# **Electronic Supplementary Information (ESI)**

## Rheological characteristics of novel cellulose/superbase-derived

## ionic liquid solutions and coagulation process towards

## regenerated cellulose films

Xiaoyu Wang,<sup>a</sup> Wenqiu Zheng,<sup>a</sup> Zongwei Guo,<sup>b</sup> Haq Nawaz,<sup>a</sup> Tingting You,<sup>a</sup> Xin Li

\*a and Feng Xu \*a,b

<sup>a</sup> Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, PR China.

<sup>b</sup> Qilu University of Technology, Shandong Academy of Sciences, State Key Laboratory

of Biobased Material & Green Papermaking, Jinan, 250353, PR China.

\**Corresponding author: Tel.:* +86-10-62337993. *Fax:* +86-10-62337993.

Email address: xinli@bjfu.edu.cn (X. Li), xfx315@bjfu.edu.cn (F. Xu).

**Keywords**: Superbase-derived ionic liquids; Cellulose solution; Rheological behavior; Regeneration mechanism; Regenerated cellulose materials

### **Results and discussion**

## Thermal stability of [DBUH][CH<sub>3</sub>CH<sub>2</sub>OCH<sub>2</sub>COO]



Fig. S1 TGA and DTG curves of [DBUH][CH<sub>3</sub>CH<sub>2</sub>OCH<sub>2</sub>COO]



Images obtained by polarizing microscope

Fig. S2 Polarized light microscopy images displaying the dissolution of pulp fibres in [DBUH][CH<sub>3</sub>CH<sub>2</sub>OCH<sub>2</sub>COO] at 80 °C.

# NMR analysis on molecular interactions of cellobiose with [DBUH][CH<sub>3</sub>CH<sub>2</sub>OCH<sub>2</sub>COO]

The [DBUH][CH<sub>3</sub>CH<sub>2</sub>OCH<sub>2</sub>COO]/cellobiose/DMSO-d<sub>6</sub> was utilized to <sup>13</sup>C NMR analysis. The comparative <sup>13</sup>C NMR results of pure solvent and cellobiose solution are shown in Fig. S3 with corresponding schematic structures. The chemical shifts obtained from <sup>13</sup>C NMR spectra are summarized in Table S1. The <sup>1</sup>H NMR spectra of cellobiose, pure solvent and cellobiose solution are presented in Fig. S4-S6, respectively. The chemical shifts assigned to the carbons in [DBUH][CH<sub>3</sub>CH<sub>2</sub>OCH<sub>2</sub>COO] were changed with the addition of cellobiose, indicating the changes in the chemical environment of [DBUH][CH<sub>3</sub>CH<sub>2</sub>OCH<sub>2</sub>COO] and implying the interaction between [DBUH][CH<sub>3</sub>CH<sub>2</sub>OCH<sub>2</sub>COO] and cellobiose. In the <sup>13</sup>C NMR study, significant changes in the signals of C<sub>2</sub>, C<sub>6</sub>, C<sub>7</sub>, C<sub>9</sub> and C<sub>11</sub> atoms in [DBUH]<sup>+</sup> were observed, which was ascribed to the strong hydrogen-bonding interaction between [DBUH]<sup>+</sup> and the oxygen atoms in cellobiose. Meanwhile, the results implied that the protonated [DBUH]<sup>+</sup> acted as a hydrogen bond donor in the system. It is well known that carboxylate anion is a hydrogen bond acceptor. The signals of C<sub>12</sub> in the system moved downfield from 172.90 to 173.49 ppm with the addition of cellobiose, corresponding to the decreased electron cloud density around C12. This result indicated the hydrogenatoms bonding interaction between the 0 on carboxylate groups in [CH<sub>3</sub>CH<sub>2</sub>OCH<sub>2</sub>COO]<sup>-</sup> and H atoms on -OH groups in cellobiose. Particularly, the chemical shift assigned to the C atom ( $C_{14}$ ) moved from 64.68 to 64.83 ppm, implying that the ethoxy group also acted as a hydrogen bond acceptor to interact with cellobiose.

Conversely, the above interactions weakened the electron-withdrawing ability of carboxy and ethoxy groups to  $-CH_2$ - in  $[CH_3CH_2OCH_2COO]^-$ , resulting in the up-field shift of the C<sub>13</sub> atom from 70.58 to 70.42 ppm in <sup>13</sup>C NMR signals.



Fig. S3 Comparison of the <sup>13</sup>C NMR spectra of [DBUH][CH<sub>3</sub>CH<sub>2</sub>OCH<sub>2</sub>COO] and cellobiose/[DBUH][CH<sub>3</sub>CH<sub>2</sub>OCH<sub>2</sub>COO] solution.

Table S1 <sup>13</sup>C NMR chemical shifts of [DBUH][CH<sub>3</sub>CH<sub>2</sub>OCH<sub>2</sub>COO] and

| Atomic<br>number | Pure solvent chemical shifts f1/ppm | Cellobiose solution chemical shifts f1/ppm | Δf1/ppm |
|------------------|-------------------------------------|--------------------------------------------|---------|
| 12               | 172.90                              | 173.49                                     | -0.59   |
| 7                | 165.15                              | 165.23                                     | -0.08   |
| 13               | 70.58                               | 70.42                                      | 0.16    |
| 14               | 64.68                               | 64.83                                      | -0.15   |
| 2                | 52.94                               | 53.07                                      | -0.13   |
| 11               | 47.74                               | 47.81                                      | -0.07   |

 $cellobiose/[DBUH][CH_3CH_2OCH_2COO] \ solution$ 

| 9  | 37.46 | 37.54 | -0.08 |
|----|-------|-------|-------|
| 6  | 30.70 | 30.90 | -0.2  |
| 3  | 28.36 | 28.36 | 0     |
| 4  | 26.24 | 26.21 | 0     |
| 5  | 23.75 | 23.72 | 0.03  |
| 10 | 19.17 | 19.15 | 0     |
| 15 | 15.16 | 15.15 | 0.01  |

- 683 - 683 - 683 - 683 - 683 - 683 - 683 - 683 - 683 - 683 - 683 - 683 - 683 - 683 - 683 - 683 - 683 - 683 - 683 - 683 - 683 - 683 - 683 - 683 - 683 - 683 - 683 - 683 - 683 - 683 - 683 - 683 - 683 - 683 - 683 - 683 - 683 - 683 - 683 - 683 - 683 - 683 - 683 - 683 - 683 - 683 - 683 - 683 - 683 - 683 - 683 - 683 - 683 - 683 - 683 - 683 - 683 - 683 - 683 - 683 - 683 - 683 - 683 - 683 - 683 - 683 - 683 - 683 - 683 - 683 - 683 - 683 - 683 - 683 - 683 - 683 - 683 - 683 - 683 - 683 - 683 - 683 - 683 - 683 - 683 - 683 - 683 - 683 - 683 - 683 - 683 - 683 - 683 - 683 - 683 - 683 - 683 - 683 - 683 - 683 - 683 - 683 - 683 - 683 - 683 - 683 - 683 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 - 733 -



Fig. S4 <sup>1</sup>H NMR chemical shifts of cellobiose, DMSO-d<sub>6</sub> as external reference.



**Fig. S5** <sup>1</sup>H NMR chemical shifts of [DBUH][CH<sub>3</sub>CH<sub>2</sub>OCH<sub>2</sub>COO] solvent, DMSO-d<sub>6</sub> as external reference.



Fig. S6 <sup>1</sup>H NMR chemical shifts of cellobiose/[DBUH][CH<sub>3</sub>CH<sub>2</sub>OCH<sub>2</sub>COO] solution, DMSO-d<sub>6</sub>

as external reference.

### <sup>1</sup>H NMR data of [DBUH][CH<sub>3</sub>CH<sub>2</sub>OCH<sub>2</sub>COO]

Pure [DBUH][CH<sub>3</sub>CH<sub>2</sub>OCH<sub>2</sub>COO] solvent:

<sup>1</sup>H NMR (400 MHz, DMSO-d<sub>6</sub>) δH 3.53-3.37 (8H, m), 3.24 (2H, t), 2.75 (2H, d), 1.89-

1.84 (2H, m), 1.65-1.57 (6H, m), 1.05 (3H, t).

[DBUH][CH<sub>3</sub>CH<sub>2</sub>OCH<sub>2</sub>COO]/cellobiose:

<sup>1</sup>H NMR (400 MHz, DMSO-d<sub>6</sub>) δH 3.55-3.38 (8H, m), 3.24 (2H, t), 2.75 (2H, d), 1.91-

1.85 (2H, m), 1.66-1.58 (6H, m), 1.06 (3H, t).

**Table S2** The fitted values of  $\eta_0$  for DWP solutions with different DWP concentrations at 80 °C

| Model                    | Cross                                                                   |          |           |            |             |
|--------------------------|-------------------------------------------------------------------------|----------|-----------|------------|-------------|
| Equation                 | $\eta = \eta_\infty + rac{\eta_0 - \eta_\infty}{1 + K \dot{\gamma}^m}$ |          |           |            |             |
| DWP<br>concentration/wt% | 4                                                                       | 6        | 8         | 10         | 12          |
| $\eta_0$                 | 3.2±0.1                                                                 | 23.9±0.7 | 115.4±2.0 | 632.7±20.7 | 1396.1±72.7 |
| $R^2$                    | 0.998                                                                   | 0.996    | 0.998     | 0.992      | 0.994       |

**Table S3** The fitted values of  $\eta_0$  for 12 wt% DWP solutions at different temperatures

| Model          | Cross                                                                   |              |             |             |            |
|----------------|-------------------------------------------------------------------------|--------------|-------------|-------------|------------|
| Equation       | $\eta = \eta_\infty + rac{\eta_0 - \eta_\infty}{1 + K \dot{\gamma}^m}$ |              |             |             |            |
| temperature/ºC | 50                                                                      | 60           | 70          | 80          | 90         |
| $\eta_0$       | 7786.5±621.6                                                            | 3320.2±156.1 | 1786.3±74.2 | 1396.1±72.7 | 821.1±40.8 |
| $R^2$          | 0.998                                                                   | 0.997        | 0.990       | 0.994       | 0.992      |



Fig. S7 Curves of dynamic frequency sweep for 12 wt% DWP/[DBUH][CH<sub>3</sub>CH<sub>2</sub>OCH<sub>2</sub>COO],

DWP/AmimCl, and DWP/NMMO solutions at 80 °C, respectively.

| Code    | Initial thermal decomposition $T$ (°C) | Maximum thermal decomposition $T$ (°C) | Residual mass at<br>600 °C (%) |  |
|---------|----------------------------------------|----------------------------------------|--------------------------------|--|
| DWP     | 238                                    | 359                                    | 5.1                            |  |
| E-film  | 247                                    | 335                                    | 14.6                           |  |
| AE-film | 236                                    | 318                                    | 16.7                           |  |
| DW-film | 201                                    | 285                                    | 18.3                           |  |

Table S4 Parameters related to the TGA curves of raw DWP and RC films prepared in various

Table S5 Parameters related to the stress-strain curves of RC films prepared in various coagulation

baths

coagulation baths

| Code    | Thickness (µm) | Tensile strength (MPa) | Strain (%)    |
|---------|----------------|------------------------|---------------|
| E-film  | $34\pm3$       | $120.0\pm5.9$          | $12.0\pm3.7$  |
| AE-film | $33\pm2$       | $83.7\pm5.7$           | $5.0\pm1.9$   |
| DW-film | $30\pm2$       | $63.0\pm5.1$           | $2.8 \pm 2.3$ |

Table S6 The maximum values of haze in the range of 400-800 nm for RC films prepared in various

coagulation baths

| Code     | E-film        | AE-film       | DW-film       |
|----------|---------------|---------------|---------------|
| Haze (%) | $4.9 \pm 1.1$ | $8.1 \pm 1.0$ | $8.7 \pm 2.3$ |



Fig. S8 WCAs of cellulose films regenerated from ethanol, 50% aqueous ethanol and deionized water, respectively.

Table S7 Parameters related to the XRD curves of raw DWP and RC films prepared in various

| Code -  |       | Lattice planes |            |       | Crystalling form | Crystallinity |
|---------|-------|----------------|------------|-------|------------------|---------------|
|         | 1-10  | 110            | 200/020    | 004   |                  | (%)           |
| DWP     | 15.2° | 16.5°          | (200)22.5° | 34.5° | Ι                | 49.0±2.0      |
| E-film  | 12.5° | 19.9°          | (020)20.5° | —     | II               | 38.8±2.1      |
| AE-film | 12.1° | 20.0°          | (020)21.2° | _     | II               | 36.8±1.9      |
| DW-film | 12.2° | 20.0°          | (020)21.3° | _     | II               | 36.2±1.5      |

coagulation baths

## Experimental

# Synthesis of [DBUH][CH<sub>3</sub>CH<sub>2</sub>OCH<sub>2</sub>COO]

[DBUH][CH<sub>3</sub>CH<sub>2</sub>OCH<sub>2</sub>COO] was synthesized by acid-base neutralization. Briefly, DBU was mixed with n-Hexane in a 1:3 mass ratio, and then 0.95 mol of CH<sub>3</sub>CH<sub>2</sub>OCH<sub>2</sub>COOH (relative to DBU) was added to the mixture. The reaction was carried out under mechanical stirring for over 5 hours at 30 °C under the nitrogen atmosphere. The [DBUH][CH<sub>3</sub>CH<sub>2</sub>OCH<sub>2</sub>COO] deposited on the bottom of the flask was separated and repeatedly washed with n-Hexane to remove the unreacted DBU. The high-purity [DBUH][CH<sub>3</sub>CH<sub>2</sub>OCH<sub>2</sub>COO] was obtained by drying at 80 °C for 1 h under a nitrogen flow. It was worth noting that the n-Hexane and unreacted DBU in the washing process could be repeatedly used after being distilled and recycled.

### Solubility of DWP in [DBUH][CH<sub>3</sub>CH<sub>2</sub>OCH<sub>2</sub>COO]

The solubility of DWP in [DBUH][CH<sub>3</sub>CH<sub>2</sub>OCH<sub>2</sub>COO] at different temperatures was determined as follows. The DWP (0.8 g) was added into a 50 mL flask which contained preheated [DBUH][CH<sub>3</sub>CH<sub>2</sub>OCH<sub>2</sub>COO] (20 g) and stirred magnetically at the given temperature. Additional DWP was added after complete dissolution, as observed by PLM. This procedure was repeated until the additional added DWP was not dissolved even after more than 2 h. The maximum solubility of cellulose, expressed in g/100 g of the solvent, was determined by the ratio of the mass of DWP dissolved in [DBUH][CH<sub>3</sub>CH<sub>2</sub>OCH<sub>2</sub>COO] to that of its solution. The dissolution experiments were repeated for three times.