Electronic Supplementary Information (ESI)

Production of monocyclic aromatic hydrocarbons by segmented in-situ and ex-situ two-stage coupled catalytic co-pyrolysis of biomass and waste plastics

Xiaojie Tian^a, Xinyu Bian^a, Zihong Zeng^a, Jiamin Xu^a, Anqi Dai^a, Linyao Ke^a, Yuan Zeng^a, Qiuhao Wu^a, Yuhuan Liu^{a, b}, Kirk Cobb^b, Roger Ruan^{a, b}, Yunpu Wang^{a, b*}

^a State Key Laboratory of Food Science and Technology, Engineering Research Center
 for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang
 330047, China

^b Center for Biorefining and Department of Bioproducts and Biosystems Engineering University of Minnesota, 1390 Eckles Ave., St. Paul MN 55108, USA

 * Corresponding authors at: Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, China.
 E-mail address: wangyunpu@ncu.edu.cn (Yunpu Wang)

Table of Contents

Table. S1. Product yields under different experimental conditions.

 Table. S2. Relative content of the main component types of the liquid products under

 different experimental conditions.

 Table. S3. Carbon number distribution of liquid products under different experimental

 conditions (Unit: wt%).

 Table. S4. Carbon number distribution of aliphatic hydrocarbons in liquid products

 under different experimental conditions. (Unit: wt%).

Table. S5. Main compounds identified in liquid products. (Unit: wt%).

Fig. S1. Dimensioned schematic diagram of the segmented co-pyrolysis device. (1)

Pyrolysis raw material heating device; (2) Catalyst heating device; (3) Ex-situ catalyst

(globosity HZSM-5); (4) Quartz boat with CAS samples; (5) Quartz boat with LDPE samples.

	Solid	Solid products Liquid products		C = = (===t	0/)	Way (wt0/)		
	(wt%)		(wt%)		Gas (wi	70)	wax (w	1%)
CAS	18.21	±2.17	32.00	±1.49	49.80	±1.69	-	
3Fe/CAS	19.53	±1.37	33.00	±1.82	47.48	±1.77	-	
5Fe/CAS	8.35	±1.23	35.00	± 1.01	56.65	±0.59	-	
7Fe/CAS	4.29	±0.46	33.00	±1.28	62.71	±1.75	-	
10Fe/CAS	5.97	±0.59	38.00	±1.07	56.03	±1.55	-	
LDPE	10.07	±1.66	34.02	±1.19	55.91	±0.80	-	
3M/LDPE	8.12	±1.33	41.00	±1.56	50.88	±1.52	-	
5M/LDPE	11.90	± 1.83	41.00	±1.37	47.10	±0.91	-	
7M/LDPE	8.46	±1.21	39.00	±1.70	52.54	±1.72	-	
10M/LDPE	10.15	± 0.97	38.00	±1.58	51.85	±1.76	-	
Ι	10.54	±2.10	52.00	±1.62	37.46	±0.97		
II	11.88	±1.29	46.00	±1.25	42.12	±1.11	-	
III	0.00		42.00	±1.15	58.00	±1.25	-	
IV	0.00		46.00	±1.29	54.00	±1.20	-	
V	6.76	±0.57	41.00	±1.34	52.24	±1.75	-	
VI (Segmented co-pyrolysis)	7.25	±2.22	39.00	±1.77	51.75	±2.67	2.00	±0.43
Traditional mixed co-	15.11	±2.01	41.29	±1.14	27.12	±3.83	16.49	±3.05
pyrolysis								

 Table. S1. Product yields under different experimental conditions.

	Ketones	Acids	Phenols	Phenols Furans		Xylene	Alkylbenzene	MAHs	Olefins	Alkanes	PAHs
	(wt%)	(wt%)	(wt%)	(wt%)	(wt%)	(wt%)	(wt%)	(wt%)	(wt%)	(wt%)	(wt%)
CAS	5.65 ± 0.42	14.58 ± 0.86	37.86±3.50	33.06±1.73	0.27±0.10	0.08 ± 0.02	0.92 ± 0.19	1.08 ± 0.25	0.16±0.05	1.66 ± 0.61	0.27±0.16
3Fe/CAS	5.04 ± 0.18	5.17±1.09	28.34±1.99	40.88±2.15	0.87 ± 0.20	0.72±0.17	2.47±0.35	2.47±0.19	3.43±0.42	3.30±0.45	0.00
5Fe/CAS	$6.43{\pm}0.98$	3.66±1.10	33.82±0.35	42.38±2.12	0.80 ± 0.42	1.02 ± 0.27	2.03±1.09	2.03 ± 0.40	2.75±0.13	2.62±0.44	0.00
7Fe/CAS	3.96 ± 0.39	9.67±1.54	16.29±1.37	61.08 ± 2.96	0.28±0.13	0.48 ± 0.13	1.52 ± 0.38	1.64 ± 0.36	2.44 ± 0.35	1.72±0.53	0.49 ± 0.30
10Fe/CAS	5.16±2.08	$11.10{\pm}1.40$	27.97±1.61	45.42±1.37	1.10±0.38	2.47±0.25	5.25±0.59	5.36±0.49	2.13±0.31	1.18±0.22	0.43 ± 0.14
LDPE	5.73±0.45	7.73 ± 0.48	37.86±1.32	13.56±1.45	3.23±0.19	8.80±0.75	19.80±1.86	20.70±1.57	4.60±0.55	5.43±0.42	1.74 ± 0.14
3M/LDPE	0.30±0.12	0.00	6.77±0.61	1.60±0.24	10.27±0.85	21.57±2.79	61.18±3.49	67.09±1.78	11.71±1.12	2.86 ± 0.55	7.20 ± 0.24
5M/LDPE	0.00	0.00	7.73±0.67	1.03 ± 0.25	$11.00{\pm}1.02$	23.89±1.89	66.62 ± 2.88	72.75±1.32	8.57±1.59	0.00	8.93±0.51
7M/LDPE	0.00	0.00	8.81±0.65	1.58±0.23	9.91±0.85	22.86±1.68	61.59±1.99	67.11±2.59	13.58±1.14	1.05 ± 0.36	6.04 ± 0.36
10M/LDPE	$0.30{\pm}0.08$	0.00	9.64±0.65	1.92 ± 0.30	8.61±1.85	19.83±2.47	57.26±1.28	64.02±1.64	15.62±1.36	0.41 ± 0.26	$6.47{\pm}0.38$
Ι	2.25±0.15	4.07±0.23	$36.82{\pm}0.78$	53.10 ±1.67	0.04 ± 0.03	0.04 ± 0.01	0.08 ± 0.01	0.46 ± 0.16	$0.10{\pm}0.10$	0.23±0.11	0.71 ± 0.30
II	3.96 ± 0.39	9.67±1.54	16.29±1.37	61.08 ±2.96	0.28±0.13	0.48 ± 0.13	1.52 ± 0.38	1.64 ± 0.36	2.44 ± 0.35	1.72±0.53	$0.49{\pm}0.30$
III	0.00	0.00	0.00	0.00	0.00	0.50±0.23	1.93 ± 0.63	1.93±0.63	75.61±4.77	19.88±4.06	0.00
IV	0.00	0.00	0.00	0.00	19.72±0.62	41.73±1.47	94.08±2.10	94.99±2.42	0.00	0.00	5.01 ± 0.45
V	0.00	0.00	2.14±0.60	3.18±0.94	5.43 ± 0.40	15.84±1.60	$51.08 {\pm} 2.04$	55.80±1.93	13.31±0.75	13.89±1.25	4.17±0.79
VI (Segmented co-	$0.20{\pm}0.20$	0.00	0.26±0.12	2.63±0.85	11.52±1.29	27.15±3.84	68.39±6.37	72.01±4.54	11.25±3.56	2.35±1.09	8.83±1.87
pyrolysis)											
Traditional mixed co-	0.00	0.00	1.07 ± 0.32	3.66±0.24	4.90±0.15	$18.42{\pm}1.78$	53.67±2.28	58.48±2.21	8.83±0.84	14.77±2.15	7.26±3.21
pyrolysis											

Table. S2. Relative content of the main component types of the liquid products under different experimental conditions.

		3Ee/	5Ee/	7Ee/	10Fe/		3M/	5M/	7M/	10M/						VI	Traditional
	CAS					LDPE					Ι	II	III	IV	V	(Segmented	mixed co-
		CAS	CAS	CAS	CAS		LDFE	LDFE	LDPE	LDPE						co-pyrolysis)	pyrolysis
C5	23.52	34.18	34.44	49.34	38.16	12.54	1.34	1.03	1.17	1.19	35.55	49.34	0.00	0.00	1.76	1.02	2.47
C6	19.08	19.18	21.62	17.36	21.09	11.40	3.34	3.43	2.53	2.36	19.84	17.36	1.47	0.91	2.00	1.89	1.72
C7	20.65	11.63	9.12	4.39	8.92	13.77	17.50	16.29	16.30	14.67	7.08	4.39	4.86	19.72	10.01	16.81	6.27
C8	8.83	4.74	5.42	2.28	3.90	19.93	34.37	34.88	36.24	34.02	8.16	2.28	10.84	47.86	25.59	36.65	24.49
С9	3.93	1.42	1.89	1.08	1.91	9.22	19.37	20.82	21.06	21.58	3.68	1.08	14.75	22.13	21.03	20.29	20.72
C10	2.25	7.77	10.46	7.55	6.76	10.27	12.38	13.17	13.51	14.63	11.36	7.55	20.49	6.26	12.11	8.26	11.71
C11	0.69	1.47	6.25	1.21	4.28	4.32	7.35	7.41	6.87	7.35	7.16	1.21	9.74	3.12	7.57	4.95	8.87
C12	1.00	5.28	1.51	0.96	0.48	1.00	2.57	2.20	1.71	2.65	0.12	0.96	10.22	0.00	3.11	3.00	4.42
C13	0.15	0.11	0.96	0.27	0.38	0.45	0.32	0.77	0.34	1.09	0.00	0.27	7.41	0.00	1.67	0.56	1.71
C14	0.71	0.68	1.30	0.77	0.08	0.89	0.26	0.00	0.00	0.00	0.59	0.77	2.07	0.00	2.13	0.00	2.65
C15	0.00	0.83	0.75	0.15	0.00	1.14	0.22	0.00	0.00	0.00	0.67	0.15	2.38	0.00	1.61	0.06	2.16
C16	0.00	0.99	0.52	0.60	0.41	0.84	0.33	0.00	0.28	0.00	0.10	0.60	1.05	0.00	1.30	0.00	1.37
C17	0.45	1.34	0.74	0.47	0.00	0.49	0.19	0.00	0.00	0.07	0.00	0.47	5.13	0.00	1.63	0.33	2.08
C18	0.00	2.45	0.36	0.34	0.11	0.48	0.30	0.00	0.00	0.31	0.00	0.34	1.24	0.00	0.95	0.08	1.08
C19	0.00	0.51	0.56	0.00	0.00	0.27	0.00	0.00	0.00	0.00	0.10	0.00	0.93	0.00	2.16	0.00	2.84
C20	0.10	2.01	0.43	0.14	0.00	0.40	0.00	0.00	0.00	0.00	0.00	0.14	4.34	0.00	1.61	4.65	1.21
C21	0.30	0.09	0.00	0.00	0.15	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.55	0.00	0.90	0.49	1.15

Table. S3. Carbon number distribution of liquid products under different experimental conditions (Unit: wt%).

	LDPE	3M/LDPE	5M/LDPE	7M/LDPE	10M/LDPE	Ι	II	III	IV	V	VI (Segmented co-pyrolysis)	Traditional mixed co-pyrolysis
C5	12.54	1.34	1.03	1.17	1.19	35.55	49.34	0.00	0.00	1.76	1.02	2.47
C6	11.40	3.34	3.43	2.53	2.36	19.84	17.36	1.47	0.91	2.00	1.89	1.72
C7	13.77	17.50	16.29	16.30	14.67	7.08	4.39	4.86	19.72	10.01	16.81	6.27
C8	19.93	34.37	34.88	36.24	34.02	8.16	2.28	10.84	47.86	25.59	36.65	24.49
С9	9.22	19.37	20.82	21.06	21.58	3.68	1.08	14.75	22.13	21.03	20.29	20.72
C10	10.27	12.38	13.17	13.51	14.63	11.36	7.55	20.49	6.26	12.11	8.26	11.71
C11	4.32	7.35	7.41	6.87	7.35	7.16	1.21	9.74	3.12	7.57	4.95	8.87
C12	1.00	2.57	2.20	1.71	2.65	0.12	0.96	10.22	0.00	3.11	3.00	4.42
C13	0.45	0.32	0.77	0.34	1.09	0.00	0.27	7.41	0.00	1.67	0.56	1.71
C14	0.89	0.26	0.00	0.00	0.00	0.59	0.77	2.07	0.00	2.13	0.00	2.65
C15	1.14	0.22	0.00	0.00	0.00	0.67	0.15	2.38	0.00	1.61	0.06	2.16
C16	0.84	0.33	0.00	0.28	0.00	0.10	0.60	1.05	0.00	1.30	0.00	1.37
C17	0.49	0.19	0.00	0.00	0.07	0.00	0.47	5.13	0.00	1.63	0.33	2.08
C18	0.48	0.30	0.00	0.00	0.31	0.00	0.34	1.24	0.00	0.95	0.08	1.08
C19	0.27	0.00	0.00	0.00	0.00	0.10	0.00	0.93	0.00	2.16	0.00	2.84
C20	0.40	0.00	0.00	0.00	0.00	0.00	0.14	4.34	0.00	1.61	4.65	1.21
C21	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.55	0.00	0.90	0.49	1.15

Table. S4. Carbon number distribution of aliphatic hydrocarbons in liquid products under different experimental conditions. (Unit: wt%).

		3Ea/	5Ee/	7Ea/	10Ee/		2M/	5M/	714/	10M/						VI	Traditional
Compounds	CAS					LDPE					Ι	II	III	IV	V	(Segmented	mixed co-
		CAS	CAS	CAS	CAS		LDFE	LDFE	LDFE	LDFE						co-pyrolysis)	pyrolysis
Furfural	10.62	26.28	26.43	45.37	29.74	5.29	1.04	1.03	1.17	1.19	30.89	45.37	0.00	0.00	1.69	0.80	2.47
Benzene, 1,3-dimethyl-	0.00	0.00	0.00	0.48	0.00	5.17	18.51	20.02	19.51	16.76	0.00	0.48	0.00	4.51	13.26	24.16	15.86
Toluene	0.27	0.87	0.80	0.28	1.10	3.23	10.27	11.00	9.91	8.61	0.04	0.28	0.00	19.72	5.43	11.52	4.90
2-	6.46	7.61	6.86	7.93	6.32	2.21	0.00	0.00	0.00	0.00	9.10	7.93	0.00	0.00	0.56	0.00	0.62
Furancarboxaldehyde,																	
5-methyl-																	
Acetic acid	13.44	2.95	2.70	8.24	8.33	6.26	0.00	0.00	0.00	0.00	3.39	8.24	0.00	0.00	0.00	0.00	0.00
Phenol	7.67	7.79	7.31	2.99	9.24	3.64	0.00	0.00	0.45	0.50	1.57	2.99	0.00	0.00	0.00	0.00	0.65
Ethylbenzene	0.00	0.00	0.00	0.00	0.00	1.33	4.26	5.13	4.25	3.75	0.00	0.00	0.00	6.13	3.07	4.14	2.78
Guaiacol	8.91	3.35	2.46	1.49	1.96	3.67	0.95	1.11	1.10	1.14	2.58	1.49	0.00	0.00	0.27	0.11	0.27
2-Propanone, 1-(4-	0.77	2.00	5.58	2.99	4.75	2.46	0.00	0.00	0.00	0.00	5.64	2.99	0.00	0.00	0.45	0.16	0.00
hydroxy-3-																	
methoxyphenyl)-																	
Benzene, 1-ethyl-2-	0.00	0.00	0.00	0.00	0.00	2.68	3.85	7.47	3.08	2.77	0.00	0.00	0.00	0.00	6.14	0.00	0.00
methyl-																	
Naphthalene, 2-methyl-	0.00	0.00	0.00	0.00	0.00	0.00	3.62	4.55	3.25	2.99	0.00	0.00	0.00	3.12	2.16	2.15	3.19
Benzene, 1,2,4-	0.00	0.00	0.00	0.26	0.00	0.60	2.60	3.08	3.45	3.85	0.00	0.26	0.00	0.00	3.86	0.00	4.23
trimethyl-																	

 Table. S5. Main compounds identified in liquid products. (Unit: wt%).

7

Furan, 3-methyl-	4.68	3.45	3.20	0.00	4.10	1.90	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Phenol, 2,6-dimethoxy-	1.96	0.78	0.87	0.27	0.26	3.99	0.81	0.97	1.00	0.92	1.29	0.27	0.00	0.00	0.23	0.00	0.00
Naphthalene	0.27	0.00	0.00	0.00	0.16	0.00	1.22	1.42	0.85	0.87	0.00	0.00	0.00	1.89	0.56	0.21	1.27
2,4-Dimethylfuran	1.44	1.26	1.16	0.75	1.44	0.70	0.00	0.00	0.00	0.00	0.47	0.75	0.00	0.00	0.00	0.00	0.00
HMF	0.38	0.28	0.54	0.86	0.10	0.73	0.00	0.00	0.00	0.00	2.13	0.86	0.00	0.00	0.00	0.00	0.00
1,4-	0.00	0.00	0.00	0.00	0.00	0.26	1.07	1.26	0.95	1.03	0.00	0.00	0.00	0.00	0.54	0.37	0.00
Dihydronaphthalene																	
Ethanone, 1-(2-	0.28	0.44	0.57	0.88	0.65	0.20	0.00	0.00	0.00	0.00	1.00	0.88	0.00	0.00	0.00	0.00	0.00
furanyl)-																	
Acrylic acid	0.96	0.33	0.00	0.24	0.33	0.00	0.00	0.00	0.00	0.00	0.05	0.24	0.00	0.00	0.00	0.00	0.00
Cellobiose	0.00	0.48	0.33	0.25	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.25	0.00	0.00	0.00	0.00	0.00

Fig. S1. Dimensioned schematic diagram of the segmented co-pyrolysis device. (1) Pyrolysis raw material heating device; (2) Catalyst heating device; (3) Ex-situ catalyst (globosity HZSM-5); (4) Quartz boat with CAS samples; (5) Quartz boat with LDPE samples.