Supporting Information

Elucidation of the behavior of oxygen remaining in water molecules after hydrogen atom abstraction in the Plasma/Liquid (P/L) interfacial reaction: Improvement in the selectivity of ammonia synthesis and parallel production of hydrogen gas

Souma Yoshida[†], Naoya Murakami^{††}, Yoshiyuki Takatsuji[†], and Tetsuya Haruyama^{†*}

[†]Division of Functional Interface Engineering, Department of Biological Functions and Engineering, Kyushu Institute of Technology. Kitakyushu Science and Research Park, Kitakyushu, Fukuoka 808-0196, Japan

[†] [†] Division of Photo-functional Nanomaterials, Department of Biological Function and Engineering, Kyushu Institute of Technology. Kitakyushu Science and Research Park, Kitakyushu, Fukuoka 808-0196, Japan

Figure S1. Calibration curve and calibration curve precision using standard sample for ammonium, nitrate, and nitrite ions in ion chromatography analysis. Correlation coefficient (R): ammonium ion $(NH_4^+) R = 0.9998$, nitrite ion $(NO_2^-) R = 0.9999$, nitrate ion $(NO_3^-) R = 0.9998$.

Standard chemicals:

All standard chemicals were purchased from Wako Chemicals Co., Ltd. Ammonium ion (NH_4^+) : Ammonium ion standard solution $(NH_4NO_3 (aq.))$ Nitrate ion (NO_3^-) : Nitrate ion standard solution $(NaNO_2 (aq.))$ Nitrite ion (NO_2^-) : Nitrate ion standard solution $(NaNO_3 (aq.))$

Analysis conditions Cation chromatography Eluent: 3.0 mM methanesulfonic acid (aq.) Flow rate: 1.9 mL/min Column temperature: 40 °C Anion chromatography Eluent: 3.6 mM sodium carbonate (aq.) Flow rate: 0.8 mL/min Column temperature: 45 °C

Gas composition	Measuring range (ppm)
NH ₃	0.2 - 20
NO	10 - 300
NO_2	1 - 40

Table S1. Measurement ranges of NH₃, NO, and NO₂ using a Kitagawa type detector tube.

(d) PbDBD discharge filled with titania beads

Figure S2. The electric power required for (a) a DBD discharge and PbDBD discharge filled with, (b) glass, (c) alumina, and (d) with titania beads to activate nitrogen was determined by preparing Lissajous curves.

Table S2. Electric power equipments.	
	Electric power [W]
DBD discharge	52.22
PbDBD discharge filled with glass beads	53.14
PbDBD discharge filled with alumina beads	56.61
PbDBD discharge filled with titania beads	52.71

T.LL CA E1 *.*. .

Figure S3. Waveforms obtained using an oscilloscope. CH1: voltage of the reactor, CH2: voltage of the capacitor, and CN3: current of the entire circuit. (a) DBD discharge and PbDBD discharge filled with (b) glass, (c) alumina, and (d) titania beads.