Supplementary Material

The supporting information includes the life cycle inventories (LCIs) of the model cell (Table S 1), its components (Table S 2, Table S 4, Table S 5, Table S 9), and materials (Table S 3, Table S 6, Table S 7, Table S 8, Table S 10 - Table S 15) as modeled in the GaBi software. In Table S 16 - Table S 23, the LCIs of the precursor materials of LATP and LLZO are listed: aluminium nitrate nonahydrate [Al(NO₃)₃*9 H₂O], lithium nitrate (LiNO₃), lanthanum nitrate [La(NO₃)₃*6 H₂O], zirconium oxynitrate [ZrO(NO₃)₂*6 H₂O], zirconium tetrachloride [ZrCl₄], ammonium dihydrogen phosphate [(NH₄)H₂PO₄], lithium acetate [Li(CH₃COO)*2 H₂O], and titanium isopropoxide [Ti[OCH(CH₃)₂]₄].

Energy is given as net calorific value unless otherwise stated. In addition, the origin of the process data is marked (e.g., Sphera, ecoinvent 3.7.1, PlasticesEurope, Nickel Institute, own process model).

In Chapter 10, a comparison of LATP and LLZO with the standard liquid electrolyte LiPF6 (in EC/DMC) is carried out.

1. LCI of pouch cell

The pouch cell, measuring 5 cm * 5 cm, has a capacity of 6.15 mAh/cm² and an energy density of 394.4 Wh/kg. All materials for the layers have been calculated with 3% offcut. Argon and electricity input are required for assembly in the glovebox. Energy requirements for material supply is included in their data sets.

Flows	Quantities	Amount	Unit
Input			
DE: Aluminium foil Sphera, 10 μm	Mass	6.95E-05	kg
EU-28: Copper sheet (A1-A3) Sphera, 10 μm	Mass	2.30E-04	kg
DE: Lithium anode, 10 µm, own process model	Mass	1.38E-05	kg
DE: Electrolyte (LLZO), 10 μm, own process model	Area	2.58E-03	sqm
DE: Mixed cathode (LATP/NMC 622, weight ratio 20:80)	Area	2.58E-03	sqm
100 μm, own process model			
DE: Carrier foil (PET) 100 μm, own process model	Area	2.58E-03	sqm
DE: Argon (gaseous) Sphera	Mass	7.14E-04	kg
DE: Electricity grid mix Sphera	Energy	1.01E-01	MJ
Output			
Pouch cell	Number of pieces	1.00E+00	Pcs.

Table S 1. LCI of one pouch, $5 \times 5 \text{ cm}^2$

2. LCI of lithium anode

The inventory of the 10 μ m lithium metal anode involves the processes shown in Table S 2 and Table S 3. The inventory of lithium foil production with a thickness of 35 μ m showing in Table S 3 is taken from Deng, Yelin, Li, Jianyang [1]. For its use in the inventory of the pouch cell (Table S 1), only the mass was linearly reduced to 10 μ m. This means that the energy requirement for cold rolling is underestimated, since the thickness of the foil in Deng is 35 μ m and not 10 μ m as we assumed.

Table S 2. LCI of lithium anode

Flows	Quantities	Amount	Unit
Input			
DE: Lithium foil, 35µm, adapted according to [1]	Mass	1.00E+00	kg
RER: transport, freight, lorry 7.5-16 metric ton, EURO6	Transport	2.00E-01	tkm
ecoinvent 3.7.1			
Output			
DE: Lithium anode	Mass	1.00E+00	kg

Table S 3. LCI of lithium foil adapted according to [1]

Flows	Quantities	Amount	Unit
Input			
GLO: market for lithium ecoinvent 3.7.1	Mass	1.04E+00	kg
RER: sheet rolling, aluminium ecoinvent 3.7.1	Mass	4.95E+00	kg
GLO: tetraethyl orthosilicate production ecoinvent 3.7.1	Mass	1.54E-01	kg
DE: Electricity grid mix Sphera	Energy	48.5E+00	MJ
DE: Process steam from natural gas 85% Sphera	Energy	155.8E+00	MJ
Output			
DE: Lithium foil, 35µm	Mass	1.00E+00	kg
Sodium silicates [Inorganic emissions to air]	Mass	1.87E-02	kg
Solid waste [Hazardous waste for disposal]	Mass	3.80E-02	kg

3. LCI of carrier foil

The carrier foil is required during tape casting of the electrolyte layer and is subsequently disposed of as waste.

Flows	Quantities	Amount	Unit
Input			
DE: Polyethylene terephthalate granulate (PET via DMT)	Mass	1.35E-01	kg
Sphera			
RER: transport, freight, lorry 7.5-16 metric ton, EURO6	Transport	2.70E-02	tkm
ecoinvent 3.7.1			
Output			
DE: Carrier foil (PET) 100 μm	Area	1.00E+00	sqm
CH: treatment of waste polyethylene terephthalate,	Mass	1.35E-01	kg
municipal incineration ecoinvent 3.7.1			

Table	S 4.	LCI	of	carrier	foil
rubic	5 7.	LCI	σj	currer	,0,,

4. LCI of LLZO electrolyte

Table S 5. LCI of LLZO electrolyte

Flows	Quantities	Amount	Unit
Input			
DE: electrolyte slurry, own process model	Mass	4.73E-03	kg
DE: Electricity grid mix Sphera	Energy	1.71E-01	MJ
Output			
DE: Electrolyte (LLZO), 10 μm	Area	5.00E-02	sqm
Butanone (methyl ethyl ketone) [Group NMVOC to air]	Mass	1.06E-03	kg
Ethanol [Group NMVOC to air]	Mass	5.45E-04	kg

Table S 6. LCI of LLZO electrolyte slurry

Flows	Quantities	Amount	Unit
Input			
DE: LLZO powder, own process model	Mass	5.40E-01	kg
RER: Polyether polyol PlasticsEurope	Mass	1.35E-02	kg
DE: Ethanol (96%) (hydrogenation with nitric acid)	Mass	1.15E-01	kg
Sphera			
RER: methyl ethyl ketone production ecoinvent 3.7.1	Mass	2.23E-01	kg
EU-28: Triethylene glycol PlasticsEurope	Mass	5.40E-02	kg
RER: vinyl acetate production ecoinvent 3.7.1 ^a	Mass	5.40E-02	kg
RER: transport, freight, lorry 7.5-16 metric ton, EURO6	Transport	2.00E-01	tkm
ecoinvent 3.7.1			
Output			
DE: Electrolyte slurry	Mass	1.00E+00	kg

^a substitute for PVB 98 (polyvinyl butyral)

5. LCI of LLZO powder

Flows	Quantities	Amount	Unit
Input			
GLO: lithium hydroxide production ecoinvent 3.7.1	Mass	3.23E-01	kg
GLO: market for lanthanum oxide ecoinvent 3.7.1	Mass	5.82E-01	kg
GLO: market for zirconium oxide ecoinvent 3.7.1	Mass	2.93E-01	kg
IAI Area, EU27 & EFTA: market for aluminium oxide, non-	Mass	1.21E-02	kg
metallurgical ecoinvent 3.7.1			
DE: Electricity grid mix Sphera	Energy	82.30E+00	MJ
Output			
DE: LLZO Electrolyte powder produced via solid-state	Mass	1.00E+00	kg
reaction			

Table S 7. LCI of LLZO powder produced via solid-state reaction

Table S 8. LCI of LLZO powder produced via spray drying

Flows	Quantities	Amount	Unit
Input			
DE: Aluminium nitrate nonahydrate $[Al(NO_3)_3*9 H_2O]$,	Mass	9.01E-02	kg
own process model			
DE: Lithium nitrate LiNO ₃ , own process model	Mass	5.94E-01	kg
DE: Lanthannitrat [La(NO ₃) ₃ *6 H ₂ O], own process model	Mass	1.55E+00	kg
DE: Zirconium oxynitrate $[ZrO(NO_3)_2*6 H_2O]$, own	Mass	8.07E-01	kg
process model			
Europe without Switzerland: market for water, deionised	Mass	5.00E+00	kg
ecoinvent 3.7.1			
DE: Nitric acid (98%) Sphera	Mass	7.82E-03	kg
DE: Electricity grid mix Sphera	Energy	51.10E+00	MJ
Output			
DE: LLZO Electrolyte powder produced via spray drying	Mass	1.00E+00	kg

6. LCI of mixed cathode (LATP/NMC 622)

Table S 9. LCI of mixed cathode

Flows	Quantities	Amount	Unit
Input			
DE: mixed cathode slurry, own process model	Mass	3.89E-02	kg
DE: Electricity grid mix Sphera	Energy	4.14E-01	MJ
Output			
DE: Mixed cathode (LATP/NMC 622), 100 μm	Area	5.00E-02	sqm
Butanone (methyl ethyl ketone) [Group NMVOC to air]	Mass	8.70E-03	kg
Ethanol [Group NMVOC to air]	Mass	4.49E-03	kg

Table S 10. LCI of mixed cathode slurry

Flows	Quantities	Amount	Unit
Input			
DE: LATP powder, own process model	Mass	1.13E-01	kg
DE: NMC 622 powder according to [2]	Mass	4.27E-01	kg
RER: Polyether polyol PlasticsEurope	Mass	1.35E-02	kg
DE: Ethanol (96%) (hydrogenation with nitric acid)	Mass	1.15E-01	kg
Sphera			
RER: methyl ethyl ketone production ecoinvent 3.7.1	Mass	2.23E-01	kg
EU-28: Triethylene glycol PlasticsEurope	Mass	5.40E-02	kg
RER: vinyl acetate production ecoinvent 3.7.1 ^a	Mass	5.40E-02	kg
RER: transport, freight, lorry 7.5-16 metric ton, EURO6	Transport	2.00E-01	tkm
ecoinvent 3.7.1			
Output			
DE: Mixed cathode slurry	Mass	1.00E+00	kg

^a substitute for PVB 98 (polyvinyl butyral)

7. LCI of LATP powder

Table S 11.	LCI of LATP	powder	produced	via s	olid-state	reaction
	2010/2/11	ponaci	produced	1.0.0	ond other	

Flows	Quantities	Amount	Unit
Input			
IAI Area, EU27 & EFTA: market for aluminium oxide, non-	Mass	3.98E-02	kg
metallurgical ecoinvent 3.7.1			
GLO: lithium carbonate production, from concentrated	Mass	1.25E-01	kg
brine ecoinvent 3.7.1			
DE: Ammonium dihydrogen phosphate [(NH ₄)H ₂ PO ₄],	Mass	8.97E-01	kg
own process model			
RER: market for titanium dioxide ecoinvent 3.7.1	Mass	3.53E-01	kg
DE: Electricity grid mix Sphera	Energy	45.90E+00	MJ
Output			
DE: LATP powder produced via solid-state reaction	Mass	1.00E+00	kg
Carbon dioxide [Inorganic emissions to air]	Mass	7.44E-02	kg
Water vapour [Inorganic emissions to air]	Mass	4.21E-01	kg
NOx retained, by selective catalytic reduction ^a	Mass	3.59E-01	kg

^a NOx is not released as an emission, but is converted to nitrogen and water by selective catalytic reduction with ammonia

Flows	Quantities	Amount	Unit
Input			
DE: Lithium acetate [Li(CH ₃ COO)*2 H ₂ O], own process	Mass	3.46E-01	kg
model			
DE: Aluminium nitrate nonahydrate $[Al(NO_3)_3*9 H_2O]$,	Mass	2.93E-01	kg
own process model			
DE: Titanium isopropoxide [Ti[OCH(CH ₃) ₂] ₄], own process	Mass	1.26E+00	kg
model			
DE: Ammonium dihydrogen phosphate [(NH ₄)H ₂ PO ₄],	Mass	8.99E-01	kg
own process model			
Europe without Switzerland: market for water, deionised	Mass	2.00E+00	kg
ecoinvent 3.7.1			
DE: Electricity grid mix Sphera	Energy	42.10E+00	MJ
Output			
DE: LATP powder produced via sol-gel process	Mass	1.00E+00	kg
Carbon dioxide [Inorganic emissions to air]	Mass	2.75E+00	kg
Water vapour [Inorganic emissions to air]	Mass	3.88E+00	kg
NOx retained, by selective catalytic reduction ^a	Mass	4.68E-01	kg

^a NOx is not released as an emission, but is converted to nitrogen and water by selective catalytic reduction with ammonia

8. LCI of NMC 622 powder

The quantities of the flows to produce NMC 622 were obtained from [2]. Our LCI was set up with processes from ecoinvent 3.7.1, sphere, Nickel Institute, and Cobalt Development Institute (CDI). A separate process has been developed to produce cobalt sulfate based on the reaction of cobalt with concentrated sulfuric acid (Table S 15).

Flows Quantities Amount Unit Input DE: NMC 622 Precursor, own process model according to Mass 1.00E+00 kg [2] DE: Process steam from natural gas 85% Sphera 6.80E+00 MJ Energy DE: Oxygen (gaseous) Sphera Mass 4.29E+00 kg Europe without Switzerland: market for water, deionised Mass 3.00E-01 kg ecoinvent 3.7.1 DE: Electricity grid mix Sphera 36.00E+00 MJ Energy GLO: lithium carbonate production, from concentrated 4.00E-01 Mass kg brine ecoinvent 3.7.1 Output NMC 622 [Materials] 1.00E+00 Mass kg

Table S 13. LCI of NMC 622 according to [2]

Table S 14. LCI of NMC 622 precursor according to [2]

Flows	Quantities	Amount	Unit
Input			
GLO: Nickel sulphate hexahydrate [NiSO ₄ *6 H ₂ O] Nickel	Mass	1.00E+00	kg
Institute			
DE: Cobalt sulphate [Co(SO) ₄], own process model	Mass	3.00E-01	kg
GLO: market for manganese sulfate ecoinvent 3.7.1	Mass	3.00E-01	kg
DE: Sodium hydroxide (caustic soda) mix (100%) Sphera	Mass	9.00E-01	kg
Europe without Switzerland: market for water, deionised	Mass	6.00E+02	kg
ecoinvent 3.7.1			
DE: market for natural gas, high pressure ecoinvent 3.7.1	Volume	1.10E+00	m ³
DE: Ammonia (NH ₃) without CO_2 recovery (carbon	Mass	1.00E-01	kg
dioxide emissions to air) Sphera			
Output			
NMC 622 Precursor [Materials]	Mass	1.00E+00	kg

Table S 15. LCI of cobalt sulphate

Flows	Quantities	Amount	Unit
Input			
GLO: Cobalt, refined (metal) CDI	Mass	3.80E-01	kg
DE: Sulphuric acid mix (96%) (consumption mix) Sphera	Mass	6.59E-01	kg
Output			
Cobalt sulphate [Co(SO) ₄] [Materials]	Mass	1.00E+00	kg
Hydrogen [Inorganic emissions to air]	Mass	1.30E-02	kg

9. LCI of precursors for LLZO and LATP production

Flows	Quantities	Amount	Unit
Input			
IAI Area, EU27 & EFTA: aluminium hydroxide production	Mass	2.1E-01	kg
ecoinvent 3.7.1			
DE: Process steam from natural gas 85% Sphera	Energy	5.96E-01	MJ
DE: Nitric acid (98%) Sphera	Mass	5.14E-01	kg
Europe without Switzerland: market for water, deionised	Mass	2.88E-01	kg
ecoinvent 3.7.1			
DE: Electricity grid mix Sphera	Energy (net	5.80E-01	MJ
	calorific value)		
Europe without Switzerland: market for tap water	Mass	5.14E-01	kg
ecoinvent 3.7.1			
Output			
Aluminium nitrate nonahydrate [Materials]	Mass	1.00E+00	kg

Table S 16. LCl of aluminum nitrate nonahydrate ($Al(NO_3)_3 * 9 H_2O$)

Table S 17. LCI of lithium nitrate (LiNO₃)

Lithium nitrate (LiNO₃) is prepared by stirring lithium carbonate (Li_2CO_3) and nitric acid (HNO₃) together at ambient temperature and then adding lithium hydroxide (LiOH) to adjust the pH value. The detailed LCI is obtained from literature [1].

Flows	Quantities	Amount	Unit
Input			
GLO: lithium hydroxide production ecoinvent 3.7.1	Mass	3.30E-02	kg
DE: Process steam from natural gas 85% Sphera	Energy	1.99E+00	MJ
DE: Nitric acid (98%) Sphera	Mass	9.14E-01	kg
GLO: lithium carbonate production, from concentrated	Mass	4.84E-01	kg
brine ecoinvent 3.7.1			
DE: Electricity grid mix Sphera	Energy (net	8.82E-01	MJ
	calorific value)		
Europe without Switzerland: market for tap water	Mass	9.14E-01	kg
ecoinvent 3.7.1			
Output			
Lithium nitrate [Materials]	Mass	1.00E+00	kg
Wastewater [Production residues in life cycle]	Mass	9.14E-01	kg
Carbon dioxide [Inorganic emissions to air]	Mass	2.88E-01	kg

Flows	Quantities	Amount	Unit
Input			
GLO: market for lanthanum oxide ecoinvent 3.7.1	Mass	4.29E-01	kg
Europe without Switzerland: market for water, deionized	Mass	1.35E-01	kg
ecoinvent 3.7.1			
DE: Process steam from natural gas 85% Sphera	Energy	5.90E-01	MJ
DE: Nitric acid (98%) Sphera	Mass	5.09E -01	kg
GLO: lithium carbonate production, from concentrated	Mass	4.84E-01	kg
brine, ecoinvent 3.7.1			
DE: Electricity grid mix Sphera	Energy (net	6.01E-01	MJ
	calorific value)		
Europe without Switzerland: market for tap water	Mass	5.09E-01	kg
ecoinvent 3.7.1			
Output			
Lanthanum nitrate [La(NO ₃) ₃ *6 H ₂ O] [Materials]	Mass	1.00E+00	kg

Table S 18. LCI of lanthanum nitrate $[La(NO_3)_3*6 H_2O]$

Table S 19. LCI of zirconium oxynitrate [2	$ZrO(NO_3)2^*6 H_2O$
--	----------------------

Flows	Quantities	Amount	Unit
Input			
Zirconium tetrachloride [ZrCl ₄], own process model	Mass	6.87E-01	kg
Europe without Switzerland: market for water, deionized	Mass	3.72E-01	kg
ecoinvent 3.7.1			
DE: Process steam from natural gas 85% Sphera	Energy	5.90E-01	MJ
DE: Nitric acid (98%) Sphera	Mass	3.79E -01	kg
DE: Electricity grid mix Sphera	Energy (net	6.88E-01	MJ
	calorific value)		
Europe without Switzerland: market for tap water	Mass	3.79E-01	kg
ecoinvent 3.7.1			
Output			
Zirconium oxynitrate [ZrO(NO ₃) ₂ *6 H ₂ O] [Materials]	Mass	1.00E+00	kg
Hydrochloric acid [Waste for recovery]	Mass	4.30E-01	kg

Flows	Quantities	Amount	Unit
Input			
AU: zirconium oxide production ecoinvent 3.7.1	Mass	5.29E-01	kg
DE: Chlorine mix Sphera	Mass	6.09E-01	kg
RER: market group for heat, district or industrial, natural	Energy	2.10E+00	MJ
gas, ecoinvent 3.7.1			
DE: Electricity grid mix Sphera	Energy (net	5.04E-01	MJ
	calorific value)		
DE: Metallurgical coke Sphera	Mass	1.03E-01	kg
Output			
Zirconium tetrachloride [ZrCl ₄] [Materials]	Mass	1.00E+00	kg
Carbon monoxide [Inorganic emissions to air]	Mass	2.40E-01	kg

Table S 20. LCI of zirconium tetrachloride [ZrCl₄]

Table S 21. LCI of ammonium dihydrogen phosphate $[(NH_4)H_2PO_4]$

Flows	Quantities	Amount	Unit
Input			
DE: Ammonia (NH ₃) without CO ₂ recovery Sphera	Mass	1.48E-01	kg
DE: Process steam from natural gas 85% Sphera	Energy	1.16E+00	MJ
GLO: market for phosphoric acid, industrial grade,	Mass	1.00E+00	kg
without water, in 85% solution state ecoinvent 3.7.1			
DE: Electricity grid mix Sphera	Energy (net	8.24E-01	MJ
	calorific value)		
Europe without Switzerland: market for tap water	Mass	1.00E+00	kg
ecoinvent 3.7.1			
Output			
Ammonium dihydrogen phosphate [(NH ₄)H ₂ PO ₄]	Mass	1.00E+00	kg
[Materials]			

Flows	Quantities	Amount	Unit
Input			
GLO: lithium carbonate production, from concentrated	Mass	4.40E-01	kg
brine ecoinvent 3.7.1			
Europe without Switzerland: market for water, deionized	Mass	1.07E-01	kg
ecoinvent 3.7.1			
DE: Process steam from natural gas 85% Sphera	Energy	8.29E-01	MJ
DE: Acetic acid from methanol (low pressure	Mass	7.15E-01	kg
carbonylation) (Monsanto process) Sphera			
DE: Electricity grid mix Sphera	Energy (net	7.52E-01	MJ
	calorific value)		
Europe without Switzerland: market for tap water	Mass	7.15E-01	kg
ecoinvent 3.7.1			
Output			
Lithium acetate [Li(CH ₃ COO)*2 H ₂ O] [Materials]	Mass	1.00E+00	kg
Carbon dioxide [Inorganic emissions to air]	Mass	2.62E-01	kg

Table S 22. LCl of Lithium acetate $[Li(CH_3COO)*2H_2O]$

Table S 23. LCl of titanium isopropoxide $[Ti[OCH(CH_3)_2]_4]$

Credit is given to the ammonium chloride (NH₄Cl) produced by the reaction of titanium tetrachloride (TiCl4) and ammonia (NH₃). Therefore, the input is negative. This means that the environmental impact to produce 0.753 kg NH₄Cl is subtracted from the total balance.

Flows	Quantities	Amount	Unit
Input			
GLO: titanium tetrachloride production ecoinvent 3.7.1	Mass	6.67E-01	kg
DE: Isopropanol Sphera	Mass	8.46E-01	kg
DE: Ammonia (NH ₃) without CO ₂ recovery Sphera	Mass	2.40E-01	kg
GLO: Ammonium chloride production ecoinvent 3.7.1	Mass	-7.53E-01	kg
Output			
Titanium isopropoxide [Ti[OCH(CH ₃) ₂] ₄] [Materials]	Mass	1.00E+00	kg

10. Comparison of LATP and LLZO with LiPF₆ (in EC/DMC)

Figure S 1 shows the environmental impacts of two model cells. Cell 1 consists of the mixed cathode (LATP/NMC 622) and electrolyte (LLZO) while cell 2 consists of an equivalent quantity of LiPF₆ (in EC/DCM) that could theoretically replace LATP and LLZO. To calculate the equivalent quantity of LiPF₆, the densities of LATP and LLZO are set in relation to the density of LiPF₆ (assumed densities: LLZO: 5.107 g/cm³, LATP: 2.92 g/cm³, LiPF₆ in EC/DMC: 1.32 g/cm³). This results in the following quantities required for the model cells of 25.8 cm²: cell 1 consists of 0.132 g LLZO, 0.226 g LATP, and 0.858 g NMC 622; cell 2 consists of 0.136 g LiPF₆ in EC/DMC (50/50) and 0.858 g NMC 622. The quantity of NMC 622 remains the same in the two cells. As expected, the overall environmental impacts are lower if the common LiPF₆ were used instead of LATP and LLZO. However, most of the environmental impacts are caused by NMC 622, and those of LLZO are much lower. The overall performance of LATP is similar to that of LiPF₆.

Figure S 1 Environmental impacts of cathode and electrolyte material supply required for two model cells (25 cm²): cell (1) includes 0.858 g NMC 622, 0.226 g LATP, and 0.132 g LLZO; cell (2) includes 0.858 g NMC 622 and 0.136 g LiPF6 in EC/DMC (50/50)

11. References

- 1. Deng, Y., et al., *Life cycle assessment of lithium sulfur battery for electric vehicles.* Journal of Power Sources, 2017. **343**: p. 284-295.
- 2. Sun, X., et al., *Life cycle assessment of lithium nickel cobalt manganese oxide (NMC) batteries for electric passenger vehicles.* Journal of Cleaner Production, 2020. **273**: p. 123006.