Electronic Supplementary Information

Switchable Electrooxidative N-Methyl Amines: Access to C3-Aminomethylated and C3-Arylmethylated Imidazo[1,2-*a*]pyridines

Sifeng Li,^{a*} Taimin Wang,^{a*} Xingchen Li,^a Lijing Fang,^b Hongbin Zhai,^{a,c} and Bin Cheng^{a*}

^aInstitute of Marine Biomedicine/Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, No. 7098 Liuxian Avenue, Nanshan District, Shenzhen 518055

^bInstitute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, No. 1068 Xueyuan Avenue, Nanshan District, Shenzhen 518055, China

^cLaboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, No. 2199 Lishui Road, Nanshan District, Shenzhen 518055, China

Contents

1. General information	S1
2. Typical procedure for electrochemical oxidative C3 aminomethylation	S1
2.1 Gram-scale C3-aminomethylation reaction of 2-phenylimidazo[1,2-a]pyridine	S2
3. Typical procedure for electrochemical C3 para-selective arylmethylation	S2
4. Procedure for cyclic voltammetry (CV)	S5
5. The optimization of reaction conditions	S7
6. Deuterium-labeling experiments	S14
7. Free radical trap experiments and proposed mechanisms for 3aa	S20
8. Characterization data (¹ H-NMR, ¹³ C-NMR and ¹⁹ F-NMR) of products	S21
9. References	S46
10. Crystal data and structure refinement of 3aa , 3la and 4ha	S47
10.1 X-ray structure of 3aa	S47
10.2 X-ray structure of 3la	S48
10.3 X-ray structure of 4ha	S50
11. NMR spectra of C3 methylated imidazo[1,2-a]pyridines	S52

1. General information

All the ¹H NMR, ¹³C NMR and ¹⁹F NMR spectra of isolated compounds were recorded on JEOL 400 MHz spectrometer in CDCl₃. Chemical shifts (δ) were reported in ppm with tetramethylsilane as internal standard, and *J* values were given in Hz, δ values relative to internal CHCl₃ (δ 7.26 for ¹H NMR and 77.16 for ¹³C NMR in CDCl₃). ¹⁹F NMR chemical shifts were determined as δ values relative to external standard PhCF₃ at –63.0. High-resolution mass spectra (HRMS) were obtained on a 4G mass spectrometer by using electrospray ionization (ESI) analyzed by a quadrupole time-of-flight (QTof) instrument. Cyclic voltammetry was performed on CHI660E using the cyclic voltammetry mode. All melting points were measured with the samples after column chromatography and uncorrected. All reactions were monitored by thin layer chromatography (TLC), and column chromatography was carried out on 200-300 mesh of silica gel purchased from Qing Dao Hai Yang Chemical Industry Co. All the electrodes, cables and power supplies were purchased from online shopping platforms. Unless otherwise stated, all commercially available reagents and solvents were used directly without further purification. imidazo[1,2-*a*]pyridines 1¹⁻³ were all known and prepared according to the previous reported protocols

2. Typical procedure for electrochemical oxidative C3 aminomethylation

Imidazo[1,2-a]pyridine **1a** (0.2 mmol, 38.8 mg), N,N-dimethylaniline **2a** (1.0 mmol, 121 mg, 5.0 equiv.), "Bu₄BF₄ (0.1 mmol, 33.0 mg, 0.5 equiv.), TEMPO (0.2 mmol, 31.2 mg, 1.0 equiv.), acetic acid (50 μ L) and MeCN (5.0 mL) were added into a 10 mL tube equipped with a stir bar. The tube was equipped with a graphite plate (20.0 mm × 15.0 mm × 2.0 mm) anode and a nickel plate (20.0 mm × 10.0 mm × 0.2 mm) cathode, and the two electrodes were then submerged into the solution for 10 mm. The reaction mixture was then stirred and electrolyzed at a constant current of 6 mA at room temperature 4 h. After the completion of reaction as monitored by TLC, the resulting mixture was allowed to poured to saturated NaHCO₃ (5 mL) before extracted by ethyl acetate (3 × 10 mL). The organic phase was washed by saturated brine and then dried over Na₂SO₄ before concentrated

and dried under vacuum. The residue was then purified by silica gel column by using petroleum ether and ethyl acetate (petroleum ether/ethyl acetate = 5:1 to 3:1) as a mixed eluent to provide the desired products **3aa** (61 mg, 98%).

2.1 Gram-scale C3-aminomethylation reaction of 2-phenylimidazo[1,2-a]pyridine

Imidazo[1,2-a]pyridine **1a** (4 mmol, 776 mg), *N*,*N*-dimethylaniline **2a** (12 mmol, 1.45 g, 3.0 equiv.), "Bu₄BF₄ (3 mmol, 16.5 mg, 0.25 equiv.), TEMPO (3 mmol, 468 mg, 0.75 equiv.), acetic acid (1.0 mL) and MeCN (70 mL) were added into a 150 mL conical flask and a stir bar was added. The tube was equipped with a graphite plate (20.0 mm × 15.0 mm × 2.0 mm) anode and a nickel plate (20.0 mm × 10.0 mm × 0.2 mm) cathode, and the two electrodes were then submerged into the solution for 10 mm. The reaction mixture was then stirred and electrolyzed at a constant current of 12 mA at room temperature 14 h. After the completion of reaction as monitored by TLC, the resulting mixture was allowed to poured to saturated NaHCO₃ (30 mL) before extracted by ethyl acetate (3 × 50 mL). The organic phase was washed by saturated brine and then dried over Na₂SO₄ before concentrated and dried under vacuum. The residue was then purified by silica gel column by using petroleum ether and ethyl acetate (petroleum ether/ethyl acetate = 5:1 to 3:1) as a mixed eluent to provide the desired products **3aa** (1.17 g, 94%).

3. Typical procedure for electrochemical C3 para-selective arylmethylation

Imidazo[1,2-a]pyridine **1a** (0.2 mmol, 38.8 mg), N,N-dimethylaniline **2a** (1.0 mmol, 121 mg, 5.0 equiv.), LiBr (0.1 mmol, 8.7 mg, 0. 5 equiv.), acetic acid (0.5 mL) and MeCN (4.5 mL) were added into a 10 mL tube equipped with a stir bar. The tube was equipped with a Pt plate (10.0 mm \times 10.0 mm \times 0.1 mm) anode and a graphite plate (20.0 mm \times 15.0 mm \times 2.0 mm) cathode, and the two

electrodes were then submerged into the solution for 10 mm. The reaction mixture was then stirred and electrolyzed at a constant current of 6 mA at room temperature 6 h. After the completion of reaction as monitored by TLC, the resulting mixture was allowed to poured to saturated NaHCO₃ (5 mL) before extracted by ethyl acetate (3×10 mL). The organic phase was washed by saturated brine and then dried over Na₂SO₄ before concentrated and dried under vacuum. The residue was then purified by silica gel column by using petroleum ether and ethyl acetate (petroleum ether/ethyl acetate = 10:1 to 5:1) as a mixed eluent to provide the desired products **4aa** (43 mg, 66%).

The preparation of nickel cathode

The preparation of C(+) | Ni(-) electrodes

The preparation of Pt(+) | C(-) electrodes

Reaction setup (5 min)

0 h

C(+) | Ni(-) for methylation without TEMPO (left); C(+) | Ni(-) for methylation in standard conditions (middle); Pt(+) | C(-) for alkylation (right).

1 min

5 min

30 min

2 h

4 h

6 h

The reaction processes S4

4. Procedure for cyclic voltammetry (CV)

Cyclic voltammetry was performed on CHI660E using the cyclic voltammetry mode. A glassy carbon disc (diameter 3 mm) working electrode, a platinum plate ($10 \times 10 \times 1 \text{ mm}$) counter electrode and an Ag wire (in saturated aqueous KCl solution) reference electrode were used at a scan rate of 50 mV/s. The experiments were conducted in a 10 mL tube without stirring in CH₃CN (5 mL) or mixed solvent (CH₃CN/AcOH = 4.5/0.5 mL) using "Bu₄NBF₄ (0.1 mmol, 0.02 M) as electrolyte.

Cyclic voltammetry curves: (1a) 0.04 M 1a in CH₃CN; (AcOH) 50 μ L acetic acid in CH₃CN; (1a + 50 μ L AcOH) 0.04 M 1a and 50 μ L AcOH in MeCN; (1a + 0.5 mL AcOH) 0.04 M 1a in mixed solvent; (1a + TEMPO) 0.04 M 1a and 0.02 M TEMPO in CH₃CN.

Figure S1 Cyclic voltammetry experiments of 1a

Cyclic voltammetry curves: (2a) 0.2 M 2a in CH₃CN; (TEMPO) 0.04 M TEMPO in CH₃CN; (2a + TEMPO) 0.2 M 2a and 0.04 M TEMPO in CH₃CN; (2a + 50 μ L AcOH) 0.2 M 2a and 25 μ L AcOH in MeCN; (2a + 25 μ L AcOH) 0.2 M 2a and 50 μ L AcOH in MeCN; (2a + 0.5 mL AcOH) 0.2 M 2a in mixed solvent.

Cyclic voltammetry curves: (1a) 0.04 M 1a in CH₃CN; (2a) 0.2 M 2a in MeCN; (3aa) 0.04 M 3aa in CH₃CN; (3aa + AcOH) 0.04 M 3aa in mixed solvent; (AcOH) 0.5 mL AcOH in 4.5 mL CH₃CN. Figure S3 Cyclic voltammetry experiments of coupling partners

Cyclic voltammetry curves: (TEMPO) 0.04 M TEMPO in CH₃CN; (**3aa**) 0.04 M **3aa** in CH₃CN; (**3aa** + AcOH) 0.04 M **3aa** in mixed solvent; (**3aa** + TEMPO) 0.04 M **3aa** and 0.04 M TEMPO in CH₃CN.

Figure S4 Cyclic voltammetry experiments of 3aa

5. The optimization of reaction conditions

Table S1 Optimization of reaction conditions for the aminomethylation

entry	electrolyte	cathode	time (h)	yield (%) ^[b]
1	none	Ni	12	41
2	ⁿ Bu ₄ NBF ₄	Ni	8	63
3[c]	ⁿ Bu ₄ NBF ₄	Ni	6	56
4	"Bu ₄ NPF ₆	Ni	12	46
5	ⁿ Bu ₄ NClO ₄	Ni	12	34
6	ⁿ Bu ₄ NI	Ni	12	37
7	ⁿ Bu ₄ NBr	Ni	12	45
8	ⁿ Bu ₄ NHSO ₄	Ni	12	N.R.
9	Et ₄ NBF ₄	Ni	12	46

10 ^[d]	CAN	Ni	12	39
11 ^[d]	ⁿ Bu ₄ NBF ₄	Fe	12	42
12 ^[d]	ⁿ Bu ₄ NBF ₄	Al	12	27
13	ⁿ Bu ₄ NBF ₄	Graphite	12	44
14	ⁿ Bu ₄ NBF ₄	Pt	12	10
15 ^[e]	"Bu ₄ NBF ₄	Ni	8	62
16 ^[f]	ⁿ Bu ₄ NBF ₄	Ni	24	trace
17 ^[g]	"Bu ₄ NBF ₄	Ni	4	98
18 ^[h]	"Bu ₄ NBF ₄	Ni	4	87

[a] Reaction conditions: graphite anode, cathode, 2-phenyl imidazo[1,2-*a*]pyridine **1a** (0.2 mmol), *N*,*N*-dimethylaniline **2a** (1.0 mmol), electrolyte (0.1 mmol) and AcOH (50 μ L) were dissolved in 5 mL solvent, the mixture was stirred under air at room temperature for specific time, constant current = 6 mA. [b] Yield was determined by ¹H NMR with 3-Methylanisole as the standard. [c] 0.2 mmol "Bu₄BF₄ was used. [d] An unexpected product **4aa** was isolated. [e] The reaction was conducted under N₂. [f] 0.2 mmol 2,6-Di-tert-butyl-4-methylphenol (BHT) was added. [g] 0.2 mmol TEMPO was added. [h] 0.05 mmol TEMPO was added. CAN = Diammonium cerium(IV) nitrate. TEMPO = 2,2,6,6-tetramethylpiperidinyl-1-oxide.

Table S2 Optimization of reaction conditions for arylmethylation

	<u>`</u> Ņ´
N	\downarrow
Ph +	\int

Pt(+) cathode electrolyte (0.5 equiv)	N	-Ph
MeCN/AcOH = 4.5/0.5 mL 6 mA, air, rt	4aa	

1a	2a			
entry	electrolyte	cathode	time (h)	yield (%) ^[b]
1	none	graphite	8	23
2	ⁿ Bu ₄ NBF ₄	graphite	8	40
3 [c]	ⁿ Bu ₄ NBF ₄	graphite	8	37
4 ^[d]	"Bu4NBF4	graphite	8	21
5 ^[e]	"Bu ₄ NPF ₆	graphite	8	43
6	ⁿ Bu ₄ NClO ₄	graphite	8	30
7	ⁿ Bu ₄ NI	graphite	8	39
8	"Bu4NBr	graphite	8	trace
9 [e]	ⁿ Bu ₄ NHSO ₄	graphite	8	43
10	Et ₄ NBF ₄	graphite	8	42

11	LiBr	graphite	6	66
12 ^[f]	LiBr	graphite	6	67
13	LiBr	Fe	8	36
14 ^[e]	LiBr	Ni	8	40
15	LiBr	Pt	8	47
16 ^[g]	LiBr	graphite	12	21
17 ^[h]	LiBr	graphite	12	69
18 ^[i]	LiBr	graphite	12	67

[a] Reaction conditions: Pt anode, cathode, 2-phenyl imidazo[1,2-*a*]pyridine **1a** (0.2 mmol), *N*,*N*-dimethylaniline **2a** (1.0 mmol), electrolyte (0.1 mmol) and AcOH (0.5 mL) were dissolved in 4.5 mL solvent, the mixture was stirred under air at room temperature for specific time, constant current = 6 mA. [b] Yield was determined by ¹H NMR with 3-Methylanisole as the standard. [c] 200 μ L AcOH was used. [d] 1.0 mL AcOH was used. [e] Product **3aa** was detected in ¹H NMR. [f] The reaction was conducted under N₂. [g] 0.2 mmol 2,6-Di-tert-butyl-4-methylphenol (BHT) was added. [h] 0.2 mmol TEMPO was added. [i] 0.05 mmol TEMPO was added.

Table S3 The effect of acetic acid and "Bu₄NBF₄ for the aminomethylation

N → Ph	► N +	C(+) Ni(-) ⁿ Bu ₄ NBF ₄	N N Ph
N_/ ····		MeCN/AcOH, rt	Ph
1a	2a	<i>I</i> = 6 mA, 12 h	3aa

entry	"Bu4NBF4 loading	amounts of AcOH	Yield (%) ^[b]
1	1 equiv	none	trace
2 ^[c]	1 equiv	25 μL	21
3	1 equiv	50 µL	56
4 ^[c]	1 equiv	100 µL	32
5	none	50 µL	41
6	0.25 equiv	50 µL	47
7	0.5 equiv	50 µL	63
8	1.5 equiv	50 µL	53

[a] Reaction condition: graphite anode, nickel cathode, 0.2 mmol **1a**, 1.0 mmol **2a**, specific amounts of ${}^{n}Bu_{4}BF_{4}$ and AcOH were dissolved in 5 mL acetonitrile, the mixture was stirred under air at room temperature for 12 h, constant current = 6 mA. [b] Yield was determined by ¹H NMR with 3-Methylanisole as the standard. [c] The reaction was not complete.

		$Pt(+) C(-)$ $^{n}Bu_{4}NBF_{4}$ N	\rightarrow
~	1a 2a	MeCN/AcOH, rt / = 6 mA, 8 h 4aa	N
entry	"Bu4NBF4 loading	amounts of AcOH	Yield (%) ^[b]
1 ^[c]	1 equiv	50 µL	N.P.
2 ^[d]	1 equiv	100 µL	trace
3 ^[e]	1 equiv	200 µL	21
4	1 equiv	0.5 mL	39
5	1 equiv	1.0 mL	37
6	1 equiv	1.5 mL	32
7	none	0.5 mL	23
8	0.25 equiv	0.5 mL	34
9	0.5 equiv	0.5 mL	40
10	2.0 equiv	0.5 mL	39

Table S4 The effect of acetic acid and "Bu₄NBF₄ for the arylmethylation

[a] Reaction condition: graphite anode, nickel cathode, 0.2 mmol **1a**, 1.0 mmol **2a**, specific amounts of ${}^{n}Bu_{4}BF_{4}$ and AcOH were dissolved in 5 mL acetonitrile, the mixture was stirred under air at room temperature for 12 h, constant current = 6 mA. [b] Yield was determined by ¹H NMR with 3-Methylanisole as the standard. [c] 11% **3aa** was detected. [d] 18% **3aa** was detected. [e] 29% **3aa** was detected. N.P. = No product.

11	Et ₄ NBF ₄	46	42
12	NH ₄ PF ₆	trace	51; 4 ^[c]
13	Et ₄ NOTs	21	46; 5 ^[c]
14	Et ₄ NCl	trace	27; 12 ^[c]
15	Et ₄ NClO ₄	38	41; 7 ^[c]
16	NaOPiv [·] H ₂ O	36	6
17 ^[e]	NH4I	15	16
18	NH ₄ OAc	n.r.	30; 18 ^[c]
19	KPF ₆	41	31
20	LiBr	trace	66 (64)
21	Li ₂ CO ₃	trace	43
22	KI	42	trace
23	CAN	39 ^[e]	20
24	[BMIM]PF ₆	43	trace
25	AcONa	trace	46; 20 ^[c]

[a] Reaction condition: graphite anode, nickel cathode, 0.2 mmol **1a**, 1.0 mmol **2a**, 0.1 mmol electrolyte and 50 μ L /0.5 mL AcOH were dissolved in 5/4.5 mL acetonitrile, the mixture was stirred under air at room temperature for 12 h, constant current = 6 mA. [b] Yield was determined by ¹H NMR with 3-methylanisole as the standard. Isolated yield was presented in parenthesis. [c] **3aa** was detected in ¹H NMR. [d] The reaction was not complete. [e] **4aa** was detected in ¹H NMR.

10	DMSO	АсОН	trace	trace
11	DMF	АсОН	n.r.	n.p. 15 ^[c]
12	THF	АсОН	trace	n.p. 15 ^[c]
13	МеОН	АсОН	Trace	trace, 59 ^[c] (57)
14	EtOH	АсОН	trace	trace

[a] Reaction condition: graphite anode, nickel cathode, 0.2 mmol **1a**, 1.0 mmol **2a**, 0.1 mmol electrolyte and 50 μ L /0.5 mL AcOH were dissolved in 5/4.5 mL acetonitrile, the mixture was stirred under air at room temperature for 12 h, constant current = 6 mA. [b] Yield was determined by ¹H NMR with 3-methylanisole as the standard Isolated yield was presented in parenthesis. [c] **3aa** was detected in ¹H NMR. [d] The reaction was not complete. [e] **4aa** was detected in ¹H NMR. n.r.= no reaction. n.p. = no product.

N N 3aa	C(+) Ni(-) Ph ⁿ Bu ₄ NBF ₄ (0.5 equiv) Ph MeCN/AcOH = 5/0.05 mL I = x mA, temp. 12 h			PhNMe ₂ 2a + N 1a		Pt(+) C(-) LiBr (0.5 equiv) MeCN/AcOH = 4.5/0.5 mL / = x mA, temp. 8 h 4aa	
	entry	X	Temp.	Yield 3aa (%	⁄o) ^[b]	Yield 4aa (%) ^[b]	
	1	4	r.t.	62		42	
	2	6	r.t.	63		66	
	3	8	r.t.	60		49	
	4	10	r.t.	60		42	
	5	6	50	54		63	
	6	6	70	47		41	

Table S7 The effect of current and temperature

[a] Reaction condition: graphite anode, nickel cathode, 0.2 mmol **1a**, 1.0 mmol **2a**, 0.1 mmol electrolyte and 50 μ L /0.5 mL AcOH were dissolved in 5/4.5 mL acetonitrile, the mixture was stirred under air at room temperature, constant current = 6 mA. [b] Yield was determined by ¹H NMR with 3-methylanisole as the standard.

Table S8 The effect of electrode

3	Graphite	Fe	42; 12 ^[c]	C paper	49
4	Graphite	SS	45	C foam	34
5	Graphite	Pt	10	C felt	trace
6	Graphite	Cu	trace ^[d]	Fe	36
7	Graphite	Al	27; 8 ^[c]	SS	40
8	Graphite	Zn	10	Ni	40; 20 ^[e]
9	Graphite	Sn	Trace ^[d]	Ni foam	Trace ^[d]
10	Graphite	Nb	5	Cu	30; 20 ^[e]
11	Graphite	W	46	Cu foam	trace
12	Graphite	Ti	trace	Pt	47
13	Graphite	Pb	n.p.	Al	37
14	Graphite	Мо	trace	Zn	35
15	Graphite	Graphite	44	Mg	53
16	Graphite	RVC	41	Sn	45
17	Graphite	C paper	21	Nb	38
18	Graphite	C foam	13	W	trace
19	Graphite	C felt	23	Ti	51
20	RVC	Ni	26	Pb	63
21	C paper	Ni	47	Мо	54
22	C foam	Ni	34	Graphite	67 ^[f]
23	C felt	Ni	51		
24	Graphite	Ni	62 ^[f]		

[a] Reaction condition: graphite anode, nickel cathode, 0.2 mmol **1a**, 1.0 mmol **2a**, 0.1 mmol electrolyte and 50 μ L /0.5 mL AcOH were dissolved in 5/4.5 mL acetonitrile, the mixture was stirred under air at room temperature for 12 h, constant current = 6 mA. [b] Yield was determined by ¹H NMR with 3-methylanisole as the standard. [c] **4aa** was detected in ¹H NMR. [d] The reaction was not complete. [e] **3aa** was detected in ¹H NMR. [f] The reaction was conducted under N₂. n.r.= no reaction. n.p. = no product. RVC = reticulated glass carbon. SS = stainless steel.

6. Deuterium-labeling experiments

Scheme S1 The deuterium-labelling experiment for 3aa

Scheme S2 The deuterium-labelling experiment for 4aa

Figure S5 ¹H-NMR, ¹³C-NMR of deuterated **3aa**

Figure S7¹H-NMR, ¹³C-NMR for the reaction of **3aa** with deuterated anilines

Figure S8 ¹H-NMR, ¹³C-NMR of deuterated **4aa-D5**

7. Free radical trap experiments and proposed mechanisms for 3aa

additive = 2-benzylidenemalononitrile, 12 h, 42% yield

8. Characterization data (¹H-NMR, ¹³C-NMR and ¹⁹F-NMR) of products

N-Methyl-*N*-((2-phenylimidazo[1,2-*a*]pyridin-3-yl)methyl)aniline. Compound **3aa** (61 mg, Yield = 98%, $R_f = 0.3$ (PE/EA = 5:1)) was isolated as a light brown solid; mp 197–199 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.06 (dt, *J* = 6.9, 1.2 Hz, 1H), 7.82–7.78 (m, 2H), 7.69 (dt, *J* = 9.1, 1.1 Hz, 1H), 7.51–7.44 (m, 2H), 7.41–7.36 (m, 1H), 7.35–7.29 (m, 2H), 7.23 (ddd, *J* = 9.1, 6.7, 1.3 Hz, 1H), 7.02–6.96 (m, 2H), 6.90–6.85 (m, 1H), 6.78 (td, *J* = 6.8, 1.2 Hz, 1H), 4.83 (s, 2H), 2.70 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 150.39, 145.62, 145.28, 134.25, 129.45, 128.82, 128.68, 128.02, 124.85, 124.65, 118.70, 117.50, 116.29, 114.61, 112.54, 45.98, 36.18; HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₁H₂₀N₃ 314.1652; Found 314.1650. ¹H NMR and ¹³C NMR data are consistent with the reported values.⁴⁻⁶

Ethyl 4-(methyl((2-phenylimidazo[1,2-*a*]pyridin-3-yl)methyl)amino)benzoate. Compound **3ab** (47 mg, Yield = 61%, $R_f = 0.3$ (PE/EA = 2:1)) was isolated as a light brown paste. ¹H NMR (400 MHz, CDCl₃) δ 8.02–7.96 (m, 2H), 7.85 (dt, *J* = 6.9, 1.2 Hz, 1H), 7.77–7.73 (m, 2H), 7.69 (dt, *J* = 9.1, 1.1 Hz, 1H), 7.50–7.44 (m, 2H), 7.42–7.36 (m, 1H), 7.27–7.22 (m, 1H), 6.94–6.87 (m, 2H), 6.79 (td, *J* = 6.8, 1.2 Hz, 1H), 4.95 (s, 2H), 4.34 (q, *J* = 7.1 Hz, 2H), 2.76 (s, 3H), 1.38 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.86, 153.07, 146.13, 145.48, 134.01, 131.59, 128.85, 128.82, 128.30, 125.14, 124.16, 119.35, 117.80, 115.47, 113.03, 112.10, 60.50, 44.70, 35.12, 14.58; HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₄H₂₄N₃O₂ 386.1863; Found 386.1863.

4-Bromo-N-methyl-N-((2-phenylimidazo[1,2-a]pyridin-3-yl)methyl)aniline. Compound 3ac (68

mg, Yield = 87%, $R_f = 0.3$ (PE/EA = 5:1)) was isolated as a light brown solid. ¹H NMR (400 MHz, CDCl₃) δ 7.96 (dt, J = 6.9, 1.2 Hz, 1H), 7.78–7.72 (m, 2H), 7.68 (dt, J = 9.1, 1.1 Hz, 1H), 7.48–7.42 (m, 2H), 7.41–7.33 (m, 3H), 7.22 (ddd, J = 9.1, 6.7, 1.3 Hz, 1H), 6.83–6.77 (m, 3H), 4.78 (s, 2H), 2.67 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 149.21, 145.83, 145.35, 134.16, 132.12, 128.80, 128.74, 128.14, 124.94, 124.38, 117.65, 115.97, 115.85, 112.71, 110.63, 45.77, 36.18; HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₁H₁₉N₃Br 392.0757; Found 392.0759.

N,4-Dimethyl-*N*-((2-phenylimidazo[1,2-*a*]pyridin-3-yl)methyl)aniline. Compound **3ad** (62 mg, Yield = 89%, $R_f = 0.3$ (PE/EA = 5:1)) was isolated as a light brown solid; mp 121–122 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.11 (dt, *J* = 6.9, 1.2 Hz, 1H), 7.83–7.78 (m, 2H), 7.68 (dt, *J* = 9.0, 1.2 Hz, 1H), 7.49 -7.43 (m, 2H), 7.42–7.36 (m, 1H), 7.25–7.19 (m, 1H), 7.15–7.09 (m, 2H), 6.96–6.89 (m, 2H), 6.77 (td, *J* = 6.8, 1.2 Hz, 1H), 4.77 (s, 2H), 2.68 (s, 3H), 2.31 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 148.46, 145.52, 145.26, 134.34, 129.94, 128.97, 128.87, 128.66, 128.37, 127.98, 124.80, 117.47, 116.52, 115.29, 112.43, 46.66, 36.91, 20.42; HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₂H₂₂N₃ 328.1808; Found 328.1809. ¹H NMR and ¹³C NMR data are consistent with the literature.^{4, 5}

N,3-Dimethyl-*N*-((2-phenylimidazo[1,2-*a*]pyridin-3-yl)methyl)aniline. Compound **3ae** (58 mg, Yield = 89%, $R_f = 0.3$ (PE/EA = 5:1)) was isolated as a light brown paste. ¹H NMR (400 MHz, CDCl₃) δ 8.08 (dt, *J* = 6.9, 1.1 Hz, 1H), 7.84–7.78 (m, 2H), 7.69 (dt, *J* = 9.1, 1.2 Hz, 1H), 7.51–7.44 (m, 2H), 7.42–7.37 (m, 1H), 7.27–7.18 (m, 2H), 6.85–6.75 (m, 3H), 6.71 (d, *J* = 7.5 Hz, 1H), 4.83 (s, 2H), 2.72 (s, 3H), 2.35 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 150.51, 145.64, 145.32, 139.22, 134.35, 129.31, 128.88, 128.70, 128.03, 124.83, 124.75, 119.64, 117.55, 116.42, 115.42, 112.52, 111.84, 46.10, 36.42, 21.96; HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₂H₂₂N₃ 328.1808; Found 328.1807.

N,2-Dimethyl-*N*-((2-phenylimidazo[1,2-*a*]pyridin-3-yl)methyl)aniline. Compound **3af** (57 mg, Yield = 87%, $R_f = 0.3$ (PE/EA = 5:1)) was isolated as a light brown paste. ¹H NMR (400 MHz, CDCl₃) δ 8.24 (dt, *J* = 6.9, 1.2 Hz, 1H), 7.83–7.76 (m, 2H), 7.64 (dt, *J* = 9.1, 1.2 Hz, 1H), 7.52–7.45 (m, 2H), 7.43–7.37 (m, 1H), 7.23–7.16 (m, 2H), 7.15–7.08 (m, 2H), 7.02 (td, *J* = 7.2, 1.7 Hz, 1H), 6.77 (td, *J* = 6.8, 1.2 Hz, 1H), 4.60 (s, 2H), 2.52 (s, 3H), 2.26 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 151.24, 145.33, 145.14, 134.72, 133.73, 131.31, 129.04, 128.56, 127.84, 126.81, 125.24, 124.58, 124.18, 120.76, 117.39, 117.05, 111.78, 49.23, 42.50, 17.96; HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₂H₂₂N₃ 328.1808; Found 328.1808.

N,2,4,6-Tetramethyl-*N*-((2-phenylimidazo[1,2-*a*]pyridin-3-yl)methyl)aniline. Compound **3ag** (60 mg, Yield = 85%, $R_f = 0.3$ (PE/EA = 5:1)) was isolated as a light brown paste. ¹H NMR (400 MHz, CDCl₃) δ 7.93 (dt, *J* = 6.8, 1.2 Hz, 1H), 7.74–7.68 (m, 2H), 7.65 (dt, *J* = 9.0, 1.2 Hz, 1H), 7.47–7.41 (m, 2H), 7.39–7.34 (m, 1H), 7.20 (ddd, *J* = 9.0, 6.7, 1.3 Hz, 1H), 6.83 (s, 2H), 6.76 (td, *J* = 6.8, 1.2 Hz, 1H), 4.62 (s, 2H), 2.71 (s, 3H), 2.26 (s, 3H), 2.17 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 145.61, 144.97, 144.92, 136.73, 135.10, 134.73, 130.11, 128.93, 128.46, 127.74, 124.79, 124.53, 118.64, 117.35, 111.83, 48.56, 40.48, 20.75, 19.25; HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₄H₂₆N₃ 356.2121; Found 356.2122.

4-Methoxy-N-methyl-N-((2-phenylimidazo[1,2-a]pyridin-3-yl)methyl)aniline. Compound 3ah (62

mg, Yield = 90%, $R_f = 0.2$ (PE/EA = 5:1)) was isolated as a light brown paste. ¹H NMR (400 MHz, CDCl₃) δ 8.17 (dt, J = 6.9, 1.2 Hz, 1H), 7.81–7.76 (m, 2H), 7.66 (dt, J = 9.1, 1.1 Hz, 1H), 7.48–7.42 (m, 2H), 7.40–7.33 (m, 1H), 7.25–7.17 (m, 1H), 6.97–6.92 (m, 2H), 6.88–6.83 (m, 2H), 6.79–6.74 (m, 1H), 4.67 (s, 2H), 3.77 (s, 3H), 2.65 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 153.60, 145.43, 145.18, 145.08, 134.40, 128.86, 128.59, 127.90, 124.89, 124.72, 117.83, 117.41, 116.62, 114.70, 112.27, 55.68, 48.03, 38.42; HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₂H₂₂N₃O 344.1757; Found 344.1757.

N-Pentyl-*N*-((2-phenylimidazo[1,2-*a*]pyridin-3-yl)methyl)aniline. Compound **3aj** (34 mg, Yield = 46%, $R_f = 0.3$ (PE/EA = 5:1)) was isolated as a light brown paste. ¹H NMR (400 MHz, CDCl₃) δ 8.03 (dt, *J* = 7.0, 1.2 Hz, 1H), 7.77–7.73 (m, 2H), 7.69 (dt, *J* = 9.1, 1.2 Hz, 1H), 7.50–7.45 (m, 2H), 7.42–7.37 (m, 1H), 7.29–7.20 (m, 3H), 6.96–6.91 (m, 2H), 6.83 (tt, *J* = 7.4, 1.0 Hz, 1H), 6.78 (td, *J* = 6.8, 1.2 Hz, 1H), 4.85 (s, 2H), 3.04–2.95 (m, 2H), 1.24–1.16 (m, 2H), 1.06–0.98 (m, 2H), 0.96–0.89 (m, 2H), 0.68 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 149.31, 145.69, 145.25, 134.45, 129.47, 128.95, 128.69, 128.06, 124.96, 124.83, 118.59, 117.53, 116.65, 115.50, 112.41, 49.16, 43.75, 29.16, 25.56, 22.34, 13.98; HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₅H₂₈N₃ 370.2278; Found 370.2280.

2-Phenyl-1-(2-phenylimidazo[1,2-*a*]pyridin-3-yl)-1,2,3,4-tetrahydroisoquinoline. Compound **3ak** (51 mg, Yield = 64%, R_f = 0.3 (PE/EA = 5:1)) was isolated as a light yellow solid; mp 117–118 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.19 (d, *J* = 6.7 Hz, 1H), 7.53 (d, *J* = 9.1 Hz, 1H), 7.46–7.41 (m, 2H), 7.40–7.33 (m, 3H), 7.28–7.24 (m, 2H), 7.20 (t, *J* = 7.5 Hz, 1H), 7.11–7.06 (m, 1H), 7.03–6.95 (m, 3H), 6.94–6.88 (m, 2H), 6.72–6.66 (m, 2H), 6.62–6.56 (m, 1H), 5.98 (s, 1H), 3.57–3.51 (m, 1H),

3.49–3.39 (m, 2H), 3.05–2.93 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 151.32, 146.81, 144.99, 135.43, 134.86, 134.55, 128.96, 128.77, 128.60, 128.59, 128.29, 127.84, 127.06, 126.70, 126.50, 126.14, 124.43, 123.50, 119.62, 117.17, 111.52, 58.90, 52.63, 30.47; HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₈H₂₄N₃ 402.1965; Found 402.1966. ¹H NMR and ¹³C NMR data are consistent with the reported values.⁴

N-Methyl-*N*-((2-phenylimidazo[1,2-*a*]pyridin-3-yl)methyl)butan-1-amine. Compound **3al** (50 mg, Yield = 85%, $R_f = 0.2$ (PE/EA = 5:1)) was isolated as a light yellow paste. ¹H NMR (400 MHz, CDCl₃) δ 8.42 (dt, *J* = 6.9, 1.2 Hz, 1H), 7.83–7.78 (m, 2H), 7.62 (dt, *J* = 9.1, 1.1 Hz, 1H), 7.48–7.41 (m, 2H), 7.38–7.30 (m, 1H), 7.18 (ddd, *J* = 9.1, 6.7, 1.3 Hz, 1H), 6.78 (td, *J* = 6.8, 1.2 Hz, 1H), 3.93 (s, 2H), 2.43–2.35 (m, 2H), 2.16 (s, 3H), 1.51–1.39 (m, 2H), 1.31–1.22 (m, 2H), 0.83 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 145.00, 144.80, 134.74, 128.97, 128.45, 127.66, 125.61, 124.48, 117.53, 117.17, 111.72, 56.95, 51.70, 41.60, 29.45, 20.51, 14.01; HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₁₉H₂₄N₃ 294.1965; Found 294.1964.

N-Benzyl-*N*-methyl-1-(2-phenylimidazo[1,2-*a*]pyridin-3-yl)methanamine. Compound **3am** (50 mg, Yield = 76%, $R_f = 0.3$ (PE/EA = 5:1)) was isolated as a light brown paste. ¹H NMR (400 MHz, CDCl₃) δ 8.41–8.36 (m, 1H), 7.89–7.80 (m, 2H), 7.68–7.61 (m, 1H), 7.52–7.45 (m, 2H), 7.42–7.36 (m, 1H), 7.35–7.18 (m, 6H), 6.87–6.79 (m, 1H), 4.01 (s, 2H), 3.52 (s, 2H), 2.19 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 145.08, 145.04, 138.77, 134.68, 129.09, 129.01, 128.51, 128.35, 127.76, 127.25, 125.54, 124.59, 117.25, 111.81, 61.74, 50.98, 42.13, (1C is merged with other peaks); HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₂H₂₂N₃ 328.1808; Found 328.1808.

N,*N*-Dimethyl-1-(2-phenylimidazo[1,2-*a*]pyridin-3-yl)methanamine. Compound **3an** (26 mg, Yield = 51%, $R_f = 0.15$ (PE/EA = 5:1)) was isolated as a light brown paste. ¹H NMR (400 MHz, CDCl₃) δ 8.40 (d, *J* = 6.9 Hz, 1H), 7.84–7.77 (m, 2H), 7.64 (d, *J* = 9.1 Hz, 1H), 7.50–7.43 (m, 2H), 7.41–7.34 (m, 1H), 7.25–7.17 (m, 1H), 6.87–6.77 (m, 1H), 3.89 (s, 2H), 2.26 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 145.13, 144.95, 134.77, 129.06, 128.55, 127.78, 125.54, 124.64, 117.48, 117.34, 111.98, 53.02, 45.15; HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₁₆H₁₈N₃ 252.1495; Found 252.1497. ¹H NMR and ¹³C NMR data are consistent with the reported values.⁵⁻⁷

2-Phenyl-3-(piperidin-1-ylmethyl)imidazo[1,2-*a*]pyridine. Compound **3ao** (44 mg, Yield = 76%, R_f = 0.3 (PE/EA = 5:1)) was isolated as a light brown solid; mp 78–90 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.50–8.44 (m, 1H), 7.83–7.79 (m, 2H), 7.64 -7.59 (m, 1H), 7.47–7.41 (m, 2H), 7.37–7.31 (m, 1H), 7.20–7.14 (m, 1H), 6.77 (tt, *J* = 6.8, 1.6 Hz, 1H), 3.89 (d, *J* = 1.4 Hz, 2H), 2.40 (br s, 4H), 1.56–1.48 (m, 4H), 1.47–1.35 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 145.02, 144.80, 134.77, 129.90, 128.98, 128.44, 127.63, 125.77, 124.42, 117.14, 111.68, 54.29, 52.64, 26.13, 24.46; HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₁₉H₂₂N₃ 292.1808; Found 292.1808.

N-((2-(4-Methoxyphenyl)imidazo[1,2-*a*]pyridin-3-yl)methyl)-*N*-methylaniline. Compound **3ba** (64 mg, Yield = 93%, $R_f = 0.2$ (PE/EA = 5:1)) was isolated as a light brown paste. ¹H NMR (400 MHz, CDCl₃) δ 8.04 (dt, *J* = 6.9, 1.2 Hz, 1H), 7.75–7.71 (m, 2H), 7.66 (dt, *J* = 9.0, 1.1 Hz, 1H), 7.35–7.28 (m, 2H), 7.22 (ddd, *J* = 9.0, 6.7, 1.3 Hz, 1H), 7.01–6.97 (m, 4H), 6.87 (tt, *J* = 7.3, 1.1 Hz, 1H), 6.77 (td, *J* = 6.8, 1.2 Hz, 1H), 4.81 (s, 2H), 3.85 (s, 3H), 2.70 (s, 3H); ¹³C NMR (100 MHz,

CDCl₃) δ 159.62, 150.49, 145.60, 145.28, 130.06, 129.51, 126.85, 124.75, 124.57, 118.71, 117.41, 115.70, 114.65, 114.20, 112.47, 55.44, 46.10, 36.18; HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₂H₂₂N₃O 344.1757; Found 344.1757.

N-((2-(3-Methoxyphenyl)imidazo[1,2-*a*]pyridin-3-yl)methyl)-*N*-methylaniline. Compound **3ca** (62 mg, Yield = 90%, $R_f = 0.2$ (PE/EA = 5:1)) was isolated as a light brown paste. ¹H NMR (400 MHz, CDCl₃) δ 8.07 (dt, *J* = 6.9, 1.2 Hz, 1H), 7.69 (dt, *J* = 9.0, 1.1 Hz, 1H), 7.38–7.35 (m, 3H), 7.33–7.29 (m, 2H), 7.25–7.21 (m, 1H), 7.00–6.97 (m, 2H), 6.95–6.91 (m, 1H), 6.87 (tt, *J* = 7.2, 6.2, 1.0 Hz, 1H), 6.79 (td, *J* = 6.8, 1.2 Hz, 1H), 4.83 (s, 2H), 3.84 (s, 3H), 2.71 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 159.93, 150.46, 145.56, 145.27, 135.64, 129.70, 129.51, 124.96, 124.70, 121.29, 118.80, 117.59, 116.49, 114.71, 114.31, 113.90, 112.66, 55.44, 46.05, 36.33; HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₂H₂₂N₃O 344.1757; Found 344.1757.

N-((2-(2-Methoxyphenyl)imidazo[1,2-*a*]pyridin-3-yl)methyl)-*N*-methylaniline. Compound **3da** (57 mg, Yield = 83%, $R_f = 0.2$ (PE/EA = 5:1)) was isolated as a light brown solid; mp 84–86 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.05 (d, *J* = 6.9 Hz, 1H), 7.66 (d, *J* = 8.9 Hz, 1H), 7.56 (dd, *J* = 7.5, 1.8 Hz, 1H), 7.41–7.36 (m, 1H), 7.30–7.24 (m, 2H), 7.21–7.15 (m, 1H), 7.07 (t, *J* = 7.4 Hz, 1H), 6.98 (d, *J* = 8.3 Hz, 1H), 6.93 (d, *J* = 7.9 Hz, 2H), 6.81 (t, *J* = 7.3 Hz, 1H), 6.74 (td, *J* = 6.8, 1.2 Hz, 1H), 4.65 (s, 2H), 3.79 (s, 3H), 2.65 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 156.95, 150.58, 145.38, 142.35, 132.32, 129.84, 129.41, 124.81, 124.28, 123.38, 120.93, 118.23, 118.05, 117.58, 114.30, 112.38, 111.07, 55.54, 46.42, 36.24; HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₂H₂₂N₃O 344.1757; Found 344.1755.

N-((2-(4-Fluorophenyl)imidazo[1,2-*a*]pyridin-3-yl)methyl)-*N*-methylaniline. Compound **3ea** (62 mg, Yield = 94%, $R_f = 0.3$ (PE/EA = 5:1)) was isolated as a light brown solid; mp 101–102 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.08–8.02 (m, 1H), 7.78–7.73 (m, 2H), 7.69–7.65 (m, 1H), 7.36–7.29 (m, 2H), 7.26–7.20 (m, 1H), 7.18–7.12 (m, 2H), 7.03–6.96 (m, 2H), 6.91–6.86 (m, 1H), 6.82–6.76 (m, 1H), 4.78 (s, 2H), 2.69 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 162.68 (d, *J* = 246.2 Hz), 150.30, 145.21, 144.67, 130.45 (d, *J* = 8.1 Hz), 129.44, 124.95, 124.57, 118.85, 117.43, 116.13, 115.63 (d, *J* = 21.2 Hz), 114.70, 112.58, 46.00, 36.25, (1C is merged with other peaks); ¹⁹F NMR (376 MHz, CDCl₃) δ –113.75 (s, 1F). HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₁H₁₉N₃F 332.1558; Found 332.1558.

N-((2-(4-Chlorophenyl)imidazo[1,2-*a*]pyridin-3-yl)methyl)-*N*-methylaniline. Compound **3fa** (64 mg, Yield = 92%, $R_f = 0.3$ (PE/EA = 5:1)) was isolated as a light brown solid; mp 134–136 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.06 (dt, *J* = 6.9, 1.2 Hz, 1H), 7.80–7.71 (m, 2H), 7.67 (d, *J* = 9.1 Hz, 1H), 7.44–7.40 (m, 2H), 7.36–7.29 (m, 2H), 7.27–7.22 (m, 1H), 6.99 (d, *J* = 7.8 Hz, 2H), 6.89 (t, *J* = 7.3 Hz, 1H), 6.82–6.76 (m, 1H), 4.78 (s, 2H), 2.69 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 150.31, 145.31, 144.44, 133.99, 132.82, 129.99, 129.48, 128.88, 125.07, 124.61, 118.95, 117.53, 116.46, 114.77, 112.69, 46.06, 36.32; HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₁H₁₉N₃Cl 348.1262; Found 348.1263.

N-((2-(4-Bromophenyl)imidazo[1,2-*a*]pyridin-3-yl)methyl)-*N*-methylaniline. Compound **3ga** (67 mg, Yield = 86%, $R_f = 0.3$ (PE/EA = 5:1)) was isolated as a light brown solid; mp 108–109 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.11–8.04 (m, 1H), 7.71–7.64 (m, 3H), 7.62–7.55 (m, 2H), 7.38–7.29

(m, 2H), 7.27–7.21 (m, 1H), 7.04–6.96 (m, 2H), 6.93–6.86 (m, 1H), 6.83–6.76 (m, 1H), 4.78 (s, 2H), 2.69 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 150.34, 145.36, 144.45, 133.27, 131.85, 130.32, 129.50, 125.13, 124.65, 122.30, 119.00, 117.56, 116.53, 114.83, 112.74, 46.11, 36.38; HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₁H₁₉N₃Br 392.0757; Found 392.0756.

N-Methyl-*N*-((2-(4-(trifluoromethyl)phenyl)imidazo[1,2-*a*]pyridin-3-yl)methyl)aniline.

Compound **3ha** (61 mg, Yield = 80%, $R_f = 0.3$ (PE/EA = 5:1)) was isolated as a light brown paste. ¹H NMR (400 MHz, CDCl₃) δ 8.10 (dt, J = 6.9, 1.1 Hz, 1H), 7.95–7.91 (m, 2H), 7.74–7.67 (m, 3H), 7.36–7.31 (m, 2H), 7.29–7.24 (m, 1H), 7.02–6.97 (m, 2H), 6.90 (tt, J = 7.3, 1.1 Hz, 1H), 6.82 (td, J = 6.8, 1.2 Hz, 1H), 4.82 (s, 2H), 2.71 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 150.37, 145.52, 144.13, 137.96, 129.94 (q, J = 32.2 Hz), 129.58, 129.04, 125.63 (q, J = 3.8 Hz), 125.41, 124.80, 124.34 (q, J = 270.8 Hz), 119.22, 117.79, 117.22, 114.99, 112.98, 46.23, 36.53; ¹⁹F NMR (376 MHz, CDCl₃) δ –62.30 (s, 3F). HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₁H₁₉N₃F₃ 382.1526; Found 382.1524.

N-Methyl-*N*-((2-(*p*-tolyl)imidazo[1,2-*a*]pyridin-3-yl)methyl)aniline. Compound **3ia** (56 mg, Yield = 86%, $R_f = 0.3$ (PE/EA = 5:1)) was isolated as a light brown solid; mp 96–97 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.05 (dt, *J* = 6.9, 1.4 Hz, 1H), 7.72–7.65 (m, 3H), 7.35–7.30 (m, 2H), 7.28 (d, *J* = 7.7 Hz, 2H), 7.25–7.20 (m, 1H), 7.03–6.97 (m, 2H), 6.87 (tt, *J* = 7.4, 1.1 Hz, 1H), 6.77 (tt, *J* = 6.9, 1.1 Hz, 1H), 4.82 (s, 2H), 2.70 (s, 3H), 2.41 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 150.45, 145.73, 145.27, 137.85, 131.37, 129.47, 129.43, 128.70, 124.74, 124.61, 118.64, 117.45, 116.02, 114.58, 112.46, 46.01, 36.12, 21.37; HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₂H₂₂N₃ 328.1808; Found 328.1807.

4-(3-((Methyl(phenyl)amino)methyl)imidazo[1,2-*a*]pyridin-2-yl)phenol. Compound **3ja** (57 mg, Yield = 87%, $R_f = 0.2$ (PE/EA = 2:1)) was isolated as a light brown paste. ¹H NMR (400 MHz, CDCl₃) δ 8.07 (d, *J* = 7.0 Hz, 1H), 7.70 (d, *J* = 9.1 Hz, 1H), 7.51 (d, *J* = 8.7 Hz, 2H), 7.35–7.28 (m, 2H), 7.25–7.20 (m, 1H), 6.98 (d, *J* = 7.7 Hz, 2H), 6.89–6.83 (m, 3H), 6.82–6.77 (m, 1H), 4.80 (s, 2H), 2.70 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 158.02, 150.50, 145.40, 144.94, 130.30, 129.53, 125.41, 124.78, 124.22, 118.80, 116.77, 116.19, 115.77, 114.77, 112.91, 46.07, 36.47; HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₁H₂₀N₃O 330.1601; Found 330.1603.

N-Methyl-*N*-((2-(naphthalen-2-yl)imidazo[1,2-*a*]pyridin-3-yl)methyl)aniline. Compound **3ka** (54 mg, Yield = 74%, $R_f = 0.2$ (PE/EA = 5:1)) was isolated as a light brown paste. ¹H NMR (400 MHz, CDCl₃) δ 8.26 (s, 1H), 8.11–8.05 (m, 1H), 8.00–7.91 (m, 2H), 7.90–7.83 (m, 2H), 7.75–7.70 (m, 1H), 7.54–7.46 (m, 2H), 7.37–7.29 (m, 2H), 7.28–7.21 (m, 1H), 7.05–6.96 (m, 2H), 6.93–6.87 (m, 1H), 6.81–6.76 (m, 1H), 4.86 (s, 2H), 2.71 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 150.35, 145.47, 145.34, 133.45, 132.94, 131.67, 129.45, 128.37, 128.31, 127.85, 127.73, 126.60, 126.31, 126.26, 124.92, 124.59, 118.77, 117.47, 116.69, 114.70, 112.57, 46.10, 36.30; HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₅H₂₂N₃ 364.1808; Found 364.1807.

N-Methyl-*N*-((2-(thiophen-2-yl)imidazo[1,2-*a*]pyridin-3-yl)methyl)aniline. Compound **3la** (57 mg, Yield = 89%, $R_f = 0.3$ (PE/EA = 5:1)) was isolated as a light brown paste; mp 120–122 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.00 (dt, *J* = 6.9, 1.2 Hz, 1H), 7.65 (dt, *J* = 9.1, 1.2 Hz, 1H), 7.49 (dd, *J* = 3.7, 1.2 Hz, 1H), 7.40–7.30 (m, 3H), 7.21 (ddd, *J* = 9.1, 6.8, 1.3 Hz, 1H), 7.12 (dd, *J* = 5.1, 3.6 Hz, 1H), 7.06–6.99 (m, 2H), 6.92–6.86 (m, 1H), 6.76 (td, *J* = 6.8, 1.3 Hz, 1H), 4.88 (s, 2H), 2.71 (s, 3H); ¹³C

NMR (100 MHz, CDCl₃) δ 150.51, 145.29, 139.85, 137.14, 129.53, 127.81, 126.03, 125.57, 125.20, 124.52, 118.86, 117.34, 115.73, 114.74, 112.69, 45.97, 36.45; HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₁₉H₁₈N₃S 320.1216; Found 320.1218.

N-((2-(Tert-butyl)imidazo[1,2-*a*]pyridin-3-yl)methyl)-*N*-methylaniline. Compound **3ma** (51 mg, Yield = 87%, $R_f = 0.3$ (PE/EA = 10:1)) was isolated as a light brown solid; mp 109–110 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.94 (dt, *J* = 6.9, 1.3 Hz, 1H), 7.63 (dt, *J* = 9.1, 1.2 Hz, 1H), 7.40–7.33 (m, 2H), 7.19–7.13 (m, 1H), 7.05–6.99 (m, 2H), 6.91–6.85 (m, 1H), 6.71 (td, *J* = 6.8, 1.2 Hz, 1H), 4.82 (s, 2H), 2.63 (s, 3H), 1.51 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 154.28, 150.49, 143.90, 129.55, 124.32, 124.00, 118.46, 117.12, 114.39, 114.30, 112.17, 45.92, 35.12, 33.63, 31.44; HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₁₉H₂₄N₃ 294.1965; Found 294.1964.

N-(Imidazo[1,2-*a*]pyridin-3-ylmethyl)-*N*-methylaniline. Compound **3na** (40 mg, Yield = 85%, R_f = 0.2 (PE/EA = 2:1)) was isolated as a light brown solid; mp 77–78 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.01–7.96 (m, 1H), 7.65–7.61 (m, 1H), 7.56 (s, 1H), 7.33–7.28 (m, 2H), 7.20–7.15 (m, 1H), 7.00–6.94 (m, 2H), 6.87–6.82 (m, 1H), 6.76 (tt, *J* = 6.8, 1.3 Hz, 1H), 4.67 (s, 2H), 2.77 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 150.32, 146.35, 133.57, 129.43, 124.35, 124.24, 120.62, 118.58, 117.90, 114.51, 112.43, 46.94, 37.27; HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₁₅H₁₆N₃ 238.1339; Found 238.1339.

N-((7-Methoxy-2-phenylimidazo[1,2-*a*]pyridin-3-yl)methyl)-*N*-methylaniline. Compound **30a** (40 mg, Yield = 58%, $R_f = 0.2$ (PE/EA = 5:1)) was isolated as a light brown solid; mp 115–116 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.87 (d, *J* = 7.6 Hz, 1H), 7.79–7.74 (m, 2H), 7.47–7.42 (m, 2H), 7.39–7.36 (m, 1H), 7.34–7.29 (m, 2H), 7.00–6.94 (m, 3H), 6.86 (tt, *J* = 7.3, 1.1 Hz, 1H), 6.50 (dd, *J* = 7.5, 2.5 Hz, 1H), 4.78 (s, 2H), 3.87 (s, 3H), 2.70 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 158.18, 150.49, 146.82, 145.10, 134.44, 129.49, 128.67, 128.64, 127.86, 125.18, 118.72, 115.15, 114.67, 107.52, 94.75, 55.60, 46.04, 36.13; HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₂H₂₂N₃O 344.1757; Found 344.1755.

N-((6-Bromo-2-phenylimidazo[1,2-*a*]pyridin-3-yl)methyl)-*N*-methylaniline. Compound **3pa** (65 mg, Yield = 83%, $R_f = 0.3$ (PE/EA = 5:1)) was isolated as a light brown solid; mp 157–158 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.24–8.20 (m, 1H), 7.79–7.73 (m, 2H), 7.58–7.53 (m, 1H), 7.50–7.44 (m, 2H), 7.42–7.37 (m, 1H), 7.35–7.24 (m, 3H), 7.03–6.96 (m, 2H), 6.94–6.87 (m, 1H), 4.77 (s, 2H), 2.70 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 150.47, 146.39, 143.68, 133.80, 129.46, 128.80, 128.75, 128.28, 128.22, 124.83, 119.33, 118.13, 116.91, 115.30, 107.19, 46.54, 36.95; HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₁H₁₉N₃Br 392.0757; Found 392.0758.

N-Methyl-*N*-((8-methyl-2-phenylimidazo[1,2-*a*]pyridin-3-yl)methyl)aniline. Compound **3qa** (54 mg, Yield = 83%, $R_f = 0.3$ (PE/EA = 10:1)) was isolated as a light brown solid; mp 100–102 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, *J* = 6.9 Hz, 1H), 7.84–7.79 (m, 2H), 7.51–7.45 (m, 2H), 7.42–7.37 (m, 1H), 7.36–7.30 (m, 2H), 7.04 (dt, *J* = 6.9, 1.2 Hz, 1H), 7.02–6.98 (m, 2H), 6.89 (tt, *J* = 7.3, 1.1 Hz, 1H), 6.71 (t, *J* = 6.9 Hz, 1H), 4.82 (s, 2H), 2.72 (s, 3H), 2.72 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 150.35, 145.64, 145.18, 134.47, 129.35, 128.93, 128.58, 127.81, 127.37, 123.54, 122.33, 118.43, 116.51, 114.39, 112.48, 45.87, 35.95, 17.19; HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₂H₂₂N₃

328.1808; Found 328.1808. ¹H NMR and ¹³C NMR data are consistent with the reported values.⁴

N-Methyl-*N*-((7-methyl-2-phenylimidazo[1,2-*a*]pyridin-3-yl)methyl)aniline. Compound **3ra** (49 mg, Yield = 75%, $R_f = 0.3$ (PE/EA = 5:1)) was isolated as a light brown paste. ¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, *J* = 7.0 Hz, 1H), 7.79–7.75 (m, 2H), 7.49–7.42 (m, 3H), 7.40–7.36 (m, 1H), 7.34–7.29 (m, 2H), 7.02–6.96 (m, 2H), 6.87 (tt, *J* = 7.3, 1.1 Hz, 1H), 6.63 (dd, *J* = 7.1, 1.7 Hz, 1H), 4.81 (s, 2H), 2.70 (s, 3H), 2.42 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 150.47, 145.78, 145.39, 135.84, 134.46, 129.47, 128.78, 128.67, 127.91, 123.86, 118.60, 115.95, 115.67, 115.18, 114.55, 45.96, 36.03, 21.46; HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₂H₂₂N₃ 328.1808; Found 328.1808.

N-Methyl-*N*-((6-methyl-2-phenylimidazo[1,2-*a*]pyridin-3-yl)methyl)aniline. Compound **3sa** (54 mg, Yield = 82%, $R_f = 0.3$ (PE/EA = 5:1)) was isolated as a light brown solid; mp 81–83 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.84–7.81 (m, 1H), 7.79–7.76 (m, 2H), 7.63 (d, *J* = 9.1 Hz, 1H), 7.48–7.43 (m, 2H), 7.40–7.30 (m, 3H), 7.12 (dd, *J* = 9.1, 1.7 Hz, 1H), 7.03–6.98 (m, 2H), 6.88 (tt, *J* = 7.3, 1.0 Hz, 1H), 4.80 (s, 2H), 2.71 (s, 3H), 2.29 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 150.52, 145.51, 144.37, 134.41, 129.41, 128.70, 128.64, 128.01, 127.88, 122.18, 118.61, 116.83, 115.93, 114.62, 46.02, 35.98, 18.49; HRMS (ESI) *m/z*: [M + H]⁺Calcd for C₂₂H₂₂N₃ 328.1808; Found 328.1807.

N-Methyl-*N*-((5-methyl-2-phenylimidazo[1,2-*a*]pyridin-3-yl)methyl)aniline. Compound **3ta** (37 mg, Yield = 57%, $R_f = 0.25$ (PE/EA = 5:1)) was isolated as a light brown solid; mp 197–199 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.70–7.63 (m, 2H), 7.57 (d, *J* = 9.0 Hz, 1H), 7.46–7.40 (m, 2H), 7.39–7.35 (m, 1H), 7.34–7.29 (m, 2H), 7.14 (dd, *J* = 9.0, 6.8 Hz, 1H), 6.91–6.81 (m, 3H), 6.56 (dt, *J* =

6.9, 1.1 Hz, 1H), 4.82 (s, 2H), 2.78 (s, 3H), 2.64 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 149.29, 148.14, 147.37, 137.09, 134.52, 129.45, 129.26, 128.65, 128.07, 125.47, 118.06, 117.13, 115.89, 113.94, 113.65, 45.43, 34.78, 19.28; HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₂H₂₂N₃ 328.1808; Found 328.1811.

N-Methyl-*N*-((2-phenylimidazo[1,2-*a*]pyrimidin-3-yl)methyl)aniline. Compound **3ua** (58 mg, Yield = 93%, $R_f = 0.3$ (PE/EA = 2:1)) was isolated as a light brown solid; mp 156–158 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.54 (dd, *J* = 4.1, 2.0 Hz, 1H), 8.39 (dd, *J* = 6.9, 2.0 Hz, 1H), 7.86–7.81 (m, 2H), 7.49–7.44 (m, 2H), 7.42–7.38 (m, 1H), 7.33–7.27 (m, 2H), 7.00–6.94 (m, 2H), 6.88 (tt, *J* = 7.3, 1.1 Hz, 1H), 6.81 (dd, *J* = 6.9, 4.1 Hz, 1H), 4.84 (s, 2H), 2.69 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 150.27, 149.93, 148.30, 146.82, 133.59, 132.56, 129.53, 129.00, 128.71, 128.46, 119.32, 115.11, 115.08, 108.69, 46.43, 37.00; HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₀H₁₉N₄ 315.1604; Found 315.1601.

N-Methyl-*N*-((2-phenylimidazo[1,2-*a*]pyridin-3-yl)methyl)dodecan-1-amine. Compound **3ap** (73 mg, Yield = 90%, $R_f = 0.3$ (PE/EA = 5:1)) was isolated as a light yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.44 (dt, *J* = 6.9, 1.2 Hz, 1H), 7.84–7.77 (m, 2H), 7.62 (dt, *J* = 9.1, 1.2 Hz, 1H), 7.47–7.42 (m, 2H), 7.39–7.32 (m, 1H), 7.19 (ddd, *J* = 9.1, 6.7, 1.3 Hz, 1H), 6.79 (td, *J* = 6.8, 1.2 Hz, 1H), 3.94 (s, 2H), 2.38 (t, *J* = 7.3 Hz, 2H), 2.17 (s, 3H), 1.50–1.42 (m, 2H), 1.30–1.18 (m, 18H), 0.87 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 145.05, 144.85, 134.79, 129.02, 128.48, 127.69, 125.69, 124.49, 117.59, 117.23, 111.73, 57.20, 51.77, 41.68, 32.03, 29.78, 29.75, 29.72, 29.57, 29.46, 27.41, 27.33, 22.80, 14.24, (1C is merged with other peaks); HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₇H₄₀N₃ 406.3217; Found 406.3220.

(*Z*)-2-(4-(1,2-Diphenylbut-1-en-1-yl)phenoxy)-*N*-methyl-*N*-((2-phenylimidazo[1,2-*a*]pyridin-3yl)methyl)ethan-1-amine. Compound **3aq** (92 mg, Yield = 82%, $R_f = 0.3$ (PE/EA = 5:1)) was isolated as a light yellow paste. ¹H NMR (400 MHz, CDCl₃) δ 8.48 (dt, *J* = 6.9, 1.2 Hz, 1H), 7.78– 7.75 (m, 2H), 7.64–7.59 (m, 1H), 7.46–7.40 (m, 2H), 7.37–7.33 (m, 3H), 7.30–7.27 (m, 1H), 7.25– 7.23 (m, 2H), 7.21–7.14 (m, 3H), 7.14–7.10 (m, 3H), 6.78–6.74 (m, 2H), 6.68 (td, *J* = 6.8, 1.2 Hz, 1H), 6.52–6.47 (m, 2H), 4.06 (s, 2H), 3.93 (t, *J* = 5.4 Hz, 2H), 2.79 (t, *J* = 5.4 Hz, 2H), 2.46 (q, *J* = 7.4 Hz, 2H), 2.26 (s, 3H), 0.93 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 156.67, 145.16, 144.94, 143.90, 142.54, 141.52, 138.29, 135.78, 134.71, 132.05, 129.82, 129.58, 129.01, 128.55, 128.23, 128.00, 127.77, 126.66, 126.12, 126.00, 124.67, 117.18, 113.34, 111.87, 65.79, 55.80, 51.56, 42.44, 29.16, 13.73, (1C is merged with other peaks); HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₃₉H₃₈N₃O 564.3009; Found 564.3012.

1-Phenyl-5-((2-phenylimidazo[1,2-a]pyridin-3-yl)methyl)-3,4,5,6-tetrahydro-1H-

benzo[*f*][1,4]oxazocine. Compound **3ar** (65 mg, Yield = 73%, $R_f = 0.3$ (PE/EA = 5:1)) was isolated as a light brown paste. ¹H NMR (400 MHz, CDCl₃) δ 8.42 (d, *J* = 7.2 Hz, 1H), 7.82–7.76 (m, 2H), 7.68 (d, *J* = 9.4 Hz, 1H), 7.49–7.44 (m, 2H), 7.41–7.36 (m, 1H), 7.30–7.22 (m, 6H), 7.14–7.08 (m, 1H), 7.01–6.92 (m, 2H), 6.83–6.76 (m, 1H), 6.57 (d, *J* = 6.2 Hz, 1H), 5.78 (s, 1H), 4.74 (d, *J* = 12.9 Hz, 1H), 4.20 (d, *J* = 2.3 Hz, 2H), 4.11 (ddd, *J* = 12.4, 8.0, 2.6 Hz, 1H), 3.82 (ddd, *J* = 12.4, 6.1, 2.2 Hz, 1H), 3.63 (d, *J* = 12.8 Hz, 1H), 2.85 (ddd, *J* = 13.8, 8.0, 2.3 Hz, 1H), 2.67 (ddd, *J* = 13.8, 6.1, 2.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 145.26, 142.78, 140.83, 134.62, 132.82, 129.09, 128.65, 128.56, 127.89, 127.68, 127.62, 127.44, 127.35, 125.91, 124.78, 117.28, 117.22, 111.94, 84.37,
68.89, 55.45, 52.35, 49.85, (3C are merged with other peaks); HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₃₀H₂₈N₃O 446.2227; Found 446.2228.

N-Methyl-*N*-((2-phenylimidazo[1,2-*a*]pyridin-3-yl)methyl)-2-(pyridin-2-yl)ethan-1-amine. Compound **3as** (62 mg, Yield = 91%, $R_f = 0.2$ (PE/EA = 5:1)) was isolated as a light yellow paste. ¹H NMR (400 MHz, CDCl₃) δ 8.46 (ddd, *J* = 4.9, 1.9, 0.9 Hz, 1H), 8.00 (dt, *J* = 6.9, 1.2 Hz, 1H), 7.78–7.73 (m, 2H), 7.56 (dt, *J* = 9.1, 1.1 Hz, 1H), 7.47 (td, *J* = 7.6, 1.9 Hz, 1H), 7.44–7.39 (m, 2H), 7.36–7.30 (m, 1H), 7.11 (ddd, *J* = 9.1, 6.7, 1.3 Hz, 1H), 7.06 (ddd, *J* = 7.5, 4.9, 1.2 Hz, 1H), 6.97 (dt, *J* = 7.8, 1.1 Hz, 1H), 6.56 (td, *J* = 6.8, 1.2 Hz, 1H), 3.97 (s, 2H), 2.97–2.91 (m, 2H), 2.89–2.84 (m, 2H), 2.22 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 160.39, 149.19, 144.97, 144.71, 136.26, 134.63, 128.94, 128.47, 127.68, 125.68, 124.46, 123.23, 121.21, 117.16, 116.98, 111.54, 56.91, 51.58, 41.23, 35.99; HRMS (ESI) *m/z*: [M + H]⁺Calcd for C₂₂H₂₃N₄ 343.1917; Found 343.1918.

N-Methyl-*N*-((2-(4-(methylsulfonyl)phenyl)imidazo[1,2-*a*]pyridin-3-yl)methyl)aniline. Compound **3at** (64 mg, Yield = 82%, $R_f = 0.3$ (PE/EA = 1:1)) was isolated as a light brown paste. ¹H NMR (400 MHz, CDCl₃) δ 8.12 (d, *J* = 7.0 Hz, 1H), 8.02 (s, 4H), 7.70 (d, *J* = 8.8 Hz, 1H), 7.37–7.27 (m, 3H), 7.03–6.96 (m, 2H), 6.94–6.89 (m, 1H), 6.87–6.82 (m, 1H), 4.83 (s, 2H), 3.09 (s, 3H), 2.71 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 150.18, 145.49, 143.31, 139.91, 139.45, 129.48, 129.41, 127.69, 125.55, 124.72, 119.29, 117.71, 115.02, 113.06, 46.20, 44.57, 36.61, (1C is merged with other peaks); HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₂H₂₂N₃OS 392.1427; Found 392.1429.

N,*N*-Dimethyl-4-((2-phenylimidazo[1,2-*a*]pyridin-3-yl)methyl)aniline. Compound **4aa** (43 mg, Yield = 66%, $R_f = 0.25$ (PE/EA = 5:1)) was isolated as a light brown paste. ¹H NMR (400 MHz, CDCl₃) δ 7.84–7.79 (m, 2H), 7.74 (dt, *J* = 6.9, 1.2 Hz, 1H), 7.67 (dt, *J* = 9.1, 1.1 Hz, 1H), 7.46–7.40 (m, 2H), 7.37–7.32 (m, 1H), 7.16 (ddd, *J* = 9.0, 6.7, 1.3 Hz, 1H), 7.01 (d, *J* = 8.7 Hz, 2H), 6.72– 6.65 (m, 3H), 4.40 (s, 2H), 2.92 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 149.73, 144.92, 143.94, 134.78, 128.72, 128.50, 128.35, 127.73, 124.30, 124.14, 123.76, 118.62, 117.54, 113.25, 112.16, 40.78, 29.00; HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₂H₂₂N₃ 328.1808; Found 328.1808. ¹H NMR and ¹³C NMR data are consistent with the reported values.^{8, 9}

N,*N*,3-Trimethyl-4-((2-phenylimidazo[1,2-*a*]pyridin-3-yl)methyl)aniline. Compound **4ab** (42 mg, Yield = 59%, $R_f = 0.25$ (PE/EA = 5:1)) was isolated as a light brown paste. ¹H NMR (400 MHz, CDCl₃) δ 7.78–7.74 (m, 2H), 7.70 (dt, *J* = 9.0, 1.1 Hz, 1H), 7.66 (dt, *J* = 6.9, 1.2 Hz, 1H), 7.44–7.39 (m, 2H), 7.35–7.31 (m, 1H), 7.18 (ddd, *J* = 9.1, 6.7, 1.3 Hz, 1H), 6.72–6.68 (m, 2H), 6.54 (d, *J* = 8.5 Hz, 1H), 6.41 (dd, *J* = 8.5, 2.8 Hz, 1H), 4.28 (s, 2H), 2.91 (s, 6H), 2.41 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 149.73, 144.94, 144.16, 137.03, 134.73, 128.68, 128.24, 127.65, 127.57, 124.08, 123.67, 122.40, 118.30, 117.52, 115.06, 112.17, 110.66, 40.73, 26.83, 20.40; HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₃H₂₄N₃ 342.1965; Found 342.1963.

N-Methyl-*N*-pentyl-4-((2-phenylimidazo[1,2-*a*]pyridin-3-yl)methyl)aniline. Compound **4ac** (45 mg, Yield = 59%, $R_f = 0.25$ (PE/EA = 5:1)) was isolated as a light brown paste. ¹H NMR (400 MHz,

CDCl₃) δ 7.84–7.80 (m, 2H), 7.76 (dt, *J* = 6.9, 1.2 Hz, 1H), 7.68 (dt, *J* = 9.0, 1.1 Hz, 1H), 7.46–7.40 (m, 2H), 7.37–7.32 (m, 1H), 7.17 (ddd, *J* = 9.1, 6.7, 1.2 Hz, 1H), 6.99 (d, *J* = 8.7 Hz, 2H), 6.70 (td, *J* = 6.8, 1.2 Hz, 1H), 6.65–6.59 (m, 2H), 4.39 (s, 2H), 3.26 (t, *J* = 7.5 Hz, 2H), 2.89 (s, 3H), 1.61–1.51 (m, 2H), 1.37–1.24 (m, 4H), 0.89 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 148.46, 144.86, 143.83, 134.75, 128.71, 128.57, 128.35, 127.72, 124.16, 123.82, 123.36, 118.72, 117.50, 112.62, 112.16, 52.97, 38.41, 29.45, 28.96, 26.47, 22.72, 14.22; HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₆H₃₀N₃ 384.2434; Found 384.2437.

4-((2-(4-Methoxyphenyl)imidazo[1,2-*a*]pyridin-3-yl)methyl)-*N*,*N*-dimethylaniline. Compound **4ba** (49 mg, Yield = 69%, $R_f = 0.2$ (PE/EA = 5:1)) was isolated as a light brown paste. ¹H NMR (400 MHz, CDCl₃) δ 7.80–7.68 (m, 3H), 7.65 (dt, *J* = 9.1, 1.2 Hz, 1H), 7.17–7.09 (m, 1H), 7.03– 6.92 (m, 4H), 6.70–6.62 (m, 3H), 4.36 (s, 2H), 3.82 (s, 3H), 2.90 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 159.34, 149.66, 144.75, 143.72, 129.45, 128.43, 127.35, 124.35, 123.91, 123.57, 117.87, 117.25, 114.13, 113.20, 111.97, 55.35, 40.72, 28.93; HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₃H₂₄N₃O 358.1914; Found 358.1916. ¹H NMR and ¹³C NMR data are consistent with the reported values.⁸

4-((2-(3-Methoxyphenyl)imidazo[1,2-*a*]pyridin-3-yl)methyl)-*N*,*N*-dimethylaniline. Compound **4ca** (42 mg, Yield = 59%, $R_f = 0.2$ (PE/EA = 5:1)) was isolated as a light brown paste. ¹H NMR (400 MHz, CDCl₃) δ 7.75 (dt, *J* = 6.9, 1.2 Hz, 1H), 7.67 (dt, *J* = 9.1, 1.2 Hz, 1H), 7.40 (dd, *J* = 2.7, 1.5 Hz, 1H), 7.37–7.32 (m, 2H), 7.17 (ddd, *J* = 9.1, 6.7, 1.3 Hz, 1H), 7.03–6.98 (m, 2H), 6.90 (ddd, *J* = 7.9, 2.6, 1.4 Hz, 1H), 6.72–6.65 (m, 3H), 4.41 (s, 2H), 3.82 (s, 3H), 2.91 (s, 6H); ¹³C NMR (100

MHz, CDCl₃) δ 159.98, 149.74, 144.86, 143.83, 136.19, 129.68, 128.51, 124.36, 124.16, 123.75, 120.73, 118.84, 117.59, 114.16, 113.28, 112.20, 55.44, 40.80, 29.04, (1C is merged with other peaks); HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₃H₂₄N₃O 358.1914; Found 358.1915.

N,*N*-Dimethyl-4-((2-(p-tolyl)imidazo[1,2-*a*]pyridin-3-yl)methyl)aniline. Compound **4da** (42 mg, Yield = 61%, $R_f = 0.25$ (PE/EA = 5:1)) was isolated as a light brown paste. ¹H NMR (400 MHz, CDCl₃) δ 7.75–7.63 (m, 4H), 7.27–7.22 (m, 2H), 7.18–7.11 (m, 1H), 7.01 (d, *J* = 12.2 Hz, 2H), 6.72–6.62 (m, 3H), 4.38 (s, 2H), 2.91 (s, 6H), 2.39 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 149.68, 144.81, 143.93, 137.45, 131.85, 129.41, 128.48, 128.18, 124.38, 123.98, 123.65, 118.31, 117.39, 113.21, 112.03, 40.74, 28.99, 21.37; HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₃H₂₄N₃ 342.1965; Found 342.1962. ¹H NMR and ¹³C NMR data are consistent with the reported values.⁸

4-((2-(4-Fluorophenyl)imidazo[1,2-*a*]pyridin-3-yl)methyl)-*N*,*N*-dimethylaniline. Compound **4ea** (46 mg, Yield = 67%, $R_f = 0.3$ (PE/EA = 2:1)) was isolated as a light brown solid; mp 94–95 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.78–7.72 (m, 3H), 7.66 (dt, *J* = 9.1, 1.2 Hz, 1H), 7.17 (ddd, *J* = 9.1, 6.7, 1.3 Hz, 1H), 7.14–7.08 (m, 2H), 7.02–6.96 (m, 2H), 6.73–6.65 (m, 3H), 4.36 (s, 2H), 2.91 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 162.64 (d, *J* = 245.4 Hz), 149.76, 144.87, 143.03, 130.89 (d, *J* = 3.3 Hz), 129.97 (d, *J* = 8.1 Hz), 128.42, 124.30, 124.04, 123.75, 118.41, 117.47, 115.66 (d, *J* = 21.4 Hz), 113.24, 112.27, 40.75, 28.90; ¹⁹F NMR (376 MHz, CDCl₃) δ –114.50 (s, 1F). HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₂H₂₁N₃F 346.1714; Found 346.1712.

4-((2-(4-Chlorophenyl)imidazo[1,2-*a*]pyridin-3-yl)methyl)-*N*,*N*-dimethylaniline. Compound **4fa** (37 mg, Yield = 51%, $R_f = 0.3$ (PE/EA = 2:1)) was isolated as a light brown solid; mp 124–126 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.76–7.71 (m, 3H), 7.66 (dt, *J* = 9.1, 1.1 Hz, 1H), 7.41–7.36 (m, 2H), 7.18 (ddd, *J* = 9.1, 6.7, 1.3 Hz, 1H), 7.00–6.96 (m, 2H), 6.71 (td, *J* = 6.7, 1.1 Hz, 1H), 6.69–6.65 (m, 2H), 4.37 (s, 2H), 2.91 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 149.79, 144.97, 142.77, 133.66, 133.33, 129.53, 128.91, 128.43, 124.40, 123.94, 123.76, 118.80, 117.56, 113.26, 112.34, 40.74, 28.94; HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₂H₂₁N₃Cl 362.1419; Found 362.1415. ¹H NMR and ¹³C NMR data are consistent with the reported values.⁹

4-((2-(3-Chlorophenyl)imidazo[1,2-*a*]pyridin-3-yl)methyl)-*N*,*N*-dimethylaniline. Compound **4ga** (37 mg, Yield = 51%, $R_f = 0.25$ (PE/EA = 5:1)) was isolated as a light brown paste. ¹H NMR (400 MHz, CDCl₃) δ 7.89–7.85 (m, 1H), 7.75 (dt, *J* = 6.8, 1.2 Hz, 1H), 7.68–7.62 (m, 2H), 7.36–7.29 (m, 2H), 7.18 (ddd, *J* = 9.0, 6.7, 1.3 Hz, 1H), 7.02–6.96 (m, 2H), 6.75–6.65 (m, 3H), 4.39 (s, 2H), 2.91 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 149.78, 144.96, 142.49, 136.71, 134.73, 129.91, 128.47, 128.40, 127.76, 126.30, 124.46, 123.93, 123.83, 119.18, 117.66, 113.27, 112.38, 40.75, 28.96; HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₂H₂₁N₃Cl 362.1419; Found 362.1417.

4-((2-(4-Bromophenyl)imidazo[1,2-*a*]pyridin-3-yl)methyl)-*N*,*N*-dimethylaniline. Compound **4ha** (55 mg, Yield = 68%, $R_f = 0.25$ (PE/EA = 5:1)) was isolated as a light brown solid; mp 108–110 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.73 (dt, *J* = 6.9, 1.2 Hz, 1H), 7.70–7.63 (m, 3H), 7.56–7.50 (m, 2H), 7.17 (ddd, *J* = 9.1, 6.7, 1.3 Hz, 1H), 7.01–6.94 (m, 2H), 6.73–6.62 (m, 3H), 4.35 (s, 2H), 2.91 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 149.74, 144.92, 142.68, 133.73, 131.81, 129.79, 128.38, 124.40, 123.84, 123.71, 121.85, 118.81, 117.51, 113.21, 112.32, 40.69, 28.89; HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₂H₂₁N₃Br 406.0913; Found 406.0914.

N,*N*-Dimethyl-4-((2-(4-(trifluoromethyl)phenyl)imidazo[1,2-*a*]pyridin-3-yl)methyl)aniline. Compound **4ia** (40 mg, Yield = 50%, $R_f = 0.25$ (PE/EA = 5:1)) was isolated as a light brown paste. ¹H NMR (400 MHz, CDCl₃) δ 7.92 (d, *J* = 7.9 Hz, 2H), 7.78 (dt, *J* = 6.8, 1.2 Hz, 1H), 7.71–7.65 (m, 3H), 7.21 (ddd, *J* = 9.1, 6.7, 1.2 Hz, 1H), 7.03–6.96 (m, 2H), 6.74 (td, *J* = 6.8, 1.2 Hz, 1H), 6.70–6.65 (m, 2H), 4.41 (s, 2H), 2.92 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 149.84, 145.11, 142.41, 138.40, 129.22 (q, *J* = 32.2 Hz), 128.42, 125.66 (q, *J* = 3.9 Hz), 124.68, 124.45 (q, *J* = 271.0 Hz), 123.85, 123.72, 119.56, 117.77, 113.28, 112.56, 40.75, 28.96, (1C is merged with other peaks); ¹⁹F NMR (376 MHz, CDCl₃) δ –62.30 (s, 3F). HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₃H₂₁N₃F₃ 396.1682; Found 396.1683.

N,*N*-Dimethyl-4-((2-(naphthalen-2-yl)imidazo[1,2-*a*]pyridin-3-yl)methyl)aniline. Compound **4ja** (46 mg, Yield = 61%, $R_f = 0.2$ (PE/EA = 5:1)) was isolated as a light brown paste. ¹H NMR (400 MHz, CDCl₃) δ 8.30 (s, 1H), 7.97 (dd, *J* = 8.5, 1.8 Hz, 1H), 7.93–7.83 (m, 3H), 7.79 (dt, *J* = 6.9, 1.2 Hz, 1H), 7.73 (dt, *J* = 9.0, 1.1 Hz, 1H), 7.51–7.45 (m, 2H), 7.20 (ddd, *J* = 9.0, 6.7, 1.3 Hz, 1H), 7.01 (d, *J* = 8.6 Hz, 2H), 6.76–6.67 (m, 3H), 4.48 (s, 2H), 2.93 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 149.71, 144.96, 143.70, 133.65, 132.92, 132.20, 128.52, 128.45, 128.29, 127.74, 127.15, 126.41,

126.17, 126.04, 124.27, 123.73, 119.09, 117.48, 113.25, 112.23, 40.73, 29.09, (1C is merged with other peaks); HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₆H₂₄N₃ 378.1965; Found 378.1962.

N,*N*-Dimethyl-4-((2-(thiophen-2-yl)imidazo[1,2-*a*]pyridin-3-yl)methyl)aniline. Compound **4ka** (47 mg, Yield = 70%, $R_f = 0.25$ (PE/EA = 5:1)) was isolated as a light brown paste. ¹H NMR (400 MHz, CDCl₃) δ 7.75 (dt, *J* = 7.0, 1.2 Hz, 1H), 7.63 (dt, *J* = 9.1, 1.1 Hz, 1H), 7.42 (dd, *J* = 3.6, 1.1 Hz, 1H), 7.34 (dd, *J* = 5.1, 1.1 Hz, 1H), 7.14 (ddd, *J* = 9.2, 6.7, 1.3 Hz, 1H), 7.08 (dd, *J* = 5.1, 3.6 Hz, 1H), 7.05–6.99 (m, 2H), 6.70–6.62 (m, 3H), 4.44 (s, 2H), 2.89 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 149.71, 144.77, 138.31, 137.85, 128.53, 127.79, 125.47, 124.55, 124.37, 123.83, 123.45, 118.32, 117.31, 113.16, 112.29, 40.70, 28.95; HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₀H₂₀N₃S 334.1372; Found 334.1375. ¹H NMR and ¹³C NMR data are consistent with the reported values.⁸

4-((7-Methoxy-2-phenylimidazo[1,2-*a*]pyridin-3-yl)methyl)-*N*,*N*-dimethylaniline. Compound **4la** (57 mg, Yield = 80%, $R_f = 0.25$ (PE/EA = 5:1)) was isolated as a light brown paste. ¹H NMR (400 MHz, CDCl₃) δ 7.81–7.77 (m, 2H), 7.54 (dd, *J* = 7.5, 0.7 Hz, 1H), 7.44–7.38 (m, 2H), 7.35–7.29 (m, 1H), 7.04–6.98 (m, 2H), 6.95 (d, *J* = 2.6 Hz, 1H), 6.69–6.63 (m, 2H), 6.40 (dd, *J* = 7.4, 2.5 Hz, 1H), 4.34 (s, 2H), 3.85 (s, 3H), 2.91 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 157.73, 149.66, 146.19, 143.10, 134.89, 128.64, 128.45, 128.02, 127.46, 124.55, 124.22, 117.35, 113.20, 107.08, 94.72, 55.54, 40.75, 28.89; HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₃H₂₄N₃O 358.1914; Found 358.1912.

N,*N*-Dimethyl-4-((8-methyl-2-phenylimidazo[1,2-*a*]pyridin-3-yl)methyl)aniline. Compound **4ma** (40 mg, Yield = 59%, $R_f = 0.4$ (PE/EA = 5:1)) was isolated as a light brown solid; mp 91–92 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.82–7.78 (m, 2H), 7.62 (d, *J* = 6.9 Hz, 1H), 7.45–7.40 (m, 2H), 7.35–7.31 (m, 1H), 7.03–6.98 (m, 2H), 6.96 (d, *J* = 6.9 Hz, 1H), 6.70–6.65 (m, 2H), 6.62 (t, *J* = 6.8 Hz, 1H), 4.37 (s, 2H), 2.91 (s, 6H), 2.69 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 149.65, 145.34, 143.54, 135.09, 128.68, 128.53, 127.55, 127.45, 124.66, 122.91, 121.63, 118.94, 113.22, 112.13, 40.79, 29.08, 17.32, (1C is merged with other peaks); HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₃H₂₄N₃ 342.1965; Found 342.1966. ¹H NMR and ¹³C NMR data are consistent with the reported values.⁸

N,*N*-Dimethyl-4-((7-methyl-2-phenylimidazo[1,2-*a*]pyridin-3-yl)methyl)aniline. Compound **4na** (40 mg, Yield = 59%, $R_f = 0.25$ (PE/EA = 5:1)) was isolated as a light brown paste. ¹H NMR (400 MHz, CDCl₃) δ 7.83–7.78 (m, 2H), 7.60 (d, *J* = 7.0 Hz, 1H), 7.44–7.39 (m, 3H), 7.35–7.30 (m, 1H), 7.02–6.98 (m, 2H), 6.69–6.65 (m, 2H), 6.51 (dd, *J* = 6.9, 1.7 Hz, 1H), 4.36 (s, 2H), 2.91 (s, 6H), 2.37 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 149.65, 145.28, 143.44, 134.99, 134.90, 128.62, 128.44, 128.22, 127.52, 124.52, 122.94, 117.94, 115.86, 114.72, 113.19, 40.72, 28.90, 21.38; HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₃H₂₄N₃ 342.1965; Found 342.1962.

N,*N*-Dimethyl-4-((6-methyl-2-phenylimidazo[1,2-*a*]pyridin-3-yl)methyl)aniline. Compound **40a** (31 mg, Yield = 46%, $R_f = 0.25$ (PE/EA = 5:1)) was isolated as a light brown solid; mp 148–150 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.82–7.77 (m, 2H), 7.58 (dd, J = 9.2, 1.0 Hz, 1H), 7.54–7.51 (m, 1H), 7.44–7.39 (m, 2H), 7.35–7.29 (m, 1H), 7.04–6.99 (m, 3H), 6.72–6.65 (m, 2H), 4.37 (s, 2H), 2.92 (s, 6H), 2.24 (d, J = 1.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 149.63, 143.96, 143.65, 134.89, 128.65, 128.45, 128.16, 127.53, 127.30, 124.51, 121.72, 121.23, 118.28, 116.84, 113.21, 40.75, 28.90, 18.52; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₃H₂₄N₃ 342.1965; Found 342.1966.

N,*N*-Dimethyl-4-((5-methyl-2-phenylimidazo[1,2-*a*]pyridin-3-yl)methyl)aniline. Compound **4pa** (23 mg, Yield = 34%, $R_f = 0.25$ (PE/EA = 5:1)) was isolated as a light brown paste. ¹H NMR (400 MHz, CDCl₃) δ 7.70–7.66 (m, 2H), 7.54 (dt, *J* = 8.9, 1.0 Hz, 1H), 7.40–7.35 (m, 2H), 7.34–7.30 (m, 1H), 7.03 (dd, *J* = 9.0, 6.8 Hz, 1H), 6.91–6.87 (m, 2H), 6.72–6.65 (m, 2H), 6.40 (dt, *J* = 6.8, 1.1 Hz, 1H), 4.56 (s, 2H), 2.92 (s, 6H), 2.64 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 149.29, 146.86, 145.60, 136.59, 135.04, 128.91, 128.75, 128.50, 128.31, 127.63, 124.45, 119.89, 115.88, 113.50, 113.29, 40.76, 30.76, 20.18; HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₃H₂₄N₃ 342.1965; Found 342.1966.

4-((7-Chloro-2-phenylimidazo[1,2-*a*]pyridin-3-yl)methyl)-*N*,*N*-dimethylaniline. Compound **4qa** (39 mg, Yield = 54%, $R_f = 0.3$ (PE/EA = 5:1)) was isolated as a light brown paste. ¹H NMR (400 MHz, CDCl₃) δ 7.81–7.75 (m, 2H), 7.68–7.61 (m, 2H), 7.46–7.41 (m, 2H), 7.38–7.34 (m, 1H), 7.01–6.96 (m, 2H), 6.71–6.64 (m, 3H), 4.38 (s, 2H), 2.92 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 149.81, 144.81, 144.61, 134.35, 130.67, 128.79, 128.45, 128.32, 127.99, 124.09, 123.73, 118.97, 116.36, 113.74, 113.26, 40.73, 28.94; HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₂H₂₁N₃Cl 362.1419; Found 362.1416.

N,*N*-Diethyl-4-((2-phenylimidazo[1,2-*a*]pyridin-3-yl)methyl)aniline. Compound **4ae** (60 mg, Yield = 85%, $R_f = 0.3$ (PE/EA = 5:1)) was isolated as a light brown paste. ¹H NMR (400 MHz, CDCl₃) δ 7.85–7.81 (m, 2H), 7.77 (dt, *J* = 6.9, 1.2 Hz, 1H), 7.67 (dt, *J* = 9.1, 1.1 Hz, 1H), 7.46–7.39 (m, 2H), 7.37–7.32 (m, 1H), 7.16 (ddd, *J* = 9.0, 6.7, 1.3 Hz, 1H), 7.01–6.95 (m, 2H), 6.70 (td, *J* = 6.8, 1.2 Hz, 1H), 6.64–6.58 (m, 2H), 4.38 (s, 2H), 3.32 (q, *J* = 7.1 Hz, 4H), 1.14 (t, *J* = 7.0 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 146.87, 144.87, 143.85, 134.80, 128.69, 128.34, 127.68, 124.09, 123.84, 122.91, 118.74, 117.48, 112.34, 112.10, 44.42, 28.92, 12.67, (1C is merged with other peaks); HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₄H₂₆N₃ 356.2121; Found 356.2123.

N,*N*-Diethyl-3-methyl-4-((2-phenylimidazo[1,2-*a*]pyridin-3-yl)methyl)aniline. Compound **4af** (66 mg, Yield = 89%, $R_f = 0.3$ (PE/EA = 5:1)) was isolated as a light brown paste. ¹H NMR (400 MHz, CDCl₃) δ 7.78–7.74 (m, 2H), 7.71–7.67 (m, 2H), 7.44–7.39 (m, 2H), 7.36–7.31 (m, 1H), 7.18 (ddd, J = 9.0, 6.7, 1.2 Hz, 1H), 6.71 (td, J = 6.8, 1.1 Hz, 1H), 6.62 (d, J = 2.8 Hz, 1H), 6.50 (d, J = 8.5 Hz, 1H), 6.35 (dd, J = 8.6, 2.8 Hz, 1H), 4.27 (s, 2H), 3.35–3.28 (m, 4H), 2.39 (s, 3H), 1.14 (t, J = 7.1 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 146.89, 144.93, 144.12, 137.23, 134.76, 128.70, 128.29, 127.79, 127.66, 124.09, 123.81, 121.05, 118.46, 117.50, 114.07, 112.17, 109.77, 44.34, 26.79, 20.54, 12.75; HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₅H₂₈N₃ 370.2278; Found 370.2276.

2-Phenyl-3-(4-(piperidin-1-yl)benzyl)imidazo[1,2-*a*]pyridine. Compound **4ag** (38 mg, Yield = 52%, $R_f = 0.25$ (PE/EA = 5:1)) was isolated as a light brown paste. ¹H NMR (400 MHz, CDCl₃) δ 7.82–

7.78 (m, 2H), 7.72 (dt, J = 6.9, 1.2 Hz, 1H), 7.68 (dt, J = 9.1, 1.2 Hz, 1H), 7.45–7.40 (m, 2H), 7.37– 7.32 (m, 1H), 7.17 (ddd, J = 9.1, 6.7, 1.3 Hz, 1H), 7.04–6.99 (m, 2H), 6.90–6.85 (m, 2H), 6.70 (td, J = 6.8, 1.2 Hz, 1H), 4.41 (s, 2H), 3.15–3.08 (m, 4H), 1.73–1.65 (m, 4H), 1.60–1.53 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 151.25, 144.92, 144.00, 134.73, 128.74, 128.45, 128.35, 127.76, 126.99, 124.20, 123.76, 118.42, 117.57, 117.04, 112.18, 50.72, 29.13, 25.98, 24.35; HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₅H₂₆N₃ 368.2121; Found 368.2119.

9. References

1. H. Su; L. Wang; H. Rao; H. Xu, Iron-Catalyzed Dehydrogenative sp(3)-sp(2) Coupling via Direct Oxidative C-H Activation of Acetonitrile. *Org. Lett.* 2017, **19**, 2226-2229.

2. Y. Yuan; Z. Zhou; L. Zhang; L. S. Li; A. Lei, Electrochemical Oxidative C3 Acyloxylation of Imidazo[1,2-a]pyridines with Hydrogen Evolution. *Org. Lett.* 2021, **23**, 5932-5936.

3. Y. Gao; Y. Wang; J. Zhou; H. Mei; J. Han, An electrochemical oxidative homo-coupling reaction of imidazopyridine heterocycles to biheteroaryls. *Green Chem.* 2018, **20**, 583-587.

4. G. Kibriya; A. K. Bagdi; A. Hajra, Visible-Light-Promoted C(sp(3))-C(sp(2)) Cross-Dehydrogenative Coupling of Tertiary Amine with Imidazopyridine. *J. Org. Chem.* 2018, **83**, 10619-10626.

5. X. Zhu; X. Li; X. Li; J. Lv; K. Sun; X. Song; D. Yang, Decarboxylative C-H alkylation of heteroarenes by copper catalysis. *Org. Chem. Front.* 2021, **8**, 3128-3136.

6. S. Li; X. Li; T. Wang; Q. Yang; Z. Ouyang; J. Chen; H. Zhai; X. Li; B. Cheng, Electrochemical Decarboxylative Coupling of N - Substituted Glycines under Air: Access to C3 - Aminomethylated Imidazo[1,2-a]pyridines. *Adv. Synth. Catal.* 2022, **364**, 2346-2351.

7. Y. Wang; H. Zheng; J. Xu; C. Zhuang; X. Liu; H. Cao, Access to diverse primary, secondary, and tertiary amines via the merger of controllable cleavage of triazines and site-selective functionalization. *Org. Chem. Front.* 2021, **8**, 4706-4714.

8. S. Mondal; S. Samanta; S. Santra; A. K. Bagdi; A. Hajra, N,N-Dimethylformamide as a Methylenating Reagent: Synthesis of HeterodiarylmethanesviaCopper-Catalyzed Coupling between Imidazo[1,2-a]pyridines and Indoles/N,N-Dimethylaniline. *Adv. Synth. Catal.* 2016, **358**, 3633-3641.

9. R. Kumar; D. Rawat; S. Adimurthy, Polyethylene Glycol (PEG-400) as Methylene Spacer and Green Solvent for the Synthesis of Heterodiarylmethanes under Metal-Free Conditions. *Eur. J. Org. Chem.* 2020, **2020**, 3499-3507.

10. Crystal data and structure refinement of 3aa, 3la and 4ha

The crystal was prepared in ethyl acetate underneath methol through evaporation, the structure was measured by 'Bruker APEX-II CCD' diffractometer.

10.1 X-ray structure of 3aa

Table S9 Crystal data and structure refinement for 3aa

Identification code	1132_LSF_0m
Empirical formula	$C_{21}H_{19}N_3$
Formula weight	313.39
Temperature/K	298.0
Crystal system	triclinic
Space group	P-1

a/Å	8.365(4)	
b/Å	10.655(5)	
c/Å	10.809(5)	
a/°	115.055(14)	
β/°	99.780(14)	
$\gamma/^{\circ}$	98.016(15)	
Volume/Å ³	835.6(7)	
Z	2	
$\rho_{calc}g/cm^3$	1.246	
µ/mm ⁻¹	0.075	
F(000)	332.0	
Crystal size/mm ³	0.6 imes 0.6 imes 0.6	
Radiation	MoKa ($\lambda = 0.71073$)	
20 range for data collection/° 4.302 to 54.966		
Index ranges	$-9 \le h \le 10, \text{-}13 \le k \le 13, \text{-}14 \le l \le 14$	
Reflections collected	13642	
Independent reflections	3805 [$R_{int} = 0.0552$, $R_{sigma} = 0.0503$]	
Data/restraints/parameters	3805/0/218	
Goodness-of-fit on F ²	1.033	
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0470, wR_2 = 0.1198$	
Final R indexes [all data]	$R_1 = 0.0676, wR_2 = 0.1352$	
Largest diff. peak/hole / e Å ⁻³ 0.15/-0.14		

10.2 X-ray structure of 3la

Table S10 Crystal data and structure refinement for 3la

Identification code	846_LSF_0m
Empirical formula	$C_{19}H_{17}N_3S$
Formula weight	319.41
Temperature/K	200.0
Crystal system	triclinic
Space group	P-1
a/Å	8.3612(2)
b/Å	9.7442(2)
c/Å	10.6475(2)
$\alpha/^{\circ}$	65.8180(10)
β/°	86.3210(10)
$\gamma/^{o}$	79.4170(10)
Volume/Å ³	777.84(3)
Z	2
$\rho_{calc}g/cm^3$	1.364
µ/mm ⁻¹	1.853
F(000)	336.0
Crystal size/mm ³	0.2 imes 0.1 imes 0.08
Radiation	$CuK\alpha$ ($\lambda = 1.54178$)
2Θ range for data collection/°	9.104 to 136.372
Index ranges	$-10 \le h \le 9, -11 \le k \le 11, -12 \le l \le 12$
Reflections collected	10004
Independent reflections	2825 [$R_{int} = 0.0474, R_{sigma} = 0.0410$]
Data/restraints/parameters	2825/872/324
Goodness-of-fit on F ²	1.099
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0466, wR_2 = 0.1197$
Final R indexes [all data]	$R_1 = 0.0503, wR_2 = 0.1229$
Largest diff. peak/hole / e Å ⁻³	0.29/-0.28

10.3 X-ray structure of 4ha

CCDC 2165780

Table S11 Crystal data and structure refinement for 4ha

Identification code	662_LSF_0m
Empirical formula	$C_{22}H_{20}BrN_3$
Formula weight	406.32
Temperature/K	200.0
Crystal system	monoclinic
Space group	$P2_1/c$
a/Å	6.3317(2)
b/Å	10.0072(3)
c/Å	29.5714(8)
α/°	90

β/°	92.360(2)
γ/°	90
Volume/Å ³	1872.13(10)
Z	4
$\rho_{calc}g/cm^3$	1.442
µ/mm ⁻¹	3.057
F(000)	832.0
Crystal size/mm ³	$0.4 \times 0.03 \times 0.01$
Radiation	$CuK\alpha$ ($\lambda = 1.54178$)
2Θ range for data collection/°	5.982 to 136.386
Index ranges	$\text{-7} \le h \le 6, \text{-12} \le k \le 12, \text{-35} \le l \le 34$
Reflections collected	14919
Independent reflections	3421 [$R_{int} = 0.0655$, $R_{sigma} = 0.0561$]
Data/restraints/parameters	3421/0/237
Goodness-of-fit on F ²	1.044
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0417, wR_2 = 0.1057$
Final R indexes [all data]	$R_1 = 0.0543, wR_2 = 0.1127$
Largest diff. peak/hole / e Å $^{\text{-}3}$	0.49/-0.53

11. NMR spectra of C3 methylated imidazo[1,2-a]pyridines

8,8,0669 8,8,0520 8,8,0520 8,8,0492 8,8,0492 8,8,0492 8,8,0492 8,8,0492 8,8,0492 7,7,931 7,7,931 7,7,931 7,7,931 7,7,931 7,7,931 7,4834 7,7,343 7,7,343 7,4834 7,7,343 7,4834 7,1405 7,7,343 7,4834 7,1405 7,7,343 7,4834 7,1405 7

3aa

100 MHz in $CDCl_3$

7.9932 7.97306 7.97306 7.97306 7.97306 7.97306 7.97306 7.73053 7.73053 7.73053 7.73053 7.731619 7.731619 7.731619 7.731619 7.731619 7.731619 7.731619 7.731619 7.731619 7.731619 7.731619 7.731619 7.74450 7.74450 7.745161</td

400 MHz in CDCl₃

3ac -Br

8.1235 8.1207 8.11064 8.10054 8.10054 8.10054 8.10054 8.10054 8.11064 8.11064 8.11064 8.11064 8.11064 8.11064 8.11064 8.11064 8.11153 7.11336 <l

3ad

100 MHz in $CDCl_3$

8.0918 8.0016 8.0038 8.0038 8.0038 8.0038 8.0039 7.8203 7.8104 7.8105 7.7395 7.7395 7.77937 7.77937 7.77937 7.77938 7.77937 7.77938 7.77937 7.77938 7.7475151 7.74751 7.74751 7.74751 7.74751 7.74

8.2474 8.2444 8.2572 8.2272 8.2272 8.2272 8.2301 7.7780 7.7802 7.7817 7.78310 7.7506 7.73320 7.73320 7.75033 7.73320 7.73330 7.74533 7.74533 7.75033 7.75033 7.75033 7.75033 7.75033 7.75033 7.75033 7.7333 7.74534 7.75033 7.75033 7.74534 7.75033 7.75033 7.74534 7.75033 7.74534 7.74534 7.74534 7.74534 7.74534 7.74534 7.7454 7.74

N 3ah

400 MHz in CDCl₃

100 MHz in CDCl₃

f1 (ppm)

400 MHz in CDCl₃ 2.01.T 2.04H 2.14J 1.99<u>J</u> 1.98J 3.08₄ 5.0 4.5 f1 (ppm) 7.0 3.0]. 0 9.5 9.0 8.5 8.0 7.5 6.5 6.0 5.5 4.0 3.5 2.5 2.0 1.5 1.0 0.5 0.0 \sim 149.31 < 145.69< 145.25 $\begin{array}{c} 134.45\\ 129.47\\ 128.95\\ 128.06\\ 128.06\\ 128.06\\ 128.06\\ 128.06\\ 128.06\\ 128.06\\ 128.06\\ 118.59\\ 118.59\\ 118.59\\ 118.59\\ 118.59\\ 115.50\\ 112.41\\$ ~ 29.16 - 25.56 ~ 22.34 - 77.48 - 77.16 - 76.84 - 13.98

R.2011 R.2012 R.2014 R.2014

Ph-N 3ak

$\begin{array}{c} 8.4365\\ 8.43165\\ 8.43192\\ 8.43192\\ 8.43192\\ 8.43192\\ 8.43192\\ 8.43192\\ 8.43192\\ 8.43192\\ 7.26192\\ 7.75903\\ 7.759203\\ 7.759203\\ 7.759203\\ 7.759203\\ 7.76050\\ 7.74512\\ 7.75510\\ 7.74523\\ 7.76050\\ 7.74523\\ 7.75510\\ 7.74523\\ 7.75510\\ 7.74523\\ 7.75510\\ 7.74523\\ 7.75510\\ 7.74523\\ 7.75510\\ 7.74523\\ 7.75510\\ 7.74523\\ 7.75510\\ 7.74523\\ 7.75510\\ 7.74523\\ 7.75523\\ 7.75510\\ 7.74523\\ 7.75510\\ 7.74523\\ 7.75510\\ 7.74523\\ 7.75510\\ 7.74523\\ 7.75510\\ 7.74523\\ 7.75510\\ 7.74523\\ 7.75510\\ 7.74523\\ 7.75510\\ 7.74523\\ 7.75523\\ 7.75510\\ 7.74523\\ 7.75510\\ 7.74523\\ 7.75510\\ 7.74523\\ 7.75510\\ 7.74523\\ 7.75510\\ 7.74523\\ 7.75510\\ 7.74523\\ 7.75510\\ 7.74523\\ 7.75510\\ 7.74523\\ 7.75510\\ 7.74523\\ 7.75510\\ 7.74523\\ 7.75510\\ 7.74523\\ 7.75510\\ 7.74523\\ 7.75523\\ 7.$

3am N-Bn

400 MHz in CDCl₃

100 MHz in CDCl₃

fl (ppm) $\frac{1}{70}$

 $400 \text{ MHz in CDCl}_3$

f1 (ppm)

400 MHz in CDCl₃

f1 (ppm)

$\begin{array}{c} 8.0511\\ 8.0511\\ 8.0339\\ 8.0339\\ 8.0339\\ 7.7,71385\\ 7.7,71302\\ 7.7,71302\\ 7.7,71302\\ 7.7,71302\\ 7.7,71302\\ 7.7,71302\\ 7.7,7302\\ 7.7,1302\\ 7.7,1302\\ 7.7,1302\\ 7.7,1302\\ 7.7,1302\\ 7.7,10233\\ 7.7,6503\\ 7.7,6503\\ 7.7,6503\\ 7.7,6503\\ 7.7,6503\\ 7.7,1094\\ 7.7,1094\\ 7.7,1094\\ 7.7,1094\\ 7.7,1094\\ 7.7,1094\\ 7.7,1094\\ 7.7,1094\\ 7.7,1094\\ 7.7,1094\\ 7.7,1094\\ 7.7,1094\\ 7.7,1094\\ 7.7,2090\\ 7.7,200\\ 7.7,2000\\ 7.7,200\\ 7.7,2000\\ 7.7$

Sba N-Ph

$\begin{array}{c} 8.0638 \\ 8.0608 \\ 8.0608 \\ 8.0608 \\ 8.0608 \\ 8.0608 \\ 8.0608 \\ 8.0608 \\ 8.0608 \\ 8.0608 \\ 8.0608 \\ 7.7,771 \\ 7.7,781 \\ 7.7,768 \\ 7.7,776 \\ 7.7,768 \\ 7.7,778 \\$

100 80 60 40 20 0 -20 -40 -60 -80 -100 -140 -160 -180 -200 -220 -240 -260 -280 -300 f1 (ppm)

3ga / Br

8.1080 8.1051 8.1051 8.1051 8.1051 8.1051 8.1051 8.1051 8.1051 8.1051 8.1051 8.1051 8.1051 7.73149 7.75165 7.72495 7.722495 7.722495 7.722495 7.722495 7.722495 7.722495 7.722495 7.722495 7.722495 7.722495 7.722495 7.7226 7.7226 7.722495 7.7226 7.7226 7.7226 7.7226 7.7226 7.7226 7.7226 7.7226 7.7226 7.7226 7.7226 7.7226 7.7226 7.7226 7.7226 7.7226 7.7226 7.7226 7.7225 7.7226 7.7226 7.7225 7.7225 7.7226 7.7226 7.7225 7

S72

8.0552 8.0557 8.0557 8.03557 8.03557 8.03557 8.03557 8.03557 8.03557 7.70366 7.70366 7.70366 7.75934 7.751444 7.751444 7.7514444 7.751444 7

3ia N-Ph

$\begin{array}{c} & 8.0753 \\ & 2.0578 \\ & 7.0578 \\ & 7.0578 \\ & 7.0508 \\ & 7.5023 \\ & 7.5023 \\ & 7.5023 \\ & 7.5033 \\ & 7.5033 \\ & 7.5033 \\ & 7.2033 \\ & 7.2033 \\ & 7.2033 \\ & 7.2033 \\ & 7.2033 \\ & 7.2033 \\ & 7.2033 \\ & 7.2033 \\ & 6.8829 \\ & 6.8729 \\ & 6$ - 2.6994

он Ń 3ja N-Ph

8.0075 8.0044 8.0044 8.0044 7.9872 7.9872 7.9872 7.9872 7.5653 7.5653 7.5653 7.5653 7.5653 7.5653 7.7653 7.7653 7.75530 7.74933 7.74933 7.74933 7.74933 7.733100

Sna N-Ph

8.2189 8.2142 8.2142 8.2142 7.7583 7.7583 7.7583 7.7583 7.7583 7.7583 7.7583 7.7583 7.7412 7.7412 7.7412 7.7412 7.7412 7.7412 7.7412 7.7412 7.7412 7.7412 7.7412 7.7453 7.7412 7.7453 7.75563 7.75563 7.75563 7.75563 7.75563 7.75563 6.65919 6.55919

Br N N Ph 3pa

400 MHz in CDCl₃

7,9497 7,78051 7,78052 7,78052 7,78052 7,78052 7,78053 7,78053 7,78053 7,78053 7,78053 7,78053 7,78053 7,78053 7,74128

3qa N-Ph

3ra N-Ph

100 MHz in CDCl₃

f1 (ppm)

3sa N-Ph

400 MHz in CDCl₃

3sa N-Ph

400 MHz in CDCl₃

$\begin{array}{c} 8.5474 \\ 8.5320 \\ 8.5320 \\ 8.53220 \\ 8.53220 \\ 8.5321 \\ 8.5321 \\ 8.5321 \\ 8.5321 \\ 8.5321 \\ 8.5321 \\ 8.5321 \\ 8.5321 \\ 1.74856 \\ 7.74856 \\ 7.74856 \\ 7.74856 \\ 7.74850 \\ 7.74856 \\$

400 MHz in CDCl₃

^N H^N _{3ua} N-Ph 100 MHz in CDCl₃

^{∕N}∼(CH₂)₁₁CH₃

400 MHz in CDCl₃

f1 (ppm)

8.4886 8.4886 8.48856 8.48856 8.48856 8.48856 8.48856 8.48255 8.47517 7.77721 7.77721 7.77721 7.77721 7.77517 7.77517 7.77517 7.77517 7.77517 7.77518

3aq N Ph Ph Ph

8.4256 8.4256 7.7790 7.7790 7.7791 7.7792 7.7473 7.7473 7.7473 7.7473 7.7473 7.7473 7.7473 7.7473 7.7473 7.7473 7.7413 7.753 7.753 7.753 7.753 7.753 7.753 7.753 7.753 7.753

400 MHz in CDCl₃

100 MHz in CDCl₃

Ρh

8.4693 8.4671 8.4671 8.4570 8.4570 8.4570 8.4570 8.4570 8.4570 8.4570 8.4570 8.4570 8.4570 8.4570 8.4570 8.4570 8.4570 8.4570 8.4570 7.7570 8.4570 7.7570 7.7570 7.7570 7.7570 7.7570 7.7570 7.7570 7.7570 7.7570 7.7570 7.7570 7.7570 7.7570 7.7570 7.7570 7.7570 7.7570 7.7470 7.7470 7.74719 7.747117 7.74719 7.747

-2.7109

N 3at N-Ph

400 MHz in CDCl₃

400 MHz in CDCl₃

7.8319 7.7675 7.7675 7.76675 7.76675 7.76675 7.76675 7.76674 7.76845 7.76845 7.76845 7.76845 7.6845 7.6845 7.6845 7.6845 7.6845 7.6845 7.6845 7.6845 7.66346 7.66346 7.766546 7.766546 7.766546 7.766546 7.766546 7.766526 7.76526 7.76629601 7.76526 7.76526 7.76629601 7.776629601 7.776629601 7.7766601 7.7766601 7.7766601 7.7766601 7.7766601 7.7766601 7.7766601 7.7766601 7.7766601 7.7766601 7.7766601 7.7766601 7.7766001 7.776601 7.776601 7.776601 7.7766017.77

400 MHz in CDCl₃

4 ad

$\begin{array}{c} 7.7806\\ 7.77670\\ 7.77670\\ 7.77670\\ 7.77885\\ 7.77447\\ 7.77885\\ 7.77445\\ 7.77445\\ 7.77445\\ 7.77445\\ 7.77445\\ 7.77467\\ 7.77467\\ 7.77265\\ 7.775669\\ 7.775669\\ 7.775669\\ 7.77571\\ 7.77156\\ 7.75545\\ 7.75545\\ 7.75545\\ 7.75545\\ 7.75545\\ 7.75545\\ 7.75569\\ 7.75545\\ 7.71101\\ 7.75545\\ 7.71101\\ 7.75545\\ 7.71101\\ 7.71547\\ 7.71101\\ 7.71547\\ 7.71101\\ 7.71547\\ 7.71101\\ 7.71547\\ 7.71101\\ 7.71547\\ 7.71101\\ 7.71547\\ 7.71101\\ 7.71547\\ 7.71101\\ 7.71547\\ 7.71010\\ 7.71547\\ 7.71101\\ 7.71547\\ 7.71010\\ 7.71547\\ 7.71010\\ 7.71547\\ 7.71010\\ 7.71547\\ 7.71010\\ 7.71756\\ 7.71010\\ 7.71756\\ 7.71756\\ 7.71756\\ 7.71010\\ 7.7100\\ 7.71$

fl (ppm)

6.05H 1.00<u>4</u> 2.03<u>4</u> 3.014 1.93H 1.02 3.00Å 2.00Å b. o 5.0 4.5 f1 (ppm) 7.5 9.5 9.0 8.5 8.0 7.0 6.5 6.0 5.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 \sim 149.74 \sim 144.92 \sim 142.68 133.73 131.81 129.79 128.38 128.38 124.40 123.71 121.85 111.85 111.51 113.21 113.21 112.32 $\underbrace{ \left\{ \begin{array}{c} 77.48 \\ 77.16 \\ 76.84 \end{array} \right. } \\$ — 40.69

100 MHz in $CDCl_3$

90 f1 (ppm) 90 180 170 160 150 140 130 120 110 80 70 60 50 40 30 20 10 0 100

f1 (ppm)

400 MHz in CDCl₃

(7,6949) (7,5535) (7,5535) (7,5535) (7,5535) (7,5535) (7,5532) (7,5532) (7,5532) (7,5532) (7,5323)(7,5

400 MHz in CDCl₃

S110

7.7.676 7.7.6887 7.7.68687 7.7.68687 7.7.68687 7.7.68687 7.7.68687 7.7.68687 7.7.68687 7.7.6868 7.7.1801 7.7.1801 7.7.1805 7.7.19

400 MHz in CDCl₃

400 MHz in CDCl₃

