Supporting information

1) Educts in molar ratio as well as in weight percent

Table S1: Each sample was prepared with a constant amount of ammonium formate and fructose, with a molar ratio of 1.5:1. Water was added in changing amounts as shown below.

Ammonium formate [g]	Fructose [g]	Water [g]	Molar ratio of water	Wt% water
0.47	0.90	0.00	:0	0.0
0.47	0.90	0.09	:1	6.2
0.47	0.90	0.27	:3	16.4
0.47	0.90	0.45	:5	24.7
0.47	0.90	0.63	:7	31.5
0.47	0.90	0.90	:10	39.6
0.47	0.90	1.80	:20	56.7
0.47	0.90	4.50	:50	76.6
0.47	0.90	9.01	:100	86.8

Table S2: For comparison, educts for the synthesis of DOF from previous papers, which were discussed in the introduction.

Reference		Reactants		Molar ratio	Wt% water
Wu ²⁰	Ammonium formate [g]	Fructose [g]	Water [g]		
	0.39	0.1	2	10:1:179	95.2
Shanxi Institute ²¹	Ammonium chloride [g] 15	Fructose [g] 5	Water [g] 500	10:1:1000	96.2
Jia ²²		Glucosamine [g] 0.2	Ionic liquid [g] 2	1:100	90.9

2) Quantitative H-NMR

Pyrazine was used as an internal standard and was added to the NMR solvent in the range of 1.5 g/ml. The amount of product was calculated, based on the following equation:

$$m(x) = m(std) \cdot \frac{mw(x)}{mw(std)} \cdot \frac{nH(std)}{nH(x)} \cdot \frac{A(x)}{A(std)}$$

Where m(x) and m(std) are the weights in g, mw(x) and mw(std) are the molecular weights in g/mol, A(x) and A(std) are the integration areas of the selected peaks of the product and the internal standard

DOF content was quantified based on their aromatic proton peaks, shown below for the example of fructose. Fructose and fucose were measured in D_2O , glucose and rhamnose in DMSO- d_6 to avoid overlap between the pyrazine and product peaks.

In the case of water as a third component of the reaction mixture the method was applied in exactly the same way. There was no sign of water evaporation during the synthesis, according to pressure monitoring during the reaction. Also the weight of the reaction mixture remained constant before and after synthesis.

3) Procedure of high throuput screening

Antimicrobial susceptibility tests were performed via the antiBiotic Mode of Action Profile (BioMAP) assay (1, 2). BioMAP utilizes high-throughput screening methodology in order to screen the effect of compounds on a panel of 19 pathogenic bacterial strains, including both Gram negative and Gram positive strains (Table S3).

The assay was performed according to Clinical & Laboratory Standards (CLSI) protocols, and as per Hawkins et al. (2), with the following exceptions: during compound incubation cation-adjusted Muller Hinton Broth (CAMHB; Millipore-Sigma) was used as the growth media for 12 bacterial strains, a 1:1 mixture of CAMHB and brain heart infusion (BHI; Millipore Sigma); (CAMHB:BHI) was used as the growth media for 3 strains, and 4 strains were grown in appropriate complete media (Table S3).

Briefly, each bacterial strain was inoculated in 3 mL of sterile media, as in Hawkins et al. (2), and grown overnight with shaking (200 rpm) at 37°C, with the exception of Streptococcus pneumonia, which was placed in a 5% CO₂ incubator set to 37°C, overnight, without shaking. Saturated overnight cultures were diluted in the appropriate media (Table S3) to achieve approximately 5×10^5 CFU of final inoculum density and dispensed via a Matrix dispenser into sterile clear polystyrene 384-well assay microplates (Greiner 781186, Sigma-Aldrich) with a final screening volume of 30 µL. As per Hawkins et al. (2), solutions of test compounds and antibiotic controls were prepared as a 1:1 dilution series in 384-well storage microplates (NUNC 264573, Thermo Fisher Scientific). Two hundred nanoliters of the compound, or antibiotic control, was pinned into each assay plate using a Tecan Freedom EVO 100 equipped with a 384 well pintool. Postpinning test compounds had a final concentration ranging from 40 to 4 mM per compound, while antibiotic controls had a final concentration ranging from 128 µM to 3.91 nM per compound.

In each 384-well plate, controls were placed in lanes 1, 2, 23 and 24. For the controls, lane 1 contained vehicle (DMSO) and culture medium only; lane 2 contained vehicle (DMSO), culture medium and target bacteria; and lanes 23 and 24 contained vehicle (DMSO), culture medium, target bacteria and antibiotic controls. Ciprofloxacin and gentamicin were used as controls for Gram negative bacteria, while azithromycin and vancomycin were used as controls for Gram positive bacteria.

After pinning and dispensing, absorbance values were obtained at OD600 for timepoint T_0 using an automated plate reader (Synergy Neo2, BioTek). Plates were then sealed with a lid and placed in a 37°C incubator. S. pneumoniae was incubated in a separate incubator (37°C; 5% CO2). After an incubation period of 18-20 hours absorbance measurements were obtained for timepoint T_{20} .

MIC90 values were calculated using GRAPHPAD PRISM (version 8). Percent growth (PG) was calculated via the following equation

Where, Treat represents absorbance values at T_0 and T_{20} ; Cneg and Cpos are the averaged absorbance values of the controls in Lane 1 (DMSO + culture media) and lane 2 (DMSO + culture media + bacteria), respectively. Percent inhibition was calculated as 100 - PG.

Strain Name	Strain Designation	Growth Media
	Gram-Positive	
Bacillus subtilis	ATCC 6051	САМНВ
Enterococcus faecalis	ATCC 29212	CAMHB:BHI
Enterococcus faecium	ATCC 6569	CAMHB:BHI
Listeria ivanovii	BAA-139	TSB
Staphylococcus aureus (Methicillin-Resistant)	BAA-44	САМНВ
Staphylococcus aureus (Methicillin-Sensitive)	ATCC 29213	САМНВ
Staphylococcus anidarmidis	ATCC 14990	TSB
Streptococcus pneumoniae	ATCC 49619	САМНВ:ВНІ
	Gram-Negative	I
Acinetobacter baumanii	ATCC 19606	САМНВ
Escherichia coli	K-12 MG1655	САМНВ
Klebsiella aerogenes	ATCC 35029	САМНВ
Klebsiella pneumoniae	ATCC 700603	САМНВ
Ochrobactrum anthropi	ATCC 49687	TSB
Providencia alcalifaciens	ATCC 9886	САМНВ
Pseudomonas aeruginosa	ATCC 27853	САМНВ
Salmonella enterica	ATCC 13311	САМНВ
Shigella sonnei	ATCC 25931	САМНВ
Vibrio cholera	A1552 El Tor	САМНВ
Yersinia pseudotuberculosis	ATCC 6904	ВНІ

Table S3. Information related to bacterial strains used in BioMAP assay.

4) Characterization of products

Major products are depicted below. The respective isomers (2,5 vs. 2,6) were also detected in smaller amounts. We did not aim to identify any byproducts but the Maillard reaction is also known as the browning reaction and produces a range of heterogeneous polymeric material for prolonged reaction times. The typical products were recognizable by the dark brown color as well as by the pleasant smell of the crude samples.

 1 H-NMR in D₂O of the crude reaction mixture from different monosaccharides

DEPT ¹³C NMR in D₂O of the crude reaction mixture from different monosaccharides

HPLC-MS of the crude reaction mixture from different monosaccharides

5) Characterization of separated DOR derivatives

Analytical data for 2,6-DOR from Rhamnose

¹H NMR (400 MHz, DMSO-d₆) δ = 8.60 (s, 1H), 8.40 (s, 1H), 5.33 (d, *J* = 6.5 Hz, 1H), 5.06 – 4.97 (d looking m, 1H), 4.73 – 4.62 (m, 3H), 4.50 (d, *J* = 8.1 Hz, 1H), 3.77 – 3.61 (m, 1H), 3.62 – 3.52 (m, 1H), 3 .47 (q, J = 6.0 Hz, 1H), 3.38 – 3.23 (m, 1H), 3.02 (dd, J = 13.8, 2.8 Hz, 1H), 2.65 2.68 – 2.60 (dd, J = 13.8, 9.7 Hz, 1H), 1.14 (d, J = 6.2 Hz, 3H), 1.11 (d, J = 6.1 Hz, 3H) ppm.

¹³C NMR (101 MHz, DMSO-d₆) δ = 19.95, 21.15, 39.25, 66.64, 70.39, 71.97, 75.38, 78.37, 141.01, 143.29, 154.38, 158.45 ppm.

HRMS (ESI⁺): Calculated for C₁₂H₂₁N₂O₅: 273.1445, Found: 273.1453

¹H -NMR (400MHz, DMSO-d₆) for 2,6-DOR from rhamnose

 ^{13}C -NMR (400MHz, DMSO-d_6) for 2,6-DOR from rhamnose

¹³C-APT-NMR (400MHz, DMSO-d₆) for 2,6-DOR from rhamnose

COSY -NMR (400MHz, DMSO-d₆) for 2,6-DOR from rhamnose

HSQC -NMR (400MHz, DMSO-d₆) for 2,6-DOR from rhamnose

HMBC -NMR (400MHz, DMSO-d₆)

HR-MS of for 2,6-DOR from rhamnose

Analytical data for 2,5-DOF from fructose.

¹H NMR (400 MHz, DMSO- d_6) δ = 8.62 (s, 1H), 8.39 (s, 1H), 5.31 (d, *J* = 6.4 Hz, 1H), 4.93 (d, *J* = 5.9 Hz, 1H), 4.67 (dd, *J* = 15.9, 4.7 Hz, 2H), 4.62 (d, *J* = 6.6 Hz, 1H), 4.42 (d, *J* = 7.0 Hz, 2H), 4.37 (d, *J* = 5.9 Hz, 1H), 3.75 (dtd, *J* = 9.5, 6.4, 6.3, 2.9 Hz, 1H), 3.69 – 3.52 (m, 5H), 3.44-3.37 (m, 2H, overlapping with H₂O peak in DMSO- d_6), 3.06 (dd, *J* = 14.0, 3.0 Hz, 1H), 2.72 (dd, *J* = 13.9, 9.5 Hz, 1H) ppm.

 \Box ¹³C NMR (101 MHz, DMSO-d₆) δ = 38.39, 63.25, 63.62, 71.29, 71.36, 71.40, 73.84, 74.96, 142.30, 143.31, 153.26, 155.77 ppm.

16 QH 1 19 OH -1.5×10^{7} HO HC 15 21 4 HO 20 HO 18 1 1/ 1 1.0×10^{7} -5.0×10⁶ 5 2 16 21 13,14 17 15 8 11 18 0.0 0.92-1 1-06'0 Too! 0.96 L F-76.0 0.95 4.29 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 δ (ppm)

HRMS (ESI⁺): Calculated for C₁₂H₂₁N₂O₇: 305.1343, Found: 305.1356.

¹H -NMR (400MHz, DMSO-d₆) for 2,5-DOF from fructose

¹³C -NMR (400MHz, DMSO-d₆) for 2,5-DOF from fructose

¹³C-APT -NMR (400MHz, DMSO-d₆) for 2,5-DOF from fructose

COSY -NMR (400MHz, DMSO-d₆) for 2,5-DOF from fructose

HSQC -NMR (400MHz, DMSO-d₆) for 2,5-DOF from fructose

HMBC-NMR (400MHz, DMSO-d₆) for 2,5-DOF from fructose

-	
Dook	1 Ict
FEGA	1.154

m/z	Z	Abund	Formula	Ion
233.1498		3426		
233.3431		14		
233.635		12		
233.7796		8		
234.1526		417		
235.1552		54		
305.1356	1	2455	C12 H21 N2 O7	(M+H)+
306.1377	1	381	C12 H21 N2 O7	(M+H)+
307.1458	1	57	C12 H21 N2 O7	(M+H)+

HR-MS for 2,5-DOF from fructose

Analytical data for 2,6-DOF from glucose

¹H NMR (400 MHz, DMSO- d_6) $\delta = \Box 8.54$ (s, 1H), 8.33 (s, 1H), 5.34 (d, J = 6.4 Hz, 1H), 4.94 (d, J = 4.3 Hz, 1H), 4.78 – 4.55 (m, 3H), 4.53 – 4.32 (m, 3H), 3.75 (dt, J = 6.5, 3.3, 3.3 Hz, 1H), 3.68 – 3.54 (m, 5H), 3.06 (dd, J = 13.8, 2.7 Hz, 1H), 2.71 (dd, J = 13.9, 9.9 Hz, 1H) ppm.

¹³C NMR (101 MHz, DMSO-d₆) δ = \Box 22.56, 63.24, 63.62, 71.25, 71.36, 71.59, 73.79, 75.07, 140.59, 142.93, 153.97, 157.90 ppm.

HRMS (ESI⁺): Calculated for $C_{12}H_{21}N_2O_7$: 305.1343, Found: 305.1350

¹H -NMR (400MHz, DMSO-d₆) for 2,6-DOF from glucose. The integration misses the proton peaks from 9 and 10. These are hidden behind the water peak as shown by HSQC spectra.

¹³C-APT-NMR (400MHz, DMSO-d₆) for 2,6-DOF from glucose

Peak List				
m/z	Z	Abund	Formula	Ion
302.2089		39		
304.1678		25		
305.135		4450	C12 H21 N2 O7	(M+H)+
306.1388		591	C12 H21 N2 O7	(M+H)+
307.1347		104	C12 H21 N2 O7	(M+H)+
327.1176	1	869	C12 H20 N2 Na O7	(M+Na)+
328.1261	1	121	C12 H20 N2 Na O7	(M+Na)+
329.1256	1	27	C12 H20 N2 Na O7	(M+Na)+
631.2447	1	75	C24 H40 N4 Na O14	(2M+Na)+
632.2437	1	23	C24 H40 N4 Na O14	(2M+Na)+

HR-MS for 2,6-DOF from glucose

Analytical data for 2,6-DOFu from fucose

□¹H NMR (500 MHz, DMSO-d₆) δ = 8.45 (s, 1H), 8.38 (s, 1H), 5.48 (d, *J* = 5.7 Hz, 1H), 4.59 (dd, *J* = 7.5, 5.6 Hz, 1H), 4.54 (dd, *J* = 5.5, 3.5 Hz, 2H), 4.41 (d, *J* = 6.9 Hz, 1H), 4.29 (d, *J* = 6.1 Hz, 1H), 3.87-3.81 (m, 1H), 3.73 – 3.64 (m, 1H), 3.59-3.56 (m, 1H), 3.47 (td, *J* = 7.2, 3.0 Hz, 1H), 2.88 (dd, *J* = 13.8, 3.3 Hz, 1H), 2.73 (dd, *J* = 13.8, 9.5 Hz, 1H), 1.10 (d, *J* = 6.5 Hz, 3H) 1.08 (d, *J* = 6.3 Hz, 3H).

¹³C NMR (101 MHz, DMSO-d₆) δ = \Box 18.58, 20.09, 37.81, 65.49, 69.04, 72.76, 73.97, 76.66, 141.31, 143.31, 154.09, 156.97ppm.

MS (ESI⁺): Calculated for C₁₂H₂₁N₂O₅: 273.1445, Found: 273.1450

¹H -NMR (400MHz, DMSO-d₆) for 2,6-DOFu from fucose

¹³C -NMR (400MHz, DMSO-d₆) for 2,6-DOFu from fucose

¹³C-APT-NMR (400MHz, DMSO-d₆) for 2,6-DOFu from fucose

HSQC-NMR (400MHz, DMSO-d₆) for 2,6-DOFu from fucose

(2M+Na)+

(2M+Na)+

Counts vs. Acquisition Time (min)

HR-MS for 2,6-DOFu from fucose

1

8131 C24 H40 N4 Na O10

1988 C24 H40 N4 Na O10

References

567.2649 1

568.2676

1. Wong Weng R, Oliver Allen G, Linington Roger G. Development of Antibiotic Activity Profile Screening for the Classification and Discovery of Natural Product Antibiotics. Chemistry & Biology. 2012;19(11):1483-95.

2. Hawkins PM, Hoi DM, Cheung C-Y, Wang T, Quan D, Sasi VM, et al. Potent Bactericidal Antimycobacterials Targeting the Chaperone ClpC1 Based on the Depsipeptide Natural Products Ecumicin and Ohmyungsamycin A. Journal of Medicinal Chemistry. 2022;65(6):4893-908.