5 Hz), 107.1, 84.6, 28.2. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -60.83. GC-MS: *m*/*z* = 285. m.p. = 68 ± 1°C.

1j (*tert*-butyl 5-methyl-1*H*-indole-1-carboxylate). Colorless oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.01 (d, J = 8.3 Hz, 1H), 7.53 (d, J = 3.8 Hz, 1H), 7.31 (s, 1H), 7.11 (dd, J = 8.5, 1.7 Hz, 1H), 6.46 (d, J = 3.7 Hz, 1H), 2.42 (s, 3H), 1.64 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 149.9, 133.5, 132.1, 130.9, 126.0, 125.6, 120.9, 114.9, 107.1, 83.5, 28.3, 21.4. GC-MS: m/z = 231.

1k (*tert*-butyl 6-methyl-1*H*-indole-1-carboxylate). Colorless oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.02 (s, 1H), 7.49 (d, *J* = 3.7 Hz, 1H), 7.41 (d, *J* = 8.1 Hz, 1H), 7.04 (dd, *J* = 8.1, 1.5 Hz, 1H), 6.48 (d, *J* = 3.6 Hz, 1H), 2.47 (s, 3H), 1.64 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 149.9, 135.7, 134.2, 128.3, 125.3, 124.2, 120.5, 115.5, 107.2, 83.4, 28.2, 22.0. GC-MS: *m*/*z* = 231.

11 (*tert*-butyl 5-fluoro-1*H*-indole-1-carboxylate). Colorless oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.08 (s, 1H), 7.61 (d, *J* = 3.8 Hz, 1H), 7.19 (dd, *J* = 9.0, 2.6 Hz, 1H), 7.02 (td, *J* = 9.2, 2.7 Hz, 1H), 6.50 (d, *J* = 3.7 Hz, 1H), 1.66 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 159.3 (d, *J* = 238.2 Hz), 149.6, 131.7, 131.5 (d, *J* = 9.9 Hz), 127.5, 116.2 (d, *J* = 8.8 Hz), 112.1 (d, *J* = 25.0 Hz), 107.1 (d, *J* = 3.9 Hz), 106.4 (d, *J* = 23.9 Hz) 84.0, 28.3. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -121.07. GC-MS: *m*/*z* = 235.

1m (*tert*-butyl 6-fluoro-1*H*-indole-1-carboxylate). Colorless oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.87 (d, J = 10.4 Hz, 1H), 7.55 (d, J = 3.8 Hz, 1H), 7.44 (dd, J = 8.6, 5.4 Hz, 1H), 6.97 (td, J = 9.0, 2.5 Hz, 1H), 6.51 (d, J = 3.7 Hz, 1H), 1.66 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 161.0 (d, J = 239.8 Hz), 149.6, 135.5 (d, J = 12.0 Hz), 126.9, 126.3 (d, J = 3.9 Hz), 121.5 (d, J = 9.7 Hz), 111.0 (d, J = 24.3 Hz), 107.1, 102.6 (d, J = 28.4 Hz), 84.2, 28.2. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -117.56. GC-MS: m/z = 235.

1n (*tert*-butyl 4-chloro-1*H*-indole-1-carboxylate). Colorless oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.05 (t, *J* = 4.6 Hz, 1H), 7.61 (d, *J* = 3.7 Hz, 1H), 7.20 (m, 2H), 6.67 (d, *J* = 3.7 Hz, 1H), 1.66 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 149.5, 136.0, 129.4, 126.5, 126.2, 124.9, 122.5, 113.8, 105.4, 84.3, 28.2. GC-MS: *m/z* = 252.

10 (*tert*-butyl 6-chloro-1*H*-indole-1-carboxylate). Colorless oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.18 (s, 1H), 7.54 (d, *J* = 3.7 Hz, 1H), 7.42 (d, *J* = 8.5 Hz, 1H), 7.17 (dd, *J* = 8.4, 2.0 Hz, 1H), 6.50 (d, *J* = 3.8 Hz, 1H), 1.66 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 149.5, 135.6, 130.2, 129.1, 126.5, 123.3, 121.6, 115.6, 107.1, 84.2, 28.2. GC-MS: *m*/*z* = 252.

1p (*tert*-butyl 7-chloro-1*H*-indole-1-carboxylate). Colorless oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.53 (d, *J* = 3.6 Hz, 1H), 7.44 (d, *J* = 7.8 Hz, 1H), 7.30 (d, *J* = 7.8 Hz, 1H), 7.13 (t, *J* = 7.7 Hz, 1H), 6.54 (d, *J* = 3.7 Hz, 1H), 1.64 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 149.0, 134.2, 132.1, 129.5, 126.5, 123.8, 120.5, 119.7, 107.0, 84.4, 28.0. GC-MS: *m/z* = 252.

1q (*tert*-butyl 5-bromo-1*H*-indole-1-carboxylate). Colorless oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.01 (d, J = 9.1 Hz, 1H), 7.64 (d, J = 2.2 Hz, 1H), 7.56 (s, 1H), 7.37 (dd, J = 8.8, 2.0 Hz, 1H), 6.46 (d, J = 3.7 Hz, 1H), 1.65 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 149.4, 134.0, 132.3, 127.1, 123.6, 116.6, 116.0, 106.5, 84.1, 28.2. GC-MS: m/z = 296.

1r (*tert*-butyl 6-bromo-1*H*-indole-1-carboxylate). Colorless oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.35 (s, 1H), 7.53 (d, *J* = 3.7 Hz, 1H), 7.37 (d, *J* = 8.2 Hz, 1H), 7.31 (dd, *J* = 8.4, 1.8 Hz, 1H), 6.49 (d, *J* = 3.9 Hz, 1H), 1.66 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 149.4, 135.9, 129.4, 126.4, 125.9, 122.0, 118.4, 118.0, 107.1, 84.3, 28.2. GC-MS: *m*/*z* = 296.

1s (*tert*-butyl 5,6-dichloro-1*H*-indole-1-carboxylate). White solid. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.22 (s, 1H), 7.54 (d, *J* = 3.7 Hz, 1H), 7.49 (s, 1H), 6.40 (d, *J* = 3.7 Hz, 1H), 1.66 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 149.0, 133.8, 130.0, 128.0, 127.5, 126.6, 121.6, 116.8, 106.3, 84.5, 28.1. GC-MS: *m*/*z* = 286. m.p. = 74 ± 1°C.

1t (*tert*-butyl 4,7-dibromo-1*H*-indole-1-carboxylate). Colorless oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.54 (d, J = 3.7 Hz, 1H), 7.35 (d, J = 8.2 Hz, 1H), 7.22 (d, J = 8.3 Hz, 1H), 6.61 (d, J = 3.7 Hz, 1H), 1.64 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 148.2, 134.3, 134.0, 130.4, 130.0, 126.8, 114.1, 107.0, 106.9, 85.0, 28.0. GC-MS: m/z = 375.

1u (*tert*-butyl 6-chloro-5-fluoro-1*H*-indole-1-carboxylate). Colorless oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.22 (s, 1H), 7.58 (d, J = 3.7 Hz, 1H), 7.24 (d, J = 9.2 Hz, 1H), 6.47 (d, J = 3.7 Hz, 1H), 1.67 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 154.5 (d, J = 241.8 Hz), 149.2, 131.4, 129.7 (d, J = 9.1 Hz), 127.7, 117.6 (d, J = 20.6 Hz), 116.9, 107.2 (d, J = 23.4 Hz), 106.8 (d, J = 3.8 Hz), 84.5, 28.2. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -122.63. GC-MS: m/z = 270.

1v (*tert*-butyl 6-bromo-5-fluoro-1*H*-indole-1-carboxylate). White solid. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.38 (s, 1H), 7.58 (d, J = 4.1 Hz, 1H), 7.23 (d, J = 8.6 Hz, 1H), 6.47 (d, J = 3.7 Hz, 1H), 1.67 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 155.3 (d, J = 240.2 Hz), 149.2, 132.0, 130.5 (d, J = 8.7 Hz), 127.8, 119.7, 107.1 (d, J = 24.8 Hz), 106.9 (d, J = 3.8 Hz), 105.3 (d, J = 24.0 Hz) 84.5, 28.2. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -114.83. GC-MS: m/z = 314. m.p. = $70 \pm 1^{\circ}$ C.

1w (*tert*-butyl 2-methyl-1*H*-indole-1-carboxylate). Colorless oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.10 (d, *J* = 8.1 Hz, 1H), 7.41 (dd, *J* = 7.5, 1.6 Hz, 1H), 7.27 – 7.11 (m, 2H), 6.28 (s, 1H), 2.58 (s, 3H), 1.66 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 150.8, 137.9, 136.6, 129.5, 123.2, 122.7, 119.6, 115.6, 108.1, 83.7, 28.4, 17.2. GC-MS: *m*/*z* = 231.

5. NMR data of products

3a (1-(*tert*-butyl) 3,6-dimethyl 2-(trifluoromethyl)indoline-1,3,6-tricarboxylate). Colorless oil. 58.1 mg, 72% yield (PE:EA = 20:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.37 (s, 1H), 7.79 (dd, *J* = 7.9, 1.6 Hz, 1H), 7.49 (d, *J* = 7.8 Hz, 1H), 5.50 (q, *J* = 7.5 Hz, 1H), 4.18 (d, *J* = 2.2 Hz, 1H), 3.91 (s, 3H), 3.79 (s, 3H), 1.60 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 169.1, 166.6, 151.6, 142.4, 131.7, 131.1, 125.5, 125.4, 124.6 (q, *J* = 282.5 Hz), 117.5, 83.3, 62.0 (q, *J* = 31.9 Hz), 53.5, 52.4, 47.0, 28.2. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -77.00. HRMS (ESI): calculated m/z [M-H]⁻ for [C₁₈H₁₉F₃NO₆]⁻: 402.1170, found: 402.1174.

3b (1-(*tert*-butyl) 3-methyl 2-(trifluoromethyl)indoline-1,3-dicarboxylate). Colorless oil. 40.1 mg, 58% yield (PE:EA = 80:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.72 (s, 1H), 7.41 (d, *J* = 7.5 Hz, 1H), 7.29 (t, *J* = 7.8 Hz, 1H), 7.05 (t, *J* = 7.5 Hz, 1H), 5.46 (q, *J* = 7.3 Hz, 1H), 4.14 (s, 1H), 3.77 (s, 3H), 1.57 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 169.8, 151.9, 142.2, 129.5, 126.4, 125.5, 124.8 (q, *J* = 282.6 Hz), 123.7, 116.7, 82.8, 61.8 (q, *J* = 31.6 Hz), 53.3, 47.0, 28.3. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -76.96. HRMS (ESI): calculated m/z [M-H]⁻ for [C₁₆H₁₇F₃NO₄]⁻: 344.1115, found: 344.1110.

3c (1-(*tert*-butyl) 3,4-dimethyl 2-(trifluoromethyl)indoline-1,3,4-tricarboxylate). Colorless oil. 56.5 mg, 70% yield (PE:EA = 20:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.03 (s, 1H), 7.71 (d, *J* = 7.9 Hz, 1H), 7.40 (t, *J* = 8.0 Hz, 1H), 5.25 – 5.06 (m, 1H), 4.73 (d, *J* = 2.2 Hz, 1H), 3.89 (s, 3H), 3.75 (s, 3H), 1.57 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 170.0, 166.3, 151.5, 143.7, 129.7, 127.5, 125.1, 124.5 (q, *J* = 283.4 Hz), 120.5, 83.3, 62.9 (q, *J* = 33.9, 31.0 Hz), 53.1, 52.2, 47.2, 28.2. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -77.41. HRMS (ESI): calculated m/z [M-H]⁻ for [C₁₈H₁₉F₃NO₆]⁻: 402.1170, found: 402.1165.

3d (1-(*tert*-butyl) 3,5-dimethyl 2-(trifluoromethyl)indoline-1,3,5-tricarboxylate). Colorless oil. 41.9 mg, 52% yield (PE:EA = 20:1). ¹H NMR (400 MHz, Chloroform-d) δ 8.08 (s, 1H), 8.02 (dd, J = 8.6, 1.8 Hz, 1H), 7.79 (s, 1H), 5.49 (q, J = 7.1 Hz, 1H), 4.17 (s, 1H), 3.91 (s, 3H), 3.80 (s, 3H), 1.58 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 169.4, 166.5, 151.4, 146.0, 131.9, 127.1, 126.6, 125.7, 124.6 (q, J =282.6 Hz), 116.0, 83.6, 62.2 (q, J = 32.4 Hz), 53.5, 52.2, 46.6, 28.2. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -76.85. HRMS (ESI): calculated m/z [M-H]⁻ for [C₁₈H₁₉F₃NO₆]⁻: 402.1170, found: 402.1172.

3e (1-(*tert*-butyl) 3-methyl 5-cyano-2-(trifluoromethyl)indoline-1,3-dicarboxylate). Colorless oil. 53.3 mg, 72% yield (PE:EA = 20:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.86 (s, 1H), 7.71 (s, 1H), 7.61 (dd, J = 8.4, 1.7 Hz, 1H), 5.55 – 5.47 (m, 1H), 4.19 (s, 1H), 3.83 (s, 3H), 1.58 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 168.6, 151.0, 145.8, 134.3, 129.4, 127.3, 124.4 (q, J = 284.8 Hz), 118.8, 116.8, 107.0, 84.1, 62.0 (q, J = 32.5 Hz), 53.7, 46.4, 28.1. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -76.86. HRMS (ESI): calculated m/z [M-H]⁻ for [C₁₇H₁₆F₃N₂O₄]⁻: 369.1067, found: 369.1063.

3f (1-(*tert*-butyl) 3-methyl 6-cyano-2-(trifluoromethyl)indoline-1,3-dicarboxylate). Colorless oil. 59.3 mg, 80% yield (PE:EA = 20:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.06 (s, 1H), 7.53 (d, *J* = 7.8 Hz, 1H), 7.36 (dd, *J* = 8.0, 1.2 Hz, 1H), 5.49 (q, *J* = 7.1 Hz, 1H), 4.21 (s, 1H), 3.81 (s, 3H), 1.59 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 168.5, 151.2, 142.7, 131.2, 127.8, 126.4, 124.4 (q, *J* = 282.7 Hz), 119.6, 118.5, 113.4, 83.9, 61.8 (q, *J* = 31.8 Hz), 53.6, 47.1, 28.1. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ - 76.96. HRMS (ESI): calculated m/z [M-H]⁻ for [C₁₇H₁₆F₃N₂O₄]⁻: 369.1067, found: 369.1065.

3g (1-(*tert*-butyl) 3-methyl 7-cyano-2-(trifluoromethyl)indoline-1,3-dicarboxylate). White solid. 37.8 mg, 51% yield (PE:EA = 5:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.65 (d, *J* = 7.6 Hz, 1H), 7.59 (d, *J* = 7.8 Hz, 1H), 7.21 (t, *J* = 7.7 Hz, 1H), 5.49 (qd, *J* = 7.4, 1.6 Hz, 1H), 4.08 (s, 1H), 3.79 (s, 3H), 1.61 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 168.7, 151.8, 143.8, 134.1, 130.5, 129.8, 125.2, 124.3 (q, *J* = 283.8 Hz), 116.8, 103.8, 85.0, 63.8 (q, *J* = 32.9 Hz), 53.5, 46.9, 28.0. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -77.54 (d, *J* = 6.6 Hz). HRMS (ESI): calculated m/z [M-H]⁻ for [C₁₇H₁₆F₃N₂O₄]⁻: 369.1067, found: 369.1068. m.p. = 109 ± 1°C.

3h (1-(*tert*-butyl) 3-methyl 2,5-bis(trifluoromethyl)indoline-1,3-dicarboxylate). Colorless oil. 61.2 mg, 74% yield (PE:EA = 80:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.84 (s, 1H), 7.66 (s, 1H), 7.57 (d, *J* = 8.5 Hz, 1H), 5.51 (q, *J* = 6.4 Hz, 1H), 4.18 (s, 1H), 3.81 (s, 3H), 1.58 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 169.1, 151.4, 145.1, 127.2 (q, *J* = 3.9 Hz), 126.0 (q, *J* = 33.3 Hz), 124.6 (q, *J* = 282.4 Hz), 124.0 (q, *J* = 272.7 Hz), 122.8, 122.8, 116.5, 83.7, 62.2 (q, *J* = 32.4 Hz), 53.6, 46.7, 28.2. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -61.64 (s, 3H), -76.98 (s, 3H). HRMS (ESI): calculated m/z [M-H]⁻ for [C₁₇H₁₆F₆NO₄]⁻: 412.0989, found: 412.0986.

3i (1-(*tert*-butyl) 3-methyl 2,5-bis(trifluoromethyl)indoline-1,3-dicarboxylate). Colorless oil. 62.0 mg, 75% yield (PE:EA = 80:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.04 (s, 1H), 7.53 (d, *J* = 7.9 Hz, 1H), 7.33 (dd, *J* = 8.1, 1.6 Hz, 1H), 5.51 (q, *J* = 7.5 Hz, 1H), 4.20 (s, 1H), 3.79 (s, 3H), 1.59 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 169.0, 151.5, 142.7, 132.1 (q, *J* = 32.3 Hz), 130.0, 125.9, 124.6 (q, *J* = 282.2 Hz), 124.0 (q, *J* = 272.3 Hz), 120.8 (q, *J* = 4.1 Hz), 113.7, 83.6, 62.0 (q, *J* = 32.0 Hz), 53.5, 46.9, 28.1. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -62.47 (s, 3H), -77.03 (s, 3H). HRMS (ESI): calculated m/z [M-H]⁻ for [C₁₇H₁₆F₆NO₄]⁻: 412.0989, found: 412.0990.

3j (1-(*tert*-butyl) 3-methyl 5-methyl-2-(trifluoromethyl)indoline-1,3-dicarboxylate). Colorless oil. 23.0 mg, 32% yield (PE:EA = 80:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.58 (s, 1H), 7.20 (d, *J* = 1.6 Hz, 1H), 7.09 (dd, *J* = 8.3, 1.8 Hz, 1H), 5.43 (q, *J* = 7.5 Hz, 1H), 4.09 (d, *J* = 2.1 Hz, 1H), 3.77 (s, 3H), 2.32 (s, 3H), 1.57 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 169.9, 152.0, 139.9, 133.5, 130.1, 126.3, 125.9, 124.9 (q, *J* = 282.9 Hz), 116.4, 82.6, 61.9 (q, *J* = 32.5 Hz), 53.3, 47.0, 28.3, 21.0. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -76.98. HRMS (ESI): calculated m/z [M-H]⁻ for [C₁₇H₁₉F₃NO₄]⁻: 358.1271, found: 358.1275.

CO₂Me

3k (1-(*tert*-butyl) 3-methyl 6-methyl-2-(trifluoromethyl)indoline-1,3-dicarboxylate). Colorless oil. 25.2 mg, 35% yield (PE:EA = 80:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.60 (s, 1H), 7.28 (d, *J* = 7.7 Hz, 1H), 6.87 (d, *J* = 7.8 Hz, 1H), 5.44 (q, *J* = 6.7, 6.3 Hz, 1H), 4.10 (d, *J* = 2.1 Hz, 1H), 3.76 (s, 3H), 2.35 (s, 3H), 1.57 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 170.0, 152.0, 142.2, 139.8, 125.0, 124.8 (q, *J* = 282.8 Hz), 124.5, 123.4, 117.3, 82.7, 62.1 (q, *J* = 31.8 Hz), 53.2, 46.7, 28.2, 21.8. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -76.93. HRMS (ESI): calculated m/z [M-H]⁻ for [C₁₇H₁₉F₃NO₄]⁻: 358.1271, found: 358.1270.

31 (1-(*tert*-butyl) 3-methyl 5-fluoro-2-(trifluoromethyl)indoline-1,3-dicarboxylate). Colorless oil. 50.1 mg, 69% yield (PE:EA = 80:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.67 (s, 1H), 7.13 (dd, *J* = 7.8, 2.8 Hz, 1H), 6.99 (td, *J* = 8.9, 2.7 Hz, 1H), 5.47 (q, *J* = 6.9 Hz, 1H), 4.11 (d, *J* = 2.1 Hz, 1H), 3.79 (s, 3H), 1.57 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 169.2, 159.3 (d, *J* = 242.6 Hz), 151.8, 138.3, 127.8 (d, *J* = 6.0 Hz), 124.7 (q, *J* = 283.0 Hz), 117.5 (d, *J* = 8.4 Hz), 116.1 (d, *J* = 23.1 Hz), 112.9 (d, *J* = 25.2 Hz), 83.0, 62.1 (q, *J* = 31.7 Hz), 53.5, 46.9, 28.2. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -77.08 (s, 3H), -119.32 (s, 1H). HRMS (ESI): calculated m/z [M-H]⁻ for [C₁₆H₁₆F₄NO₄]⁻: 362.1021, found: 362.1023.

3m (1-(*tert*-butyl) 3-methyl 6-fluoro-2-(trifluoromethyl)indoline-1,3-dicarboxylate). Colorless oil. 43.6 mg, 60% yield (PE:EA = 80:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.48 (s, 1H), 7.33 (dd, *J* = 8.5, 5.4 Hz, 1H), 6.74 (td, *J* = 8.6, 2.5 Hz, 1H), 5.47 (q, *J* = 7.4 Hz, 1H), 4.10 (s, 1H), 3.78 (s, 3H), 1.58 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 169.6, 163.8 (d, *J* = 245.1 Hz), 151.5, 143.6 (d, *J* = 11.4 Hz), 126.2 (d, *J* = 9.9 Hz), 124.7 (q, *J* = 282.4 Hz), 121.7, 110.5 (d, *J* = 23.4 Hz), 104.9 (d, *J* = 29.5 Hz), 83.4, 62.5 (q, *J* = 32.0 Hz), 53.4, 46.3, 28.2. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -76.99 (s, 3H), -111.25 (s, 1H). HRMS (ESI): calculated m/z [M-H]⁻ for [C₁₆H₁₆F₄NO₄]⁻: 362.1021, found: 362.1024.

3n (1-(*tert*-butyl) 3-methyl 4-chloro-2-(trifluoromethyl)indoline-1,3-dicarboxylate). Colorless oil. 34.2 mg, 45% yield (PE:EA = 80:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.65 (s, 1H), 7.24 (t, *J* = 8.2 Hz, 1H), 7.04 (d, *J* = 8.1 Hz, 1H), 5.21 (q, *J* = 7.2 Hz, 1H), 4.20 (d, *J* = 1.8 Hz, 1H), 3.78 (s, 3H), 1.57 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 169.3, 151.5, 143.9, 131.2, 130.9, 124.4 (q, *J* = 283.5 Hz), 124.2, 115.0, 83.4, 62.9 (q, *J* = 32.4 Hz), 53.2, 46.3, 28.2. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -77.25. HRMS (ESI): calculated m/z [M-H]⁻ for [C₁₆H₁₆ClF₃NO₄]⁻: 378.0725, found: 378.0728.

30 (1-(*tert*-butyl) 3-methyl 6-chloro-2-(trifluoromethyl)indoline-1,3-dicarboxylate). Colorless oil. 47.8 mg, 63% yield (PE:EA = 80:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.79 (s, 1H), 7.32 (d, *J* = 8.2 Hz, 1H), 7.03 (dd, *J* = 8.2, 2.1 Hz, 1H), 5.46 (q, *J* = 7.1 Hz, 1H), 4.10 (s, 1H), 3.78 (s, 3H), 1.58 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 169.4, 151.5, 143.2, 135.5, 126.2, 124.7, 124.6 (q, *J* = 282.9 Hz), 123.8, 117.1, 83.4, 62.2 (q, *J* = 32.0 Hz), 53.4, 46.6, 28.2. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -77.25. δ -76.95. HRMS (ESI): calculated m/z [M-H]⁻ for [C₁₆H₁₆ClF₃NO₄]⁻: 378.0725, found: 378.0723.

3p (1-(*tert*-butyl) 3-methyl 7-chloro-2-(trifluoromethyl)indoline-1,3-dicarboxylate). White solid. 53.2 mg, 70% yield (PE:EA = 20:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.34 – 7.28 (m, 2H), 7.17 – 6.91 (m, 1H), 5.41 (qd, *J* = 7.6, 1.2 Hz, 1H), 4.02 (s, 1H), 3.76 (s, 3H), 1.56 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 169.3, 152.7, 140.3, 131.7, 131.2, 126.4, 125.3, 124.5 (q, *J* = 281.4 Hz), 123.5, 83.3, 64.8 (q, *J* = 32.6 Hz), 53.3, 47.8, 28.1. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -77.56 (d, *J* = 8.6 Hz). HRMS (ESI): calculated m/z [M-H]⁻ for [C₁₆H₁₆ClF₃NO₄]⁻: 378.0725, found: 378.0720. m.p. = 102 ± 1.5°C.

3q (1-(*tert*-butyl) 3-methyl 5-bromo-2-(trifluoromethyl)indoline-1,3-dicarboxylate). Colorless oil. 62.8 mg, 74% yield (PE:EA = 80:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.62 (s, 1H), 7.53 (d, *J* = 2.0 Hz, 1H), 7.41 (dd, *J* = 8.6, 2.1 Hz, 1H), 5.45 (q, *J* = 7.4 Hz, 1H), 4.11 (s, 1H), 3.80 (s, 3H), 1.56 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 169.2, 151.6, 141.4, 132.5, 128.5, 128.3, 124.6 (q, *J* = 282.5 Hz), 118.0, 116.1, 83.2, 62.0 (q, *J* = 32.1 Hz), 53.5, 46.7, 28.2. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -76.97. HRMS (ESI): calculated m/z [M-H]⁻ for [C₁₆H₁₆BrF₃NO₄]⁻: 422.0220, found: 422.0222.

3r (1-(*tert*-butyl) 3-methyl 6-bromo-2-(trifluoromethyl)indoline-1,3-dicarboxylate). Colorless oil. 47.5 mg, 56% yield (PE:EA = 80:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.95 (s, 1H), 7.29 – 7.23 (m, 1H), 7.19 (dd, *J* = 8.1, 1.8 Hz, 1H), 5.44 (q, *J* = 7.2 Hz, 1H), 4.08 (d, J = 2.2 Hz, 1H), 3.78 (s, 3H), 1.58 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 169.3, 151.5, 143.4, 126.8, 126.6, 125.3, 124.6 (q, J = 282.9 Hz), 123.4, 119.9, 83.4, 62.1 (q, J = 32.1 Hz), 53.4, 46.6, 28.2. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -76.93. HRMS (ESI): calculated m/z [M-H]⁻ for [C₁₆H₁₆BrF₃NO₄]⁻: 422.0220, found: 422.0224.

3s (1-(*tert*-butyl) 3-methyl 5,6-dichloro-2-(trifluoromethyl)indoline-1,3dicarboxylate). Colorless oil. 53.8 mg, 65% yield (PE:EA = 80:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.90 (s, 1H), 7.47 (s, 1H), 5.45 (q, *J* = 7.3 Hz, 1H), 4.10 (s, 1H), 3.81 (s, 3H), 1.57 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 168.8, 151.3, 141.6, 133.7, 127.1, 126.9, 126.2, 124.5 (q, *J* = 282.8 Hz), 118.3, 83.7, 62.3 (q, *J* = 32.6 Hz), 53.7, 46.5, 28.2. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -76.93. HRMS (ESI): calculated m/z [M-H]⁻ for [C₁₆H₁₅Cl₂F₃NO₄]⁻: 412.0335, found: 412.0339.

3t (1-(*tert*-butyl) 3-methyl 4,7-dibromo-2-(trifluoromethyl)indoline-1,3dicarboxylate). White solid. 62.4 mg, 62% yield (PE:EA = 70:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.36 (d, *J* = 8.5 Hz, 1H), 7.15 (d, *J* = 8.6 Hz, 1H), 5.20 (q, *J* = 7.3 Hz, 1H), 4.05 (s, 1H), 3.77 (s, 3H), 1.55 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 168.6, 152.5, 143.8, 135.4, 132.8, 130.1, 124.1 (q, *J* = 281.5 Hz), 118.1, 112.9, 83.9, 65.6 (q, *J* = 33.0 Hz), 53.2, 49.1, 28.0. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -77.62 (d, *J* = 8.4 Hz). HRMS (ESI): calculated m/z [M-H]⁻ for [C₁₆H₁₅Br₂F₃NO₄]⁻: 499.9325, found: 499.9320. m.p. = 120 ± 1°C.

3u (1-(*tert*-butyl) 3-methyl 6-chloro-5-fluoro-2-(trifluoromethyl)indoline-1,3dicarboxylate). Colorless oil. 35.0 mg, 44% yield (PE:EA = 80:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.85 (s, 1H), 7.21 (dd, *J* = 8.1, 1.0 Hz, 1H), 5.46 (q, *J* = 7.2 Hz, 1H), 4.10 (s, 1H), 3.80 (s, 3H), 1.57 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 168.8, 154.7 (d, *J* = 245.5 Hz), 151.5, 138.6, 126.0, 124.6 (q, *J* = 282.4 Hz), 122.0 (d, *J* = 19.1 Hz), 118.3, 113.7 (d, *J* = 24.6 Hz), 83.5, 62.2 (q, *J* = 32.5 Hz), 53.6, 46.7, 28.2. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -77.04 (s, 3H), -120.62 (s, 1H). HRMS (ESI): calculated m/z [M-H]⁻ for [C₁₆H₁₅ClF₄NO₄]⁻: 396.0631, found: 396.0628.

3v (1-(*tert*-butyl) 3-methyl 6-bromo-5-fluoro-2-(trifluoromethyl)indoline-1,3dicarboxylate). Colorless oil. 42.5 mg, 48% yield (PE:EA = 80:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.00 (s, 1H), 7.19 (d, J = 7.7 Hz, 1H), 5.46 (q, J = 7.3, 6.9 Hz, 1H), 4.08 (s, 1H), 3.80 (s, 3H), 1.57 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 168.7, 155.7 (d, J = 243.7 Hz), 151.5, 138.9, 126.9 (d, J = 3.0 Hz), 124.5 (q, J = 282.8 Hz), 121.0, 113.6 (d, J = 26.1 Hz), 109.9 (d, J = 22.3 Hz), 83.5, 62.2 (q, J = 32.3 Hz), 53.6, 46.7, 28.2. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -77.01 (s, 3H), -112.68 (s, 1H). HRMS (ESI): calculated m/z [M-H]⁻ for [C₁₆H₁₅BrF₄NO₄]⁻: 440.0126, found: 440.0128.

3w (1-(*tert*-butyl) 3-methyl 2-methyl-2-(trifluoromethyl)indoline-1,3-dicarboxylate). Colorless oil. 15.8 mg, 22% yield (PE:EA = 80:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.84 (d, *J* = 8.2 Hz, 1H), 7.34 – 7.22 (m, 1H), 7.11 (d, *J* = 7.0 Hz, 1H), 7.00 (td, *J* = 7.3, 0.8 Hz, 1H), 4.28 (s, 1H), 3.73 (s, 3H), 1.88 (s, 3H), 1.58 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 169.9, 151.6, 144.1, 129.3, 126.1, 123.9, 123.4, 116.7, 116.2, 82.7, 69.5 (q, *J* = 28.9 Hz), 54.0, 52.6, 28.4, 17.1. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -79.80. HRMS (ESI): calculated m/z [M-H]⁻ for [C₁₇H₁₉F₃NO₄]⁻: 358.1271, found: 358.1267.

5a (methyl 2-(trifluoromethyl)-2,3-dihydrobenzofuran-3-carboxylate). Colorless oil. 30.5 mg, 62% yield (PE:EA = 80:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.41 (d, *J* = 7.5 Hz, 1H), 7.24 (t, *J* = 7.8 Hz, 1H), 6.97 (t, *J* = 7.6 Hz, 1H), 6.91 (d, *J* = 8.2 Hz, 1H), 5.56 – 5.45 (m, 1H), 4.43 (d, *J* = 5.7 Hz, 1H), 3.83 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 169.7, 158.5, 130.3, 125.4, 123.8 (q, *J* = 280.0 Hz), 122.1, 110.5, 80.3 (q, *J* = 33.5 Hz), 53.3, 48.2. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -79.35 (d, *J* = 6.5 Hz). HRMS (ESI): calculated m/z [M-H]⁻ for [C₁₁H₈F₃O₃]⁻: 245.0431, found: 245.0427.

5b (dimethyl 2-(trifluoromethyl)-2,3-dihydrobenzofuran-3,6-dicarboxylate). Colorless oil. 35.3 mg, 58% yield (PE:EA = 20:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.70 (dd, *J* = 7.8, 1.4 Hz, 1H), 7.55 (d, *J* = 1.4 Hz, 1H), 7.48 (d, *J* = 7.8 Hz, 1H), 5.56 (dt, *J*

= 12.6, 6.6 Hz, 1H), 4.46 (d, J = 5.5 Hz, 1H), 3.91 (s, 3H), 3.86 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 168.9, 166.3, 158.7, 132.6, 127.2, 125.3, 123.9, 123.6 (q, J = 280.3 Hz), 111.4, 80.7 (q, J = 33.7 Hz), 53.6, 52.5, 48.1. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -79.38 (d, J = 6.5 Hz). HRMS (ESI): calculated m/z [M-H]⁻ for [C₁₃H₁₀F₃O₅]⁻: 303.0486, found: 303.0490.

5c (methyl 5-cyano-2-(trifluoromethyl)-2,3-dihydrobenzofuran-3-carboxylate). White solid. 27.1 mg, 50% yield (PE:EA = 20:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.74 (d, *J* = 1.5 Hz, 1H), 7.60 (dd, *J* = 8.7, 1.8 Hz, 1H), 7.01 (d, *J* = 8.6 Hz, 1H), 5.61 (p, *J* = 6.5 Hz, 1H), 4.45 (d, *J* = 5.5 Hz, 1H), 3.89 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 168.4, 161.7, 135.3, 130.0, 123.9, 123.3 (q, *J* = 280.1 Hz), 118.6, 111.6, 106.1, 81.2 (q, *J* = 34.4 Hz), 53.9, 47.5. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ - 79.32 (d, *J* = 6.5 Hz). HRMS (ESI): calculated m/z [M-H]⁻ for [C₁₂H₇F₃NO₃]⁻: 270.0383, found: 270.0384. m.p. = 118 ± 1°C.

5d (methyl 6-bromo-2-(trifluoromethyl)-2,3-dihydrobenzofuran-3-carboxylate). Colorless oil. 29.9 mg, 46% yield (PE:EA = 80:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.27 (dd, *J* = 8.1, 1.1 Hz, 1H), 7.12 (dd, *J* = 8.2, 1.8 Hz, 1H), 7.08 (d, *J* = 1.7 Hz, 1H), 5.74 – 5.37 (m, 1H), 4.35 (dd, *J* = 5.5, 1.2 Hz, 1H), 3.84 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 169.1, 159.3, 126.5, 125.4, 123.6, 123.6 (q, *J* = 279.9 Hz), 121.5, 114.2, 80.9 (q, *J* = 33.8 Hz), 53.5, 47.8. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -64.98. HRMS (ESI): calculated m/z [M-H]⁻ for [C₁₁H₇BrF₃O₃]⁻: 322.9533, found: 322.9538.

5e (methyl 2-(trifluoromethyl)-2,3-dihydrobenzo[b]thiophene-3-carboxylate). Colorless oil. 10.5 mg, 20% yield (PE:EA = 80:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.40 (d, J = 7.6 Hz, 1H), 7.23 (d, J = 7.3 Hz, 1H), 7.18 (d, J = 6.6 Hz, 1H), 7.11 (td, J = 7.3, 1.4 Hz, 1H), 4.82 (qd, J = 8.5, 3.5 Hz, 1H), 4.50 (d, J = 3.3 Hz, 1H), 3.80 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 169.9, 138.9, 134.4, 129.5, 126.3, 125.9 (q, J = 277.2 Hz), 125.3, 122.0, 53.4, 53.3, 51.0 (q, J = 31.1 Hz). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -73.02 (d, J = 8.7 Hz). HRMS (ESI): calculated m/z [M-H]⁻ for [C₁₁H₈F₃O₂S]⁻: 261.0202, found: 261.0198.

5f (methyl 2-(trifluoromethyl)-2,3-dihydrobenzo[b]thiophene-3-carboxylate). Colorless oil. 16.0 mg, 25% yield (PE:EA = 20:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.06 (t, J = 1.2 Hz, 1H), 7.93 (dd, J = 7.9, 1.7 Hz, 1H), 7.26 (d, J = 8.7 Hz, 1H), 4.87 (qd, J = 8.3, 3.0 Hz, 1H), 4.53 (d, J = 3.1 Hz, 1H), 3.91 (s, 3H), 3.82 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 169.4, 166.5, 145.4, 134.9, 131.0, 127.8, 127.4, 125.7 (q, J = 278.2 Hz), 121.8, 53.6, 52.8, 52.4, 51.6 (q, J = 31.3 Hz). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -73.16 (d, J = 7.1 Hz). HRMS (ESI): calculated m/z [M-H]⁻ for [C₁₃H₁₀F₃O₄S]⁻: 319.0257, found: 319.0261.

7a (1-(*tert*-butyl) 3,6-dimethyl 2-(difluoromethyl)indoline-1,3,6-tricarboxylate). Colorless oil. 50.1 mg, 65% yield (PE:EA = 20:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.32 (s, 1H), 7.74 (d, J = 8.0 Hz, 1H), 7.47 (d, J = 7.9 Hz, 1H), 6.26 (t, J = 55.2 Hz, 1H), 5.18 (d, J = 25.1 Hz, 1H), 4.35 (d, J = 3.6 Hz, 1H), 3.90 (s, 3H), 3.80 (s, 3H), 1.62 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 170.0, 166.7, 151.6, 142.2, 131.5, 125.4, 125.0, 116.6, 113.2 (t, J = 243.9 Hz), 83.3, 62.7 (dd, J = 31.1, 20.8 Hz), 53.3, 52.3, 44.4, 28.4. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -126.95 (dd, J = 437.3, 289.1 Hz, 1H), -135.82 (dd, J = 672.1, 291.0 Hz, 1H). HRMS (ESI): calculated m/z [M-H]⁻ for [C₁₈H₂₀F₂NO₆]⁻: 384.1264, found: 384.1270.

7b (1-(*tert*-butyl) 3-methyl 2-(difluoromethyl)-5-isocyanoindoline-1,3-dicarboxylate). Colorless oil. 28.2 mg, 40% yield (PE:EA = 20:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.78 (s, 1H), 7.70 (s, 1H), 7.57 (dd, J = 8.5, 1.8 Hz, 1H), 6.24 (t, J = 55.8 Hz, 1H), 5.18 (d, J = 23.5 Hz, 1H), 4.33 (d, J = 3.3 Hz, 1H), 3.83 (s, 3H), 1.60 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 169.6, 151.1, 145.7, 134.1, 129.4, 127.7, 119.0, 116.0, 112.9 (t, J = 246.4 Hz), 106.5, 84.2, 62.8 (dd, J = 31.3, 20.6 Hz), 53.5, 43.9, 28.3. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -127.07 (t, J = 341.3 Hz, 1H), -135.81 (dd, J = 643.7, 298.6 Hz, 1H). HRMS (ESI): calculated m/z [M-H]⁻ for [C₁₇H₁₇F₂N₂O₄]⁻: 351.1162, found: 351.1161.

7c (1-(*tert*-butyl) 3-methyl 7-chloro-2-(difluoromethyl)indoline-1,3-dicarboxylate). Colorless oil. 22.4 mg, 31% yield (PE:EA = 20:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.34 – 7.23 (m, 2H), 7.10 – 7.00 (m, 1H), 5.93 (ddd, *J* = 57.0, 54.6, 3.0 Hz, 1H), 5.15 (dddd, *J* = 21.9, 4.9, 2.9, 1.6 Hz, 1H), 4.05 (s, 1H), 3.75 (s, 3H), 1.56 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 170.1, 153.0, 140.1, 132.5, 131.0, 126.0, 124.8, 123.6, 114.4 (dd, J = 247.2, 245.0 Hz), 83.0, 65.5 (dd, J = 29.4, 22.1 Hz), 53.1, 46.1, 28.2. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -125.56 (ddd, J = 288.1, 54.6, 5.4 Hz, 1H), -133.70 (ddd, J = 286.2, 56.5, 21.8 Hz, 1H). HRMS (ESI): calculated m/z [M-H]⁻ for [C₁₆H₁₇ClF₂NO₄]⁻: 360.0819, found: 360.0816.

7d (1-(*tert*-butyl) 3-methyl 2-(difluoromethyl)-7-methylindoline-1,3-dicarboxylate). Colorless oil. 19.1 mg, 28% yield (PE:EA = 40:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.23 (d, J = 7.3 Hz, 1H), 7.10 (d, J = 7.7 Hz, 1H), 7.03 (t, J = 7.5 Hz, 1H), 6.05 – 5.61 (m, 1H), 5.23 – 5.05 (m, 1H), 3.99 (s, 1H), 3.73 (s, 3H), 2.29 (s, 3H), 1.55 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 170.7, 153.7, 141.1, 131.8, 129.8, 129.0, 125.2, 122.5, 114.5 (t, J = 245.7 Hz), 82.2, 65.1 (dd, J = 28.4, 23.1 Hz), 53.0, 46.1, 28.3, 20.0. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -125.50 (ddd, J = 286.0, 54.3, 6.5 Hz, 1H), -132.50 (ddd, J = 285.8, 56.5, 19.6 Hz, 1H). HRMS (ESI): calculated m/z [M-H]⁻ for [C₁₇H₂₀F₂NO₄]⁻: 340.1366, found: 340.1371.

7e (methyl 2-(difluoromethyl)-2,3-dihydrobenzofuran-3-carboxylate). Colorless oil. 20.1 mg, 44% yield (PE:EA = 80:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.40 (dt, *J* = 7.5, 1.4 Hz, 1H), 7.25 – 7.20 (m, 1H), 6.99 – 6.92 (m, 1H), 6.87 (d, *J* = 8.1 Hz, 1H), 5.95 (ddd, *J* = 55.9, 54.4, 3.4 Hz, 1H), 5.34 (dddd, *J* = 15.3, 7.6, 5.9, 3.5 Hz, 1H), 4.40 (d, *J* = 5.8 Hz, 1H), 3.82 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 170.4, 158.7, 130.1, 125.5, 122.9, 121.8, 113.6 (t, *J* = 244.6 Hz), 110.4, 81.7 (dd, *J* = 27.8, 25.0 Hz), 53.2, 47.0. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -128.75 (ddd, *J* = 295.2, 54.5, 7.5 Hz, 1H), -133.19 (ddd, *J* = 292.9, 55.5, 15.3 Hz, 1H). HRMS (ESI): calculated m/z [M-H]⁻ for [C₁₁H₉F₂O₃]⁻: 227.0525, found: 227.0522.

7f (dimethyl 2-(difluoromethyl)-2,3-dihydrobenzofuran-3,6-dicarboxylate). Colorless oil. 35.5 mg, 62% yield (PE:EA = 20:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.67 (dd, J = 7.9, 1.4 Hz, 1H), 7.50 (d, J = 1.4 Hz, 1H), 7.46 (dd, J = 7.8, 1.2 Hz, 1H), 5.99 (ddd, J = 55.9, 54.1, 3.1 Hz, 1H), 5.40 (dddd, J = 16.1, 7.0, 5.8, 2.9 Hz, 1H), 4.45 (dd, J = 5.8, 1.1 Hz, 1H), 3.90 (s, 3H), 3.83 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 169.6, 166.4, 158.8, 132.3, 128.0, 125.3, 123.5, 113.3 (t, J = 245.4 Hz), 111.2, 82.1 (dd, J = 28.6, 24.3 Hz), 53.3, 52.4, 46.7. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -129.29 (ddd, J = 291.4, 54.5, 7.5 Hz, 1H), -133.69 (ddd, J = 294.8, 56.1, 16.3 Hz, 1H). HRMS (ESI): calculated m/z [M-H]⁻ for [C₁₃H₁₁F₂O₅]⁻: 285.0580, found: 285.0582.

9a (1-(*tert*-butyl) 6-methyl 3-(hydroxy(phenyl)methyl)-2-(trifluoromethyl)indoline-1,6-dicarboxylate) Colorless oil. 58.7 mg, 65% yield (PE:EA = 5:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.36 (s, 1H), 7.57 (dd, *J* = 7.8, 1.6 Hz, 1H), 7.40 – 7.13 (m, 6H), 6.58 (s, 1H), 5.10 (s, 1H), 4.69 (d, *J* = 7.3 Hz, 1H), 3.87 (s, 3H), 3.59 (dd, *J* = 7.3, 1.4 Hz, 1H), 1.56 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 167.0, 151.9, 143.3, 140.1, 131.0, 128.9, 128.8, 126.9, 126.4, 125.5, 124.9, 123.6, 117.0, 82.8, 75.4, 62.2, 52.3, 49.6, 28.3. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -76.93. HRMS (ESI): calculated m/z [M-H]⁻ for [C₂₃H₂₃F₃NO₅]⁻: 450.1534, found: 450.1535.

3b' (Methyl -1-acetyl-2-(trifluoromethyl) indoline-3-carboxylate) Colorless oil. 11.5 mg, 20% yield (PE:EA = 10:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.0 (s, 1H), 7.5 (d, *J* = 7.5 Hz, 1H), 7.3 (td, *J* = 7.9, 1.4 Hz, 1H), 7.1 (td, *J* = 7.5, 1.2 Hz, 1H), 5.4 (s, 1H), 4.2 (s, 1H), 3.8 (s, 3H), 2.4 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 169.5, 169.4, 142.1, 129.6, 126.1, 124.9, 123.3, 53.4, 23.5. (Due to the small amount of the product, the peaks could not completely display) ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -76.32. HRMS (ESI): calculated m/z [M-H]⁻ for [C₁₃H₁₁F₃NO₃]⁻: 286.0696, found: 286.0670.

6. NMR spectra of starting materials

¹H NMR and ¹³C NMR spectrum of **1a**

 $^1\mathrm{H}$ NMR and $^{13}\mathrm{C}$ NMR spectrum of 1c

 $^1\mathrm{H}$ NMR and $^{13}\mathrm{C}$ NMR spectrum of 1d

¹H NMR and ¹³C NMR spectrum of **1e**

 $^1\mathrm{H}$ NMR and $^{13}\mathrm{C}$ NMR spectrum of 1f

 $^1\mathrm{H}$ NMR and $^{13}\mathrm{C}$ NMR spectrum of 1g

 $^1\mathrm{H}$ NMR and $^{13}\mathrm{C}$ NMR spectrum of 1h

---60.88

¹⁹F NMR spectrum of **1h**

¹H NMR and ¹³C NMR spectrum of **1i**

¹⁹F NMR spectrum of **1i**

¹H NMR and ¹³C NMR spectrum of **1**j

 $^1\mathrm{H}$ NMR and $^{13}\mathrm{C}$ NMR spectrum of 1k

¹H NMR and ¹³C NMR spectrum of **11**

¹⁹F NMR spectrum of **11**

 $^1\mathrm{H}$ NMR and $^{13}\mathrm{C}$ NMR spectrum of 1m

¹⁹F NMR spectrum of **1m**

 $^1\mathrm{H}$ NMR and $^{13}\mathrm{C}$ NMR spectrum of 1n

¹H NMR and ¹³C NMR spectrum of **10**

 $^1\mathrm{H}$ NMR and $^{13}\mathrm{C}$ NMR spectrum of 1p

 $^1\mathrm{H}$ NMR and $^{13}\mathrm{C}$ NMR spectrum of 1q

 $^1\mathrm{H}$ NMR and $^{13}\mathrm{C}$ NMR spectrum of 1r

¹H NMR and ¹³C NMR spectrum of **1s**

¹H NMR and ¹³C NMR spectrum of 1t

 $^1\mathrm{H}$ NMR and $^{13}\mathrm{C}$ NMR spectrum of 1u

 $\underbrace{+122.61}_{-122.63}$

¹⁹F NMR spectrum of **1u**

 $^1\mathrm{H}$ NMR and $^{13}\mathrm{C}$ NMR spectrum of 1v

€-114.82 €-114.84 €-114.86

¹⁹F NMR spectrum of **1v**

 $^1\mathrm{H}$ NMR and $^{13}\mathrm{C}$ NMR spectrum of 1w

7. NMR Spectra of Products

¹H NMR and ¹³C NMR spectrum of **3a**

¹⁹F NMR spectrum of **3a**

 $^1\mathrm{H}$ NMR and $^{13}\mathrm{C}$ NMR spectrum of $\mathbf{3b}$

-76.96

¹⁹F NMR spectrum of **3b**

 $^1\mathrm{H}$ NMR and $^{13}\mathrm{C}$ NMR spectrum of 3c

--77.41

¹⁹F NMR spectrum of **3c**

 $^1\mathrm{H}$ NMR and $^{13}\mathrm{C}$ NMR spectrum of $\mathbf{3d}$

--76.85

¹⁹F NMR spectrum of **3d**

¹H NMR and ¹³C NMR spectrum of 3e

---76.86

¹⁹F NMR spectrum of **3e**

 $^1\mathrm{H}$ NMR and $^{13}\mathrm{C}$ NMR spectrum of 3f

¹⁹F NMR spectrum of **3f**

 $^1\mathrm{H}$ NMR and $^{13}\mathrm{C}$ NMR spectrum of 3g

¹⁹F NMR spectrum of **3g**

 $^1\mathrm{H}$ NMR and $^{13}\mathrm{C}$ NMR spectrum of 3h

¹⁹F NMR spectrum of **3h**

¹H NMR and ¹³C NMR spectrum of **3i**

¹⁹F NMR spectrum of **3i**

¹H NMR and ¹³C NMR spectrum of **3**j

-76.98

¹⁹F NMR spectrum of **3**j

 $^1\mathrm{H}$ NMR and $^{13}\mathrm{C}$ NMR spectrum of 3k

---76.93

¹⁹F NMR spectrum of **3k**

¹H NMR and ¹³C NMR spectrum of **3**l

¹⁹F NMR spectrum of **3**l

¹H NMR and ¹³C NMR spectrum of **3m**

¹⁹F NMR spectrum of **3m**

 $^1\mathrm{H}$ NMR and $^{13}\mathrm{C}$ NMR spectrum of 3n

--77.25

¹⁹F NMR spectrum of **3n**

¹H NMR and ¹³C NMR spectrum of **30**

¹⁹F NMR spectrum of **30**

¹H NMR and ¹³C NMR spectrum of **3p**

<-77.55 <-77.57

¹⁹F NMR spectrum of **3p**

 $^1\mathrm{H}$ NMR and $^{13}\mathrm{C}$ NMR spectrum of 3q

-76.97

¹⁹F NMR spectrum of **3q**

¹H NMR and ¹³C NMR spectrum of 3r

¹⁹F NMR spectrum of **3r**

¹H NMR and ¹³C NMR spectrum of 3s

---76.93

¹⁹F NMR spectrum of **3s**

¹H NMR and ¹³C NMR spectrum of 3t

<-77.61</td>

¹⁹F NMR spectrum of **3t**

 $^1\mathrm{H}$ NMR and $^{13}\mathrm{C}$ NMR spectrum of $\boldsymbol{3u}$

¹⁹F NMR spectrum of **3u**

 $^1\mathrm{H}$ NMR and $^{13}\mathrm{C}$ NMR spectrum of 3v

¹⁹F NMR spectrum of **3v**

 $^1\mathrm{H}$ NMR and $^{13}\mathrm{C}$ NMR spectrum of $\boldsymbol{3w}$

¹⁹F NMR spectrum of **3w**

¹H NMR and ¹³C NMR spectrum of **5a**

¹⁹F NMR spectrum of **5a**

 $^1\mathrm{H}$ NMR and $^{13}\mathrm{C}$ NMR spectrum of $\mathbf{5b}$

¹⁹F NMR spectrum of **5b**

 $^1\mathrm{H}$ NMR and $^{13}\mathrm{C}$ NMR spectrum of $\mathbf{5c}$

¹⁹F NMR spectrum of **5c**

 $^1\mathrm{H}$ NMR and $^{13}\mathrm{C}$ NMR spectrum of $\mathbf{5d}$

---64.98

¹⁹F NMR spectrum of **5d**

 $^1\mathrm{H}$ NMR and $^{13}\mathrm{C}$ NMR spectrum of 5e

¹⁹F NMR spectrum of **5e**

 $^1\mathrm{H}$ NMR and $^{13}\mathrm{C}$ NMR spectrum of $\mathbf{5f}$

<-73.15 <-73.17

¹⁹F NMR spectrum of **5**f

¹H NMR and ¹³C NMR spectrum of **7a**

¹⁹F NMR spectrum of **7a**

 $^1\mathrm{H}$ NMR and $^{13}\mathrm{C}$ NMR spectrum of 7b

¹⁹F NMR spectrum of **7b**

 $^1\mathrm{H}$ NMR and $^{13}\mathrm{C}$ NMR spectrum of 7c

¹⁹F NMR spectrum of **7c**

 $^1\mathrm{H}$ NMR and $^{13}\mathrm{C}$ NMR spectrum of 7d

¹⁹F NMR spectrum of **7d**

 $^1\mathrm{H}$ NMR and $^{13}\mathrm{C}$ NMR spectrum of 7e

¹⁹F NMR spectrum of **7e**

 $^1\mathrm{H}$ NMR and $^{13}\mathrm{C}$ NMR spectrum of $\mathbf{7f}$

¹⁹F NMR spectrum of **7**f

¹H NMR and ¹³C NMR spectrum of **9a**

---76.93

¹⁹F NMR spectrum of **9a**

 $^1\mathrm{H}$ NMR and $^{13}\mathrm{C}$ NMR spectrum of 3b'

---76.32

¹⁹F NMR spectrum of **3b'**

8. References

- 1 A. Kondoh, R. Ojima and M. Terada, Org. Lett., 2021, 23, 7894-7899.
- W.-J. Zhou, Z.-H. Wang, L.-L. Liao, Y.-X. Jiang, K.-G. Cao, T. Ju, Y. Li, G.-M.
 Cao and D.-G. Yu, *Nat. Commun.*, 2020, 11, 3263.